
THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

The Impact of XML Databases Normalization on
Design and Usability of Internet Applications

doi:10.3991/ijac.v3i2.1265

Hosam F. El-Sofany1, Fayed F. M. Ghaleb2, and Samir A. El-Seoud3
1 Qatar University, Doha, Qatar

2 Ain Shams University, Cairo, Egypt
3Princess Sumaya University for Technology, Amman, Jordan

Abstract—Database normalization is a process which
eliminates redundancy, organizes data efficiently and
improves data consistency. Functional, multivalued, and
join dependencies (FDs, MVDs, and JDs) play fundamental
roles in relational databases where they provide semantics
for the data and at the same time are the foundations for
database design. In this study we investigate the issue of
defining functional, multivalued and join dependencies and
their normal forms in XML database model. We show that,
like relational databases, XML documents may contain
redundant information, and this redundancy may cause
update anomalies. Furthermore, such problems are caused
by certain dependencies among paths in the document. Our
goal is to find a way for converting an arbitrary XML
Schema to a well-designed one that avoids these problems.
We extend the notion of tuple for relational databases to the
XML model. We show that an XML tree can be represented
as a set of tree tuples. We introduce the definitions of FD,
MVD, and JD and new Normal Forms of XML Schema that
based on these dependencies (X-1NF, X-2NF, X-3NF, X-
BCNF, X-4NF, and X-5NF). We show that our proposed
normal forms are necessary and sufficient to ensure all
conforming XML documents have no redundancies.

Index Terms— Database design, Functional, Mulivalued,
and Join dependencies, Normalization theory, XML

I. INTRODUCTION

Recently, several researchers studied the issue of Web-
based application distinguished three basic levels in every
web-based application: the Web character of the program,
the pedagogical background, and the personalized
management of the learning material [23]. They defined a
web-based program as an information system that contains
a Web server, a network, a communication protocol like
HTTP, and a browser in which data supplied by users act
on the system’s status and cause changes. The pedagogical
background means the educational model that is used in
combination with pedagogical goals set by the instructor.
The personalized management of the learning materials
means the set of rules and mechanisms that are used to
select learning materials based on the student’s
characteristics, the educational objectives, the teaching
model, and the available media.

Many works have combined and integrated these three
factors in e-learning systems, leading to several
standardization projects. Some projects have focused on
determining the standard architecture and format for
learning environments, such as IEEE Learning
Technology Systems Architecture (LTSC), Instructional

Management Systems (IMS), and Sharable Content
Object Reference Model (SCORM). IMS and SCORM
define and deliver XML-based interoperable
specifications for exchanging and sequencing learning
contents, i.e., learning objects, among many
heterogeneous e-learning systems. They mainly focus on
the standardization of learning and teaching methods as
well as on the modeling of how the systems manage
interoperating educational data relevant to the educational
process.

The eXtensible Markup Language (XML) has recently
emerged as a standard for data representation and
interchange on the Internet. With the increase of data-
intensive web applications, XML has conquered the field
of databases. It is argued that XML can be used as a
database language, which would not only support the data
exchange on the web. This has led to significant research
efforts including: 1) The storage of XML documents in
relational databases, 2) Query languages for XML, which
lead to the standard query language, XQuery 3) Schema
languages for XML, which lead to the widely accepted
XML Schema language, 4) Updates of XML documents
and, 5) Dependency and normal form theory [1-7].

Although many XML documents are views of relational
data, the number of applications using native XML
documents is increasing rapidly. Such applications may
use native XML storage facilities [2], and update XML
data [3]. Updates, like in relational databases, may cause
anomalies if data is redundant. In the relational world,
anomalies are avoided by developing a well-designed
database schema. XML has its version of schema too;
such as DTD (Document Type Definition), and XML
Schema [4]. Our goal is to find the principles for good
XML Schema design. We believe that it is important to do
this research now, as a lot of data is being put on the web.
Once massive web databases are created, it is very hard to
change their organization; thus, there is a risk of having
large amounts of widely accessible, but at the same time
poorly organized legacy data.

Normalization is a process which eliminates
redundancy, organizes data efficiently and improves data
consistency. Whereas normalization in the relational
world has been quite explored, it is a new research area in
native XML databases. Even though native XML
databases mainly work with document-centric XML
documents, and the structure of several XML document
might differ from one to another, there is room for
redundant information. This redundancy in data may
impact on document updates, efficiency of queries, etc.
Figure 1, shows an overview of the XML normalization
process that we propose.

4 http://www.i-jac.org

http://dx.doi.org/10.3991/ijac.v3i2.1265�

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

Figure 1. An overview of the XML normalization process

Functional dependency (FD) is one of the integrity
constraints for any data model. In relational data model,
FDs, MVDs, and JDs are well studied and are widely used
in normalization theory and in key algorithms. In recent
years, XML has emerged as a widely used data
representation and storage format over the World Wide
Web. The growing use of XML has necessitated the XML
document semantically stronger. XML functional
dependency has studied as one of the ways to make the
XML data semantically richer [8, 13, 14, 21, 22].

The focus of this paper is on functional, multivalued
and join dependencies and normal form theory. This
theory concerns the old question of well-designed
databases or in other words the syntactic characterization
of semantically desirable properties. These properties are
tightly connected with dependencies such as keys,
functional dependencies, weak functional dependencies,
equality generating dependencies, multivalued
dependencies, inclusion dependencies, join dependencies,
etc [9-12]. All these classes of dependencies have been
deeply investigated in the context of the relational data
model [5, 6]. The work now requires its generalization to
XML (trees like) model.

 The main contributions of this study are the new
definitions of MVD and JD and the new normal forms of
XML Schema (X-4NF and X-5NF). We extend our
previous research works proposed in [21, 22], and show
how to use MVDs and JDs to detect data redundancy in
XML document, and then proposed normal forms of XML
Schema with respect to the MVD and JD constraints.

II. PRIMARILY DEFINITIONS

To extend the notions of FDs, MVDs and JDs to the
XML database model, we represent XML trees as sets of
tuples [13, 14, 21, 22], and find the correspondence
between documents and relations that leads to the
definitions of functional and multivalued dependencies.
We first describe the formal definitions of XML Schema
(XSchema) and the conforming of XML tree to XSchema.
Assume that we have the following disjoint sets:
 Ê: set of element names
 Â: set of attribute names
 DΤ: set of atomic data types (e.g., ID, IDREF

IDREFS, string, integer, date, etc.)
 Str: set of possible values of string-valued attributes
 Vert: set of node identifiers

All attribute names start with the symbol @. The
symbols φ and S represent element type declarations
EMPTY (null) and #PCDATA, respectively.

Definition 1 (XSchema): An XSchema is denoted by 6-
tuple: X = (E, A, M, P, r, ∑), where:
 E Ê, is a finite set of element names.
 A Â, is a finite set of attribute names.
 M is a function from E to its element type definitions:

i.e., M(e) = α, where e E and α is a regular
expression:

 α ::= ε | t | α + α | α, α | α* | α? | α+
where, ε denotes the empty element, t DΤ, "+" for the
union, "," for the concatenation, α* for the Kleene
closure, α? for (α + ε) and α+ for (α, α*)

 P is a function from an attribute name a to its attribute
type definition: i.e., P(a) = β, where β is a 4-tuple (t,
n, d, f), where: t DΤ, n = Either "?" (nullable) or
"¬?" (not nullable), d =A finite set of valid domain
values of a or ε if not known, and f = A default value
of a or ε if not known

 r E is a finite set of root elements
 ∑ is a finite set of integrity constraints for XML

model. The integrity constraints we consider are keys
(P.K, F.K,…) and dependencies (functional and
inclusion)

Definition 2 (path in XSchema): Given an XSchema X =
(E, A, M, P, r, ∑), a string p = p1 …pn, is a path in X if, p1
= r, pi is in the alphabet of M(pi −1), for each i [2, n − 1]
and pn is in the alphabet of M(pn−1) or pn = @l for some
@l P(pn−1).

 We let paths(X) stand for the set of all paths in X and

EPaths(X) for the set of all paths that ends with an
element type (rather than an attribute or S), that is:
EPaths(X) = { p paths(X) | last(p) E }

 An XSchema is called recursive if paths(X) is infinite

Definition 3 (XML tree): An XML tree T is defined to be
a tree, T = (V, lab, ele, att, root), where:
 V Vert is a finite set of vertices (nodes)
 lab : V → Ê

 ele : V → Str ∪V*

 att is a partial function V × Â → Str. For each v V,
the set {@l Â | att(v, @l) is defined} is required to
be finite

 root V is called the root of T

Definition 4 (path in XML tree): Given an XML tree T,
a string: p1…pn with p1 ,…, pn-1Ê and pnÊ Â{S} is a
path in T if there are vertices v1 … vn−1V s.t.:
 v1 = root, vi+1 is a child of vi (1 ≤ i ≤ n − 2), lab(vi) =

pi (1 ≤ i ≤ n − 1)
 If pn Ê, then there is a child vn of vn−1 s.t. lab(vn)

= pn. If pn = @l, with @lÂ, then att(vn−1, @l) is
defined. If pn = S, then vn−1 has a child in Str

 We let paths(T) stand for the set of paths in T

iJAC – Volume 3, Issue 2, May 2010 5

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

Definition 5 (conformation and compatibility): Given
an XSchema X = (E, A, M, P, r, ∑) and an XML tree T =
(V, lab, ele, att, root), we say that T is valid w.r.t. X (or T
conforms to X) written as (T╞ X) if:
 lab: V → E
 For each v V, if M(lab(v)) = S, then ele(v) = [s],

where s Str. Otherwise, ele(v) = [v1, … , vn] and the
string lab(v1) … lab(vn) must be in the regular
language defined by M(lab(v))

 att is a partial function, att: V × A → Str, s.t. for any v
 V and @l A, att(v, @l) is defined iff @l
P(lab(v))

 lab(root) = r

We say that T is compatible with X (written T ⊲X) iff

paths(T) paths(X). Clearly, T╞ X T ⊲X

Definition 6 (subsumed): Given two XML trees T1 = (V1,
lab1, ele1, att1, root1) and T2 = (V2, lab2, ele2, att2, root2),
we say that T1 is subsumed by T2, written as T1 ≤ T2 if:
 V1 V2
 root1 = root2
 lab2|V1 = lab1
 att2|V1×Â = att1
 v V1, ele1(v) is a sub-list of a permutation of ele2(v)

Definition 7 (equivalence): Given two XML trees T1 and
T2, we say that T1 is equivalent to T2 written T1 ≡ T2, iff
T1 ≤ T2 and T2 ≤ T1 (i.e., T1 ≡ T2 iff T1 and T2 are equal as
unordered trees):

We shall also write T1 < T2 when T1 ≤ T2 and T2 ≰ T1

In [21, 22] we extended the notion of tuple for

relational databases to the XML model. In a relational
database, a tuple is a function that assigns to each attribute
a value from the corresponding domain. In our setting, a
tree tuple t in a XML Schema X is a function that assigns
to each path in X a value in Vert ∪Str ∪{φ} in such a
way that t represents a finite tree with paths from X
containing at most one occurrence of each path. We have
shown that an XML tree can be represented as a set of tree
tuples.

Definition 8 (tree tuples): Given XML Schema X = (E,
A, M, P, r, ∑), a tree tuple t X is a function, t: paths(X)
→ VertStr{φ} such that:

 For p EPaths(X), t(p) Vert∪{φ} and t(r) ≠ φ

 For p paths(X) − EPaths(X), t(p) Str ∪ {φ}

 If t(p1) = t(p2) and t(p1) Vert, then p1 = p2
 If t(p1) = φ and p1 is a prefix of p2, then t(p2) = φ
 {p paths(X) | t(p) ≠ φ} is finite

T(X) is defined to be the set of all tree tuples in X. For a

tree tuple t and a path p, we write t.p for t(p).

Example 1: Suppose that X is the XML Schema shown
below.
<?xml version = “1.0” encoding = “IS0-8859-1”?>

<xs:schema xmlns:xs “http://www.w3.org/2001/ SMLSchema”>
<xs:element name = “courses”>
<xs:complexType>
<xs:sequence>
<xs:element name = “course” type = “course” max0ccurs =
“unbounded”/>
</xs:sequence>
</xs:complextType>
</xs:element>
<xs:element name = “course”>
<xs:complextType>
<xs:sequence>
 <xs: element name = “title” type = “xs:string”/>
 <xs:element name = “taken_by” type = “taken_by”

max0ccurs = “unbounded”/>
</xs:sequence>
 </xs:attribute name = “cno” type = “xs:string” use =
“required”/>
<xs:complexType>
</xs:element>
<xs:element name = “taken_by”>
<xs:complesType>
<xs:sequence>
<xs:element name = “student” type = “student” max0ccurs =
“unbounded:/>
</xs:sequence>
</xs:complexType>
<xs:element>
<xs:element name = “student”>
<xs:complexType>
<xs:sequence>
 <xs:element name = “name” type = “sx:string”/>
 <xs:element name = “grade” type = “sx:string”/>
<xs:sequence>
<xs:attribute name = “sno” type = “xs:string” use = “required”/>
</xs:complexType>
</xs:element>
</xs:schema>

An example of an XML document (tree) that conforms to
this XML Schema is shown in Figure 2, [13]. Then a tree
tuple in X assigns values to each path in paths(X) such as:

t(courses) = v0
t(courses.course) = v1
t(courses.course. cno) = csc200
t(courses.course.title) = v2
t(courses.course.title) = Automata Theory
t(courses.course.taken_by) = v3
t(courses.course.taken_by.student) = v4
t(courses.course.taken_by.student.@sno) = st1
t(courses.course.taken_by.student.name) = v5
t(courses.course.taken_by.student.name.S) = Deere
t(courses.course.taken_by.student.grade) = v6
t(courses.course.taken_by.student.grade.S) = A+

Definition 9 (treeX): Given XML Schema X = (E, A, M,
P, r, ∑) and a tree tuple t T(X), treeX(t) is defined to be
an XML tree (V, lab, ele, att, root), where:
 root = t.r

6 http://www.i-jac.org

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

 V = {v Vert | p paths(X) such that v = t.p}
 If v = t.p and v V, then lab(v) = last(p)
 If v = t.p and v V, then ele(v) is defined to be the

list containing {t.p' | t.p' ≠ φ and p' = p.τ, τ E, or p' =
p.S, ordered lexicographically

 If v = t.p, @l A and t.p.@l ≠ φ , then att(v, @l) =
t.p.@l

Figure 2. A document containing redundant information

Example 2: Let X be the XML Schema and t the tree
tuple from Example 1. Then, t gives rise to the following
XML tree:

V 2

V 1

V 0

V 3

V 4

V 5 V 6

A u t o m a ta t h e o r y

A +

s t1

D e e r e

C s c 2 0 0

Proposition 1: If t T (X), then treeX(t) ⊲X.

 If we have two tree tuples t1, t2, we write t1 t2 if
whenever t1.p is defined, then t2.p is also defined and
t1.p ≠ φ t1.p = t2.p

 As usual, t1 t2 means t1 t2 and t1 ≠ t2
 Given two sets of tree tuples, Y and Z, we write: Y

b Z, if: t1 Y t2 Z s.t. t1 t2

Definition 10 (tuplesX): Given XML Schema X and an

XML tree T such that T ⊲X, tuplesX(T) is defined to be
the set of maximal tree tuples t (with respect to), s.t.
treeX(t) is subsumed by T, that is:

max{ t T (X) | treeX(t) ≤ T }
Note that:
 T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2)

 We have proved the following proposition [21, 22].

Proposition 2: If T ⊲X, then tuplesX(T) is a finite subset
of T(X). Furthermore, tuplesX(·) is monotone: T1 ≤ T2
implies tuplesX(T1) b tuplesX(T2).

Example 3: In example 1, we saw the XML Schema X
and a tree T conforming to X, and we saw one tree tuple t
for that tree, with identifiers assigned to some of the
element nodes of T. If we assign identifiers to the rest of
the nodes, we can compute the set tuplesX(T):

{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+)
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-)
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A)
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+)}

Finally, we define the trees represented by a set of tuples
Y as the minimal, with respect to ≤, trees containing all
tuples in Y.

Definition 11 (treesX): Given XML Schema X and a set
of tree tuples Y T (X), treesX(Y) is defined to be:

min≤{T | T ⊲X and t Y, treeX(t) ≤ T}.

Notice that, if T treesX(Y) and T ' ≡ T, then T ' is in
treesX(Y). The following shows that every XML
document can be represented as a set of tree tuples, if we
consider it as an unordered tree. That is, a tree T can be
reconstructed from tuplesX(T), up to equivalence ≡. We
have proved the following theorem [21, 22].

Theorem: Given XML Schema X and an XML tree T, if

T ⊲X, then trees(tuplesX([T])) = [T].

Note that:
 We say that Y T(X) is X-compatible if there is an

XML tree T: T ⊲X and Y tuplesX(T).
 For X-compatible set of tree tuples Y, there is always

an XML tree T: for every t Y, treeX(t) ≤ T.
 We have proved the following proposition, and

corollary [21, 22]:

Proposition 3: If Y T (X) is X-compatible, then:

 There is an XML tree T such that T ⊲X and treesX(Y)
= [T]

 Y b tuplesX(treesX(Y))

Corollary: For a X-compatible set of tree tuples Y:
treesX(tuplesX(treesX(Y))) = treesX(Y).

iJAC – Volume 3, Issue 2, May 2010 7

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

III. NORMAL FORMS BASED ON FUNCTIONAL

DEPENDENCIES

A. Functional dependencies of XML schema

We define the functional dependencies for XML
Schema by using the tree tuples representation that
discussed previously.

Definition 12 (functional dependencies): Given an XML
Schema X, a functional dependency (FD) over X is an
expression of the form: S1 → S2 where S1, S2 paths(X),
S1, S2 ≠ φ. The set of all FDs over X is denoted by FD(X).

For S paths(X) and t, t' T (X), t.S = t'.S means t.p =
t'.p p S. Furthermore, t.S ≠ φ means t.p ≠ φ p S

Definition 13: If S1 → S2 FD(X) and T is an XML tree
s.t. T ⊲X and S1 ∪ S2 paths(T), we say that T satisfies
S1 → S2 (written T╞ S1 → S2), if t1, t2 tuplesX(T),
t1.S1 = t2.S1 and t1.S1 ≠ φ t1.S2 = t2.S2.

Definition 14: If for every pair of tree tuples t1, t2 in an
XML tree T, t1.S1 = t2.S1 implies they have a null value on
some p S1, then the FD is trivially satisfied by T.

The previous definitions extends to the equivalence
classes, since, for any FD f and T ≡ T', T╞ f iff T'╞ f
We write T╞ F, for F FD(X), if T╞ f for each f F and
we write T╞ (X, F), if T╞ X and T╞ F

Example 6: Consider the XML Schema in example 1, we
have the following FDs. Note that, cno is a key of course:
courses.course.@cno → courses.course (FD1)
Another FD says that two distinct student sub-elements of
the same course cannot have the same sno:
{courses.course,courses.course.taken_by.student.@sno}
→ courses.course.taken_by.student (FD2)
Finally, to say that two student elements with the same
sno value must have the same name, we use:
courses.course.taken_by.student.@sno →
courses.course.taken_by.student.name.S (FD3)

Definition 15: Given XML Schema X, a set F FD(X)
and f FD(X), we say that (X, F) implies f, written (X, F)

⊦ f , if for any tree T with T╞ X and T╞ F, it is the case
that T╞ f. The set of all FDs implied by (X, F) will be
denoted by (X, F)+.

Definition 16: an FD f is trivial if (X, φ) ⊦ f.

B. Primary and Foreign Keys of XML Schema

We present the definitions of the primary and foreign
keys of the XML Schema. We'll use these definitions to
introduce the normal forms of XML Schema. Also, we
observe that while there are important differences between
the XML and relational models, much of the thinking that

commonly goes into relational database design can be
applied to XML Schema design as well.

Definition 17 (key, foreign key and superkey): Let X =
(E, A, M, P, r, ∑) be XML Schema, a constraint ∑ over X
has one of the following forms:
Key: e(l) → e, where eE and l is a set of attributes in

P(e). It indicates that the set l of attributes is a key of
e elements

Foreign key: e1(l1) e2(l2) and e2(l2) → e2 where e1, e2
E and l1, l2 are non-empty sequences of attributes in
P(e1), P(e2), respectively and moreover l1 and l2 have
the same length. This constraint indicates that l1 is a
foreign key of e1 elements referencing key l2 of e2
elements. A constraint of the form e1(l1) e2(l2) is
called an inclusion constraint. Observe that a foreign
key is actually a pair of constraint, namely an
inclusion constraint e1(l1) e2(l2) and a key e2(l2) →
e2

Superkey: suppose that, e E and for any two distinct
paths p1 and p2 in the XML Schema X, we have the
constraint that: p1(e) ≠ p2(e). The subset e is called a
superkey of X. Every XML Schema has at least one
default superkey - the set of all its elements

C. First normal form for XML schema (X-1NF)

First normal form (1NF) is now considered to be a part
of the formal definition of a relation in the basic relational
database model. Historically, it was defined as: "The
domain of an attribute in a tuple must be a single value
from the domain of that attribute" [20]. Of course, XML is
hierarchical by nature. An XML "tuple" can vary from
first normal form in several ways; all of them are valid by
means of data modeling:

D. Second normal form of XML schema (X-2NF)

X-2NF is based on the concept of full functional
dependency.

Definition 18: A FD S1 → S2, where S1, S2 paths(X) is
called full FD, if removal of any element's path p from S1,
means that the dependency does not hold any more, (i.e.,
for any p S1, (S1-{p}) does not functional determine S2).

Definition 19: A FD S1 → S2 is called partial dependency
if, for some p S1, (S1-{p}) → S2 is hold.

Example 7: Consider the following part of XML Schema
called "Emp_Proj":
<xs:complexType name “Emp_Proj”>
<xs:sequence>

<xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pnumber” type = “string”/>
 <xs: element name = “Hours” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 <xs: element name = “Plocation” type = “string”/>
<xs:sequence>
<xs: complexType>

8 http://www.i-jac.org

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

<xs: key name = “emSssKey”>
 <xs: selector xpath = “Emp_Proj”/>
 <xs: field xpath = “Sss”/>
<xs: key>
<xs: key name = “ProfectNoKey”>
 <xs: selector cpath = “Emp_Proj”/>
 <xs: field xpath = “Pnumber”/>
</xs:key>

With the following FDs:
FD1: {Emp_Proj.Sss, Emp_Proj.Pnumber} →
Emp_Proj.Hours
FD2: Emp_Proj.Sss → Emp_Proj.Ename
FD3: Emp_Proj.Pnumber → {Emp_Proj.Pname,
Emp_Proj.Plocation}

Note that:
FD1 is a full FD (neither Emp_Proj.Sss →
Emp_Proj.Hours nor Emp_Proj.Pnumber →
Emp_Proj.Hours holds).
The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} →
Emp_Proj.Ename is partial because Emp_Proj.Sss →
Emp_Proj.Ename holds.

Definition 20 (X-2NF): An XML Schema X = (E, A, M,
P, r, ∑) is in second normal form (X-2NF) if every
elements eE and attributes l P(e) are fully functionally
dependent on the key elements of X.

The test for X-2NF involves testing for FDs whose left-

hand side are part of the primary key. If the primary key
contain a single element's path, the test need not be
applied at all

Example 8: The XML Schema Emp_Proj in the above
example is in X-1NF but is not in X-2NF. Because the
FDs FD2 and FD3 make Emp_Proj.Ename,
Emp_Proj.Pname and Emp_Proj.Plocation partially
dependent on the primary key {Emp_Proj.Sss,
Emp_Proj.Pnumber} of Emp_Proj, thus violating the X-
2NF test.

Hence, the FDs FD1, FD2 and FD3 lead to the

decomposition of XML Schema Emp_Proj to the
following XML Schemas EP1, EP2 and EP3:

<xs: complexType name “EP1”>
<xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pnumber” type = “string”/>
 <xs: element name = “Hours” type = “string”/>
 </xs element>
</xs:sequence>
<xs:cmplexType>
<xs:cmplexType name “EP2”>
</xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
</xs:sequence>

<xs:cmplexType>
<xs:cmplexType name “EP3”>
</xs:sequence>
 <xs: element name = “Pnumber” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 <xs: element name = “Plocation” type = “string”/>
 </xs element>
</xs:sequence>
<xs:cmplexType>
<xs: key name = “empSssKey”>
 <xs: selector xpath = “EP1”/>
 <xs: field xpath = “Sss”/>
</xs:key>
<xs: key name = “ProjectNoKey”>
 <xs: selector xpath = “EP1”/>
 <xs: field xpath = “Pnumber”/>
</xs:key>
<xs: key name = “emp2SssKey”>
 <xs: selector xpath = “EP2”/>
 <xs: field xpath = “Sss”/>
</xs:key>
<xs: key name = “Project3NoKey”>
 <xs: selector xpath = “EP3”/>
 <xs: field xpath = “Pnumber”/>
<xs:key>

E. Third Normal Form of XML Schema (X-3NF)

X-3NF is based on the concept of transitive
dependency.

Definition 21: A FD S1 → S2, where S1, S2 paths(X) is
transitive dependency if there is a set of paths Z (that is
neither a key nor a subset of any key of X) and both S1 →
Z and Z → S2 hold.

Example 9: Consider the following XML Schema called
"Emp_Dept":

Emp_Dept(Ssn, Ename, Bdate, Address, Dnumber,
Dname, DmgrSsn)

<xs: complexType name “Emp_Dept”>
<xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Bdate” type = “string”/>
 <xs: element name = “Address” type = “string”/>
 <xs: element name = “Dnumber” type = “string”/>
 <xs: element name = “Dname” type = “string”/>
 <xs: element name = “DmgrSsn” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: key name = “empSssKey”>
 <xs: selector xpath = “Emp_Dept”/>
 <xs: field xpath = “Sss”/>
</xs:key>

iJAC – Volume 3, Issue 2, May 2010 9

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

With the following FDs:

FD1: Emp_Dept.Ssn → {Emp_Dept.Ename,
Emp_Dept.Bdate, Emp_Dept.Address,
Emp_Dept.Dnumber }
FD2: Emp_Dept.Dnumber → {Emp_Dept.Dname,
Emp_Dept.DmgrSsn}

Note that:
The dependency:
Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive
through Emp_Dept.Dnumber in Emp_Dept, because both
the FDs:
 Emp_Dept.Ssn → Emp_Dept.Dnumber and
 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn
hold and Emp_Dept.Dnumber is neither a key itself nor a
subset of the key of Emp_Dept.

Definition 22 (X-3NF): An XML Schema X = (E, A, M,
P, r, ∑) is in third normal form (X-3NF) if it satisfies X-
2NF and no (elements e E or l P(e)) is transitively
dependent on the key elements of X.

Example 10: The XML Schema Emp_Dept in the above
example is in X-2NF (since no partial dependencies on a
key element exist), but Emp_Dept is not in X-3NF.
Because of the transitive dependency of
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on
Emp_Dept.Ssn via Emp_Dept.Dnumber.

We can normalize Emp_Dept by decomposing it into the
following two XML Schemas ED1 and ED2:
ED1(Ssn, Ename, Bdate, Address, Dnumber)
ED2(Dnumber, Dname, DmgrSsn)

<xs:complexType name “ED1”>
<xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Bdate” type = “string”/>
 <xs: element name = “Address” type = “string”/>
 <xs: element name = “Dnumber” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs:complexType name “ED2”>
 <xs: element name = “Dnumber” type = “string”/>
 <xs: element name = “Dname” type = “string”/>
 <xs: element name = “DmgrSsn” type = “string”/>
 <xs:sequence>
<xs:complexType>
<xs: key name = “empSssKey”>
 <xs: selector xpath = “ED1”/>
 <xs: field xpath = “Sss”/>
</xs:key>
<xs: key name = “deptNoKey”>
 <xs: selector xpath = “ED2”/>
 <xs: field xpath = “Dnumber”/>
</xs:key>

F. Boyce-codd normal form of XML schema (X-BCNF)

X-BCNF is proposed as a similar form as X-3NF, but it
was found to stricter than X-3NF, because every XML
Schema in X-BCNF is also in X-3NF, however, an XML
Schema in X-3NF is not necessarily in X-BCNF. The
formal definitions of BCNF differs slightly from the
definition of X-3NF

Definition 23 (X-BCNF): An XML Schema X = (E, A,
M, P, r, ∑) is in Boyce-Codd Normal Form (X-BCNF) if
whenever a nontrivial FD S1 → S2 holds in X, where S1,
S2 paths(X), then S1 is a superkey of X.

Also, we can consider the following definition of X-
BCNF:

Definition 24: Given XML Schema X and F FD(X),
(X, F) is in X-BCNF iff for every nontrivial FD f (X,
F)+ of the form S → p.@l or S → p.S, it is the case that, S
→ p (X, F)+.

The intuition is as follows: Suppose that S → p.@l

(X, F)+. If T is an XML tree conforming to X and
satisfying F, then in T for every set of values of the
elements in S, we can find only one value of p.@l. Thus,
for every set of values of S, we need to store the value of
p.@l only once, in other words, S → p must be implied by
(X, F).

In definition 24, we suppose that, f is a nontrivial FD.
Indeed, the trivial FD p.@l → p.@l is always in (X, F)+,

but often p.@l → p ∉ (X, F)+, which does not necessarily
represent a bad design.

To show how X-BCNF distinguishes good XML design
from bad design, we consider example 1 again, when only
functional dependencies are provided.

Example 11: Consider the XML Schema from example 1
whose FDs are FD1, FD2 and FD3, shown in example 6.
FD3 associates a unique name with each student number,
which is therefore redundant. The design is not in X-
BCNF, since it contains FD3 but does not imply the
functional dependency:
courses.course.taken_by.student.@sno →
 courses.course.taken_by.student.name

To solve this problem, we gave a revised XML Schema

in example 1. The idea was to create a new element info
for storing information about students. That design
satisfies FDs, FD1, FD2, as well as,
courses.info.number.@sno → courses.info, can be easily
verified to be in X-BCNF.

IV. NORMAL FORMS BASED ON MULTIVALUED

DEPENDENCIES

We have discussed only FD, which is by far the most
important type of dependency in XML database design
theory. However, in many cases XML documents have
constraints that cannot be specified as FD. In this part of
the article, we discuss the concept of multivalued

10 http://www.i-jac.org

mailto:courses.course.taken_by.student.@sno�

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

dependency and define fourth normal form of XML
Schema (X-4NF), based on this dependency.

Definition 25 (multivalued dependency): Given an
XML Schema X, a multivalued dependency (MVD) over
X is an expression of the form: S1 S2 where S1, S2
paths(X), S1, S2 ≠ φ, specifies the following constraint on
any path state S of paths(X): If two paths t1, t2 T(X) exist
in paths(X) such that t1.S1 = t2.S1, then two paths t3, t4
T(X) should also exist in paths(X) with the following
properties, where we use S3 to denote (X-(S1 ∪ S2)):

t3.S1= t4.S1 = t1.S1 = t2.S1
t3.S2 = t1.S2 and t4.S2 = t2.S2
t3.S3 = t2.S3 and t4.S3 = t1.S3

Whenever S1 S2 holds, we say that S1 multi-determines
S1. Because of the symmetry in the definition, whenever
S1 S2 holds in X, so does S1 S3. Hence S1 S2

implies S1 S3, therefore we can write it as: S1 S2|S3.

Note that: an MVD S1 S2 in XML Schema X is called
a trivial MVD if: S2 S1 or (S1 ∪ S2) = paths(X).

A. Fourth normal form of XML schema (X-4NF)

Definition 26 (fourth normal form): An XML
Schema X is in fourth normal form (X-4NF) with respect
to a set of dependencies F (that includes functional
dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency S1 S2 F+, S1 is a
superkey for X.

Note: F+ is the (complete) set of all dependencies
(functional or multivalued) that will hold in every path
paths t T(X) that satisfies F. It is also called the closure
of F.

Example 12: Consider the following XML Schema called
"EMP", with the following MVDs:
EMP.Ename EMP.Pname, and
EMP. Ename EMP.Dname

<xs: complexType name “EMP”>
<xs:sequence>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 <xs: element name = “Dname” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: key name = “empEnamKey”>
 <xs: selector xpath = “EMP”/>
 <xs: field xpath = “Ename”/>
</xs:key>
<xs: key name = “empPnamKey”>
 <xs: selector xpath = “EMP”/>
 <xs: field xpath = “Pname”/>
</xs:key>
<xs: key name = “empDnamKey”>
 <xs: selector xpath = “EMP”/>

 <xs: field xpath = “Dname”/>
</xs:key>

The XML Schema "EMP" has no FD since it is an all-

key XML Schema. Because BCNF constraints are stated
in terms of FD only, an all-key Schema is always in
BCNF by default. Hence EMP is in X-BCNF. However,
EMP is not in X-4NF because in the nontrivial MVDs
EMP.Ename EMP.Pname and EMP.Ename
EMP.Dname, and Ename is not a superkey of EMP. We
decompose EMP into EMP-PROJECTS and EMP-
DEPENDENTS:
<xs: complexType name “EMP-PROJECTS”>
<xs:sequence>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 <xs:sequence>
<xs:complexType>
<xs: key name = “empEnamKey”>
 <xs: selector xpath = “EMP-PROJECTS”/>
 <xs: field xpath = “Ename”/>
</xs:key>
<xs: key name = “empPnamKey”>
 <xs: selector xpath = “EMP-PROJECTS”/>
 <xs: field xpath = “Pname”/>
</xs:key>

<xs: complexType name “EMP-DEPENDENTS”>
<xs:sequence>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Dname” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: key name = “empEnamKey”>
 <xs: selector xpath = “EMP-DEPENDENTS”/>
 <xs: field xpath = “Ename”/>
</xs:key>
<xs: key name = “empDnamKey”>
 <xs: selector xpath = “EMP-DEPENDENTS”/>
 <xs: field xpath = “Dname”/>
</xs:key>

Both EMP-PROJECTS and EMP-DEPENDENTS are

in X-4NF, because the MVDs:
EMP-PROJECTS.Ename EMP-PROJECTS.Pname
in EMP-PROJECTS and EMP-DEPENDENTS.Ename

 EMP-DEPENDENTS.Dname, in EMP-
DEPENDENTS are trivial MVDs. No other FDs and
nontrivial MVDs hold in either EMP-PROJECTS or
EMP-DEPENDENTS.

Note that: The relational view of the XML Schemas
"EMP", "EMP-PROJECTS", "EMP-DEPENDENTS" and
the corresponding relation states can be illustrated in the
following Figure: EMP (Ename, Pname, Dname)

iJAC – Volume 3, Issue 2, May 2010 11

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

V. NORMAL FORMS BASED ON JOIN DEPENDENCIES

Definition 27 (join dependency) : A join dependency
(JD), denoted by JD(X1, X2, ..., Xn), specified on XML
Schema X, specifies a constraint on the XML trees T of
X. The constraint states that every complete XML tree T
of X should have a non-additive join decomposition into
X1, X2, ..., Xn, that is, for every such XML tree T we
have:

* (X1(T), X2(T), ..., Xn (T)) = T

Note that:
- An MVD is a special case of a JD where n = 2.
- A join dependency JD(X1, X2, ..., Xn), specified on

XML Schema X, is a trivial JD if one of the XML
Schema Xi in JD(X1, X2, ..., Xn) is equal to X.

A. Fifth normal form of XML schema:

Definition 28 (fifth normal form): An XML Schema X
is in fifth normal form (X-5NF) or (Project-Join Normal
Form (X-PJNF)) with respect to a set of dependencies F
of functional, multivalued, and join dependencies if, for
every nontrivial join dependency JD(X1, X2, ..., Xn) F+
(that is, implied by F), every Xi is a superkey of X.

Example 13: Consider the following XML Schema
called "SUPPLY", with no MVDs is in X-4NF but not in
X-5NF:
<xs: complexType name “SUPPLY”>
<xs:sequence>
 <xs: element name = “Sname” type = “string”/>
 <xs: element name = “Part_name” type = “string”/>
 <xs: element name = “Proj_name” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: key name = “supSnamKey”>
 <xs: selector xpath = “SUPPLY”/>
 <xs: field xpath = “Sname”/>
</xs:key>
<xs: key name = “supPart_namKey”>
 <xs: selector xpath = “SUPPLY”/>
 <xs: field xpath = “Part_name”/>
</xs:key>
<xs: key name = “supProj_namKey”>
 <xs: selector xpath = “SUPPLY”/>
 <xs: field xpath = “Proj_name”/>
</xs:key>

Suppose that the following additional constraint always
holds: "whenever a supplier s supplies part p, and a
project j uses part p, and the supplier s supplies at least
one part to project j, then supplier s will also be
supplying part p to project j". This constraint can be
restated in other ways and specifies a join dependency
JD(X1, X2, X3) among the three projections X1, X2, and X3

defined as following:
<xs: complexType name “X1”>
<xs:sequence>
 <xs: element name = “Sname” type = “string”/>
 <xs: element name = “Part_name” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: complexType name “X2”>
<xs:sequence>
 <xs: element name = “Sname” type = “string”/>
 <xs: element name = “Proj_name” type = “string”/>
<xs:sequence>
<xs:complexType>
<xs: complexType name “X3”>
<xs:sequence>
 <xs: element name = “Part_name” type = “string”/>
 <xs: element name = “Proj_name” type = “string”/>
<xs:sequence>
<xs:complexType>

This shows how the SUPPLY, XML Schema with the join
dependency is decomposed into three XML Schemas
"X1", "X2", and "X3" that are each in X-5NF.

Note that: The relational view of the XML Schemas "
SUPPLY", "X1", "X2", and "X3" and the corresponding
relation states can be illustrated in the following Figure:

REFERENCES
[1] W3C, 2001. XML Schema. http://www.w3.org/XML/Schema.
[2] Kanne, C.C. and G. Moerkotte, 2000. Efficient storage of XML

data. Proceedings of the 16th International Conference on Data
Engineering, Feb. 28-Mar. 03, IEEE Computer Society,
Washington, DC., USA., pp: 198-198.
http://portal.acm.org/citation.cfm?id=847347 .

[3] Tatarinov, I., Z. Ives, A. Halevy and D. Weld, 2001. Updating
XML. Proceedings of the ACM SIGMOD International
Conference on Management of Data, May 21-24, ACM Press,
New York, USA., pp: 413-424.
http://portal.acm.org/citation.cfm?id=375663.375720 .

[4] Paredaens, J., P. DE Bra, M. Gyssens and D. Van Gucht, 1989.
The Structure of the Relational Database Model. 1st Edn.,
Springer-Verlag, USA., ISBN: 10: 0387137149, pp: 231.

12 http://www.i-jac.org

http://portal.acm.org/citation.cfm?id=847347�
http://portal.acm.org/citation.cfm?id=375663.375720�

THE IMPACT OF XML DATABASES NORMALIZATION ON DESIGN AND USABILITY OF INTERNET APPLICATIONS

[5] Thalheim, B., 1991. Dependencies in Relational Databases.
Teubner-Verlag, ISBN 3-8154-2020-2.

[6] Embley, D. and W.Y. Mok, 2001. Developing XML documents
with guaranteed “good” properties. Proceedings of the 20th
International Conference on Conceptual Modeling, Nov. 27-30,
Springer-Verlag, London, UK., pp: 426-441.
http://portal.acm.org/citation.cfm?id=725895 .

[7] Arenas, M. and L. Libkin, 2003. An information-theoretic
approach to normal forms for relational. Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, June 09-11, ACM Press, New
York, USA., pp: 15-26. http://portal.acm.org/citation.cfm?id=
645340.650226 .

[8] Lee, L., T.W. Ling and W.L. Low, 2002. Designing functional
dependencies for XML. Proceedings of the 8th International
Conference on Extending Database Technology, Mar. 25-27,
Springer-Verlag London, UK., pp: 124-141.
http://portal.acm.org/citation.cfm?id=645340.650226 .

[9] Buneman, P., S. Davidson, W. Fan, C. Hara and W.C. Tan, 2001.
Keys for XML. Proceedings of the 10th International World Wide
Web Conference, ISBN:1-58113-348-0, pp: 201-210.

[10] Buneman, P., S. Davidson, W. Fan, C. Hara and W.C. Tan, 2003.
Reasoning about keys for XML. Proceedings of the 8th
International Workshop on Database Programming Languages.
ISSN:0306-4379, pp: 1037 – 1063.

[11] Fan, W. and J. Sim´eon, 2000. Integrity constraints for XML.
Proceedings of the 19th ACM Symposium on Principles of
Database Systems, May 15-18, ACM Press, New York, USA., pp:
23-34. http://portal.acm.org/citation.cfm?id=335172 .

[12] Fan, W. and L. Libkin, 2001. On XML integrity constraints in the
presence of DTDs. Proceedings of the 20th ACM Symposium on
Principles of Database Systems, 2001, ACM Press, New York,
USA., pp: 114-125. http://portal.acm.org/ citation.cfm?id=375568.

[13] Marcelo Arenas and Leonid Libkin, 2004. A normal form for
XML documents. ACM Trans. Database Syst., 29: 195-232.
http://portal.acm.org/ citation.cfm?doid=974750.974757.

[14] Klaus-Dieter Schewe, 2005. Redundancy, dependencies and
normal forms for XML databases. Proceeding of the 6th
Conference on Australasian Database, 2005, Australian Computer
Society, Inc., Darlinghurst, Australia, pp: 7-16.
http://portal.acm.org/citation.cfm?id=1082224.

[15] Florescu, D. and D. Kossman, 1999. Storing and querying XML
data using an RDBMS. IEEE Data Eng. Bull., 22: 27-34.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3245.

[16] Buneman, P., A. Jung and A. Ohori, 1991. Using power domains
to generalize relational databases. Theoret. Comput. Sci., 91: 23-
55. http://portal.acm.org/citation.cfm?id=123758. doi:10.1016/
0304-3975(91)90266-5

[17] Grahne, G., 1991. The Problem of Incomplete Information in
Relational Databases. 1st Edn., Springer-Verlag, New York,
USA., ISBN: 3540549196, pp: 156.

[18] Gunter, C., 1992. Semantics of Programming Languages:
Structures and Techniques. 1st Edn., MIT Press, Cambridge,
Mass, ISBN: 10: 0262071436, pp: 441.

[19] Levene, M. and G. Loizou, 1998. Axiomatisation of functional
dependencies in incomplete relations. Theoret. Comput. Sci., 206:
283-300. http://portal.acm.org/citation.cfm?id=297270.297291.
doi:10.1016/S0304-3975(98)80029-7

[20] Ramez Elmasri and Shamkant B. Navathe, 2007. Fundamentals of
Database System. 5th. Edn.,

[21] Hosam F. El-Sofany, and Samir A. El-Seoud, "Schema Design
and Normalization Algorithm for XML Databases Model",
International Journal of Emerging Technologies in Learning –
iJET, Volume 4, Issue 2, Pages 11-21, doi:10.3991/ijet.v4i2.768,
June 2009.

[22] Hosam Farouk El-Sofany, "Extending the Concepts of
Normalization from Relational Databases to Extensible-Markup-
Language Databases Model", Journal of Computer Science 4(9):
P: 729-740, 2008, ISSN 1549-3636- Science Publications U.S.A,
2008.

[23] F. P. Rokou et al., “Modeling web-based educational systems:
process design teaching model,” Educational Technology and
Society, Vol. 7, pp. 42-50, 2004.

AUTHORS

Hosam F. El-Sofany is with the Department of
Computer Science and Engineering, College of
Engineering, Qatar University.

Fayed F. M. Ghaleb is with the Department of
Mathematics, Faculty of Science, Ain Shams University.

Samir A. El-Seoud is with Princess Sumaya University
for Technology, Amman, Jordan.

Manuscript received March 10, 2010. Published as resubmitted by the
authors May 22nd, 2010.

iJAC – Volume 3, Issue 2, May 2010 13

http://portal.acm.org/citation.cfm?id=725895�
http://portal.acm.org/citation.cfm?id=�645340.650226�
http://portal.acm.org/citation.cfm?id=�645340.650226�
http://portal.acm.org/citation.cfm?id=645340.650226�
http://portal.acm.org/citation.cfm?id=335172�
http://portal.acm.org/ citation.cfm?id=375568�
http://portal.acm.org/ citation.cfm?doid=974750.974757�
http://portal.acm.org/citation.cfm?id=1082224�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3245�
http://portal.acm.org/citation.cfm?id=123758�
http://dx.doi.org/10.1016/0304-3975%2891%2990266-5�
http://dx.doi.org/10.1016/0304-3975%2891%2990266-5�
http://portal.acm.org/citation.cfm?id=297270.297291�
http://dx.doi.org/10.1016/S0304-3975%2898%2980029-7�
http://dx.doi.org/10.3991/ijet.v4i2.768�

