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Abstract—Database normalization is a process which 
eliminates redundancy, organizes data efficiently and 
improves data consistency. Functional, multivalued, and 
join dependencies (FDs, MVDs, and JDs) play fundamental 
roles in relational databases where they provide semantics 
for the data and at the same time are the foundations for 
database design. In this study we investigate the issue of 
defining functional, multivalued and join dependencies and 
their normal forms in XML database model. We show that, 
like relational databases, XML documents may contain 
redundant information, and this redundancy may cause 
update anomalies. Furthermore, such problems are caused 
by certain dependencies among paths in the document. Our 
goal is to find a way for converting an arbitrary XML 
Schema to a well-designed one that avoids these problems. 
We extend the notion of tuple for relational databases to the 
XML model. We show that an XML tree can be represented 
as a set of tree tuples. We introduce the definitions of FD, 
MVD, and JD and new Normal Forms of XML Schema that 
based on these dependencies (X-1NF, X-2NF, X-3NF, X-
BCNF, X-4NF, and X-5NF). We show that our proposed 
normal forms are necessary and sufficient to ensure all 
conforming XML documents have no redundancies. 

Index Terms— Database design, Functional, Mulivalued, 
and Join dependencies, Normalization theory, XML 

I. INTRODUCTION 

Recently, several researchers studied the issue of Web-
based application distinguished three basic levels in every 
web-based application: the Web character of the program, 
the pedagogical background, and the personalized 
management of the learning material [23]. They defined a 
web-based program as an information system that contains 
a Web server, a network, a communication protocol like 
HTTP, and a browser in which data supplied by users act 
on the system’s status and cause changes. The pedagogical 
background means the educational model that is used in 
combination with pedagogical goals set by the instructor. 
The personalized management of the learning materials 
means the set of rules and mechanisms that are used to 
select learning materials based on the student’s 
characteristics, the educational objectives, the teaching 
model, and the available media. 

Many works have combined and integrated these three 
factors in e-learning systems, leading to several 
standardization projects. Some projects have focused on 
determining the standard architecture and format for 
learning environments, such as IEEE Learning 
Technology Systems Architecture (LTSC), Instructional 

Management Systems (IMS), and Sharable Content 
Object Reference Model (SCORM). IMS and SCORM 
define and deliver XML-based interoperable 
specifications for exchanging and sequencing learning 
contents, i.e., learning objects, among many 
heterogeneous e-learning systems. They mainly focus on 
the standardization of learning and teaching methods as 
well as on the modeling of how the systems manage 
interoperating educational data relevant to the educational 
process. 

The eXtensible Markup Language (XML) has recently 
emerged as a standard for data representation and 
interchange on the Internet. With the increase of data-
intensive web applications, XML has conquered the field 
of databases. It is argued that XML can be used as a 
database language, which would not only support the data 
exchange on the web. This has led to significant research 
efforts including: 1) The storage of XML documents in 
relational databases, 2) Query languages for XML, which 
lead to the standard query language, XQuery 3) Schema 
languages for XML, which lead to the widely accepted 
XML Schema language, 4) Updates of XML documents 
and, 5) Dependency and normal form theory [1-7]. 

Although many XML documents are views of relational 
data, the number of applications using native XML 
documents is increasing rapidly. Such applications may 
use native XML storage facilities [2], and update XML 
data [3]. Updates, like in relational databases, may cause 
anomalies if data is redundant. In the relational world, 
anomalies are avoided by developing a well-designed 
database schema. XML has its version of schema too; 
such as DTD (Document Type Definition), and XML 
Schema [4]. Our goal is to find the principles for good 
XML Schema design. We believe that it is important to do 
this research now, as a lot of data is being put on the web. 
Once massive web databases are created, it is very hard to 
change their organization; thus, there is a risk of having 
large amounts of widely accessible, but at the same time 
poorly organized legacy data.  

Normalization is a process which eliminates 
redundancy, organizes data efficiently and improves data 
consistency. Whereas normalization in the relational 
world has been quite explored, it is a new research area in 
native XML databases. Even though native XML 
databases mainly work with document-centric XML 
documents, and the structure of several XML document 
might differ from one to another, there is room for 
redundant information. This redundancy in data may 
impact on document updates, efficiency of queries, etc. 
Figure 1, shows an overview of the XML normalization 
process that we propose.  
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Figure 1.  An overview of the XML normalization process 

Functional dependency (FD) is one of the integrity 
constraints for any data model. In relational data model, 
FDs, MVDs, and JDs are well studied and are widely used 
in normalization theory and in key algorithms. In recent 
years, XML has emerged as a widely used data 
representation and storage format over the World Wide 
Web. The growing use of XML has necessitated the XML 
document semantically stronger. XML functional 
dependency has studied as one of the ways to make the 
XML data semantically richer [8, 13, 14, 21, 22]. 

The focus of this paper is on functional, multivalued 
and join dependencies and normal form theory. This 
theory concerns the old question of well-designed 
databases or in other words the syntactic characterization 
of semantically desirable properties. These properties are 
tightly connected with dependencies such as keys, 
functional dependencies, weak functional dependencies, 
equality generating dependencies, multivalued 
dependencies, inclusion dependencies, join dependencies, 
etc [9-12]. All these classes of dependencies have been 
deeply investigated in the context of the relational data 
model [5, 6]. The work now requires its generalization to 
XML (trees like) model.  

 The main contributions of this study are the new 
definitions of MVD and JD and the new normal forms of 
XML Schema (X-4NF and X-5NF). We extend our 
previous research works proposed in [21, 22], and show 
how to use MVDs and JDs to detect data redundancy in 
XML document, and then proposed normal forms of XML 
Schema with respect to the MVD and JD  constraints. 
 

II. PRIMARILY DEFINITIONS 

To extend the notions of FDs, MVDs and JDs to the 
XML database model, we represent XML trees as sets of 
tuples [13, 14, 21, 22], and find the correspondence 
between documents and relations that leads to the 
definitions of functional and multivalued dependencies. 
We first describe the formal definitions of XML Schema 
(XSchema) and the conforming of XML tree to XSchema. 
Assume that we have the following disjoint sets: 
 Ê: set of element names 
 Â: set of attribute names 
 DΤ: set of atomic data types (e.g., ID, IDREF 

IDREFS, string, integer, date, etc.) 
 Str: set of possible values of string-valued attributes 
 Vert: set of node identifiers 

All attribute names start with the symbol @. The 
symbols φ and S represent element type declarations 
EMPTY (null) and #PCDATA, respectively. 

 

Definition 1 (XSchema): An XSchema is denoted by 6-
tuple: X = (E, A, M, P, r, ∑), where: 
 E  Ê, is a finite set of element names.  
 A  Â, is a finite set of attribute names. 
 M is a function from E to its element type definitions: 

i.e., M(e) = α, where e  E and α is a regular 
expression: 

 α ::= ε | t | α + α | α, α | α* | α? | α+ 
where, ε denotes the empty element, t  DΤ, "+" for the 
union, "," for the concatenation, α* for the Kleene 
closure, α? for (α + ε) and α+ for (α, α*) 

 P is a function from an attribute name a to its attribute 
type definition: i.e., P(a) = β, where β is a 4-tuple (t, 
n, d, f), where: t  DΤ, n = Either "?" (nullable) or 
"¬?" (not nullable), d =A finite set of valid domain 
values of a or ε if not known, and f = A default value 
of a or ε if not known 

 r  E is a finite set of root elements 
 ∑ is a finite set of integrity constraints for XML 

model. The integrity constraints we consider are keys 
(P.K, F.K,…) and dependencies (functional and 
inclusion) 

 
Definition 2 (path in XSchema): Given an XSchema X = 
(E, A, M, P, r, ∑), a string p = p1 …pn, is a path in X if, p1 
= r, pi is in the alphabet of M(pi −1), for each i  [2, n − 1] 
and pn is in the alphabet of M(pn−1) or pn = @l for some 
@l  P(pn−1).  

 
 We let paths(X) stand for the set of all paths in X and 

EPaths(X) for the set of all paths that ends with an 
element type (rather than an attribute or S), that is: 
EPaths(X) = { p  paths(X) | last(p)  E } 

 An XSchema is called recursive if paths(X) is infinite 
 

Definition 3 (XML tree): An XML tree T is defined to be 
a tree, T = (V, lab, ele, att, root), where: 
 V  Vert is a finite set of vertices (nodes) 
 lab : V → Ê 

 ele : V → Str ∪V* 

 att is a partial function V × Â → Str. For each v  V, 
the set {@l Â | att(v, @l) is defined} is required to 
be finite 

 root  V is called the root of T 
 

Definition 4 (path in XML tree): Given an XML tree T, 
a string: p1…pn with p1 ,…, pn-1Ê and pnÊ Â{S} is a 
path in T if there are vertices v1 … vn−1V s.t.: 
 v1 = root, vi+1  is  a  child of vi (1 ≤ i ≤ n − 2), lab(vi) = 

pi (1 ≤ i ≤ n − 1) 
 If pn  Ê, then  there  is  a  child vn of vn−1 s.t. lab(vn) 

= pn. If pn = @l, with @lÂ, then att(vn−1, @l) is 
defined. If pn = S, then vn−1 has a child in Str 

 We let paths(T) stand for the set of paths in T 
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Definition 5 (conformation and compatibility): Given 
an XSchema X = (E, A, M, P, r, ∑) and an XML tree T = 
(V, lab, ele, att, root), we say that T is valid w.r.t. X (or T 
conforms to X) written as (T╞ X) if: 
 lab: V → E 
 For each v  V, if M(lab(v)) = S, then ele(v) = [s], 

where s  Str. Otherwise, ele(v) = [v1, … , vn] and the 
string lab(v1) … lab(vn) must be in the regular 
language defined by M(lab(v)) 

 att is a partial function, att: V × A → Str, s.t. for any v 
 V and @l  A, att(v, @l) is defined iff @l  
P(lab(v)) 

 lab(root) = r 

We say that T is compatible with X (written T ⊲X) iff 

paths(T)  paths(X). Clearly, T╞ X  T ⊲X 
 

Definition 6 (subsumed): Given two XML trees T1 = (V1, 
lab1, ele1, att1, root1) and T2 = (V2, lab2, ele2, att2, root2), 
we say that T1 is subsumed by T2, written as T1 ≤ T2 if: 
 V1  V2 
 root1 = root2 
 lab2|V1 = lab1 
 att2|V1×Â = att1 
 v  V1, ele1(v) is a sub-list of a permutation of ele2(v) 

 
Definition 7 (equivalence): Given two XML trees T1 and 
T2, we say that T1 is equivalent to T2 written T1 ≡ T2, iff 
T1 ≤ T2 and T2 ≤ T1 (i.e., T1 ≡ T2 iff T1 and T2 are equal as 
unordered trees): 

We shall also write T1 < T2 when T1 ≤ T2 and T2 ≰ T1 
 
In [21, 22] we extended the notion of tuple for 

relational databases to the XML model. In a relational 
database, a tuple is a function that assigns to each attribute 
a value from the corresponding domain. In our setting, a 
tree tuple t in a XML Schema X is a function that assigns 
to each path in X a value in Vert ∪Str ∪{φ} in such a 
way that t represents a finite tree with paths from X 
containing at most one occurrence of each path. We have 
shown that an XML tree can be represented as a set of tree 
tuples.  

 
Definition 8 (tree tuples): Given XML Schema X = (E, 
A, M, P, r, ∑), a tree tuple t  X is a function, t: paths(X) 
→ VertStr{φ} such that: 

 For p  EPaths(X), t(p)  Vert∪{φ} and t(r) ≠ φ  

 For p  paths(X) − EPaths(X), t(p)  Str ∪ {φ} 

 If t(p1) = t(p2) and t(p1)  Vert, then p1 = p2 
 If t(p1) = φ and p1 is a prefix of p2, then t(p2) = φ 
 {p  paths(X) | t(p) ≠ φ} is finite 

 
T(X) is defined to be the set of all tree tuples in X. For a 

tree tuple t and a path p, we write t.p for t(p). 
 

Example 1: Suppose that X is the XML Schema shown 
below.  
<?xml version = “1.0” encoding = “IS0-8859-1”?> 

<xs:schema xmlns:xs “http://www.w3.org/2001/ SMLSchema”> 
<xs:element name = “courses”> 
<xs:complexType> 
<xs:sequence> 
<xs:element name = “course” type = “course” max0ccurs = 
“unbounded”/> 
</xs:sequence> 
</xs:complextType> 
</xs:element> 
<xs:element name = “course”> 
<xs:complextType> 
<xs:sequence> 
 <xs: element name = “title” type = “xs:string”/> 
 <xs:element name = “taken_by” type = “taken_by” 

max0ccurs = “unbounded”/> 
</xs:sequence> 
 </xs:attribute name = “cno” type = “xs:string” use = 
“required”/> 
<xs:complexType> 
</xs:element> 
<xs:element name = “taken_by”> 
<xs:complesType> 
<xs:sequence> 
<xs:element name = “student” type = “student” max0ccurs = 
“unbounded:/> 
</xs:sequence> 
</xs:complexType> 
<xs:element> 
<xs:element name = “student”> 
<xs:complexType> 
<xs:sequence> 
 <xs:element name = “name” type = “sx:string”/> 
 <xs:element name = “grade” type = “sx:string”/> 
<xs:sequence> 
<xs:attribute name = “sno” type = “xs:string” use = “required”/> 
</xs:complexType> 
</xs:element> 
</xs:schema> 
 

An example of an XML document (tree) that conforms to 
this XML Schema is shown in Figure 2, [13]. Then a tree 
tuple in X assigns values to each path in paths(X) such as: 

t(courses) = v0 
t(courses.course) = v1 
t(courses.course. cno) = csc200 
t(courses.course.title) = v2 
t(courses.course.title) = Automata Theory 
t(courses.course.taken_by) = v3 
t(courses.course.taken_by.student) = v4 
t(courses.course.taken_by.student.@sno) = st1 
t(courses.course.taken_by.student.name) = v5 
t(courses.course.taken_by.student.name.S) = Deere 
t(courses.course.taken_by.student.grade) = v6 
t(courses.course.taken_by.student.grade.S) = A+ 
 

Definition 9 (treeX): Given XML Schema X = (E, A, M, 
P, r, ∑) and a tree tuple t  T(X), treeX(t) is defined to be 
an XML tree (V, lab, ele, att, root), where: 
 root = t.r  
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 V = {v  Vert |  p  paths(X) such that v = t.p} 
 If v = t.p and v  V, then lab(v) = last(p) 
 If v = t.p and v  V, then ele(v) is defined to be the 

list containing {t.p' | t.p' ≠ φ and p' = p.τ, τ E, or p' = 
p.S, ordered lexicographically 

 If v = t.p, @l  A and t.p.@l ≠ φ , then att(v, @l ) = 
t.p.@l 

 
Figure 2.  A document containing redundant information 

 
Example 2: Let X be the XML Schema and t the tree 
tuple from Example 1. Then, t gives rise to the following 
XML tree: 

 

V 2  

V 1  

V 0  

V 3  

V 4  

V 5  V 6

A u t o m a ta  t h e o r y

A +

s t1  

D e e r e  

C s c 2 0 0  

 
 

Proposition 1: If t  T (X), then treeX(t) ⊲X. 
 

 If we have two tree tuples t1, t2, we write t1  t2 if 
whenever t1.p is defined, then t2.p is also defined and 
t1.p ≠ φ  t1.p = t2.p 

 As usual, t1  t2 means t1  t2 and t1 ≠ t2 
 Given two sets of tree tuples, Y and Z, we write: Y  

b Z, if:  t1  Y  t2  Z s.t. t1  t2 
  

Definition 10 (tuplesX): Given XML Schema X and an 

XML tree T such that T ⊲X, tuplesX(T) is defined to be 
the set of maximal tree tuples t (with respect to ), s.t. 
treeX(t) is subsumed by T, that is: 

max{ t T (X) | treeX(t) ≤ T } 
Note that: 
 T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2) 

 We have proved the following proposition [21, 22]. 
 

Proposition 2: If T ⊲X, then tuplesX(T) is a finite subset 
of T(X). Furthermore, tuplesX(·) is monotone: T1 ≤ T2 
implies tuplesX(T1) b tuplesX(T2). 

 
Example 3: In example 1, we saw the XML Schema X 
and a tree T conforming to X, and we saw one tree tuple t 
for that tree, with identifiers assigned to some of the 
element nodes of T. If we assign identifiers to the rest of 
the nodes, we can compute the set tuplesX(T): 

 
{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+) 
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-) 
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A) 
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+)} 

 
  

Finally, we define the trees represented by a set of tuples 
Y as the minimal, with respect to ≤, trees containing all 
tuples in Y. 

 
Definition 11 (treesX): Given XML Schema X and a set 
of tree tuples Y T (X), treesX(Y) is defined to be: 

min≤{T | T ⊲X and  t  Y, treeX(t) ≤ T}. 
 

Notice that, if T  treesX(Y) and T ' ≡ T, then T ' is in 
treesX(Y). The following shows that every XML 
document can be represented as a set of tree tuples, if we 
consider it as an unordered tree. That is, a tree T can be 
reconstructed from tuplesX(T), up to equivalence ≡. We 
have proved the following theorem [21, 22]. 

 
Theorem: Given XML Schema X and an XML tree T, if 

T ⊲X, then trees(tuplesX([T])) = [T]. 
 

Note that:  
 We say that Y  T(X) is X-compatible if there is an 

XML tree T: T ⊲X and Y  tuplesX(T). 
 For X-compatible set of tree tuples Y, there is always 

an XML tree T: for every t Y, treeX(t) ≤ T. 
 We have proved the following proposition, and 

corollary [21, 22]: 
 

Proposition 3: If Y  T (X) is X-compatible, then: 

 There is an XML tree T such that T ⊲X and treesX(Y) 
= [T]  

 Y b tuplesX(treesX(Y)) 
 

Corollary: For a X-compatible set of tree tuples Y: 
treesX(tuplesX(treesX(Y))) = treesX(Y). 
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III. NORMAL FORMS BASED ON FUNCTIONAL  

DEPENDENCIES 

A. Functional dependencies of XML schema 

We define the functional dependencies for XML 
Schema by using the tree tuples representation that 
discussed previously.  

 
Definition 12 (functional dependencies): Given an XML 
Schema X, a functional dependency (FD) over X is an 
expression of the form: S1 → S2 where S1, S2  paths(X), 
S1, S2 ≠ φ. The set of all FDs over X is denoted by FD(X). 

For S  paths(X) and t, t'  T (X), t.S = t'.S means t.p = 
t'.p  p  S. Furthermore, t.S ≠ φ means t.p ≠ φ  p  S  

 
Definition 13: If S1 → S2  FD(X) and T is an XML tree 
s.t. T ⊲X and S1 ∪ S2  paths(T), we say that T satisfies 
S1 → S2 (written T╞ S1 → S2), if  t1, t2  tuplesX(T), 
t1.S1 = t2.S1 and t1.S1 ≠ φ  t1.S2 = t2.S2. 

 
Definition 14: If for every pair of tree tuples t1, t2 in an 
XML tree T, t1.S1 = t2.S1 implies they have a null value on 
some p  S1, then the FD is trivially satisfied by T. 

 
The previous definitions extends to the equivalence 
classes, since, for any FD f and T ≡ T', T╞ f iff T'╞ f 
We write T╞ F, for F  FD(X), if T╞ f for each f F and 
we write T╞ (X, F), if T╞ X and T╞ F 

 
Example 6: Consider the XML Schema in example 1, we 
have the following FDs. Note that, cno is a key of course: 
courses.course.@cno → courses.course         (FD1)  
Another FD says that two distinct student sub-elements of 
the same course cannot have the same sno:  
{courses.course,courses.course.taken_by.student.@sno} 
→ courses.course.taken_by.student            (FD2) 
Finally, to say that two student elements with the same 
sno value must have the same name, we use: 
courses.course.taken_by.student.@sno → 
courses.course.taken_by.student.name.S         (FD3) 

 
Definition 15: Given XML Schema X, a set F  FD(X) 
and f  FD(X), we say that (X, F) implies f, written (X, F) 

⊦ f , if for any tree T with T╞ X and T╞ F, it is the case 
that T╞ f. The set of all FDs implied by (X, F) will be 
denoted by (X, F)+.  

 

Definition 16: an FD f is trivial if (X, φ) ⊦ f.  
 

B. Primary and Foreign Keys of XML Schema 

We present the definitions of the primary and foreign 
keys of the XML Schema. We'll use these definitions to 
introduce the normal forms of XML Schema. Also, we 
observe that while there are important differences between 
the XML and relational models, much of the thinking that 

commonly goes into relational database design can be 
applied to XML Schema design as well. 

 
Definition 17 (key, foreign key and superkey): Let X = 
(E, A, M, P, r, ∑) be XML Schema, a constraint ∑ over X 
has one of the following forms: 
Key: e(l) → e, where eE and l is a set of attributes in 

P(e). It indicates that the set l of attributes is a key of 
e elements 

Foreign key: e1(l1)  e2(l2) and e2(l2) → e2 where e1, e2  
E and l1, l2 are non-empty sequences of attributes in 
P(e1), P(e2), respectively and moreover l1 and l2 have 
the same length. This constraint indicates that l1 is a 
foreign key of e1 elements referencing key l2 of e2 
elements. A constraint of the form e1(l1)  e2(l2) is 
called an inclusion constraint. Observe that a foreign 
key is actually a pair of constraint, namely an 
inclusion constraint e1(l1)  e2(l2) and a key e2(l2) → 
e2 

Superkey: suppose that, e  E and for any two distinct 
paths p1 and p2 in the XML Schema X, we have the 
constraint that: p1(e) ≠ p2(e). The subset e is called a 
superkey of X. Every XML Schema has at least one 
default superkey - the set of all its elements 

C. First normal form for XML schema (X-1NF) 

First normal form (1NF) is now considered to be a part 
of the formal definition of a relation in the basic relational 
database model. Historically, it was defined as: "The 
domain of an attribute in a tuple must be a single value 
from the domain of that attribute" [20]. Of course, XML is 
hierarchical by nature. An XML "tuple" can vary from 
first normal form in several ways; all of them are valid by 
means of data modeling: 

D. Second normal form of XML schema (X-2NF) 

X-2NF is based on the concept of full functional 
dependency. 

 
Definition 18: A FD S1 → S2, where S1, S2  paths(X) is 
called full FD, if removal of any element's path p from S1, 
means that the dependency does not hold any more, (i.e., 
for any p  S1, (S1-{p}) does not functional determine S2). 

 
Definition 19: A FD S1 → S2 is called partial dependency 
if, for some p  S1, (S1-{p}) → S2 is hold. 

 
Example 7: Consider the following part of XML Schema 
called "Emp_Proj": 
<xs:complexType name “Emp_Proj”> 
<xs:sequence> 

<xs: element name = “Sss” type = “string”/> 
 <xs: element name = “Pnumber” type = “string”/> 
 <xs: element name = “Hours” type = “string”/> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Pname” type = “string”/> 
 <xs: element name = “Plocation” type = “string”/> 
<xs:sequence> 
<xs: complexType> 
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<xs: key name = “emSssKey”> 
 <xs: selector xpath = “Emp_Proj”/> 
 <xs: field xpath = “Sss”/> 
<xs: key> 
<xs: key name = “ProfectNoKey”> 
 <xs: selector cpath = “Emp_Proj”/> 
 <xs: field xpath = “Pnumber”/> 
</xs:key> 

 
With the following FDs: 
FD1: {Emp_Proj.Sss, Emp_Proj.Pnumber} → 
Emp_Proj.Hours 
FD2: Emp_Proj.Sss → Emp_Proj.Ename 
FD3: Emp_Proj.Pnumber → {Emp_Proj.Pname, 
Emp_Proj.Plocation} 

 
Note that: 
FD1 is a full FD (neither Emp_Proj.Sss → 
Emp_Proj.Hours nor Emp_Proj.Pnumber → 
Emp_Proj.Hours holds). 
The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} → 
Emp_Proj.Ename is partial because Emp_Proj.Sss → 
Emp_Proj.Ename holds. 

 
Definition 20 (X-2NF): An XML Schema X = (E, A, M, 
P, r, ∑) is in second normal form (X-2NF) if every 
elements eE and attributes l  P(e) are fully functionally 
dependent on the key elements of X. 

 
The test for X-2NF involves testing for FDs whose left-

hand side are part of the primary key. If the primary key 
contain a single element's path, the test need not be 
applied at all 

 
Example 8: The XML Schema Emp_Proj in the above 
example is in X-1NF but is not in X-2NF. Because the 
FDs FD2 and FD3 make Emp_Proj.Ename, 
Emp_Proj.Pname and Emp_Proj.Plocation partially 
dependent on the primary key {Emp_Proj.Sss, 
Emp_Proj.Pnumber} of Emp_Proj, thus violating the X-
2NF test. 

 
Hence, the FDs FD1, FD2 and FD3 lead to the 

decomposition of XML Schema Emp_Proj to the 
following XML Schemas EP1, EP2 and EP3: 

 
<xs: complexType name “EP1”> 
<xs:sequence> 
 <xs: element name = “Sss” type = “string”/> 
 <xs: element name = “Pnumber” type = “string”/> 
 <xs: element name = “Hours” type = “string”/> 
 </xs element> 
</xs:sequence> 
<xs:cmplexType> 
<xs:cmplexType name “EP2”> 
</xs:sequence> 
 <xs: element name = “Sss” type = “string”/> 
 <xs: element name = “Pname” type = “string”/> 
</xs:sequence> 

<xs:cmplexType> 
<xs:cmplexType name “EP3”> 
</xs:sequence> 
 <xs: element name = “Pnumber” type = “string”/> 
 <xs: element name = “Pname” type = “string”/> 
 <xs: element name = “Plocation” type = “string”/> 
 </xs element> 
</xs:sequence> 
<xs:cmplexType> 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “EP1”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
<xs: key name = “ProjectNoKey”> 
 <xs: selector xpath = “EP1”/> 
 <xs: field xpath = “Pnumber”/> 
</xs:key> 
<xs: key name = “emp2SssKey”> 
 <xs: selector xpath = “EP2”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
<xs: key name = “Project3NoKey”> 
 <xs: selector xpath = “EP3”/> 
 <xs: field xpath = “Pnumber”/> 
<xs:key> 

 

E. Third Normal Form of XML Schema (X-3NF) 

X-3NF is based on the concept of transitive 
dependency. 

 
Definition 21: A FD S1 → S2, where S1, S2  paths(X) is 
transitive dependency if there is a set of paths Z (that is 
neither a key nor a subset of any key of X) and both S1 → 
Z and Z → S2 hold. 

 
Example 9: Consider the following XML Schema called 
"Emp_Dept": 

 
Emp_Dept(Ssn, Ename, Bdate, Address, Dnumber, 
Dname, DmgrSsn)  

 
<xs: complexType name “Emp_Dept”> 
<xs:sequence> 
 <xs: element name = “Sss” type = “string”/> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Bdate” type = “string”/> 
 <xs: element name = “Address” type = “string”/> 
 <xs: element name = “Dnumber” type = “string”/> 
 <xs: element name = “Dname” type = “string”/> 
 <xs: element name = “DmgrSsn” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “Emp_Dept”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
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With the following FDs: 
 

FD1: Emp_Dept.Ssn → {Emp_Dept.Ename, 
Emp_Dept.Bdate, Emp_Dept.Address, 
Emp_Dept.Dnumber } 
FD2: Emp_Dept.Dnumber → {Emp_Dept.Dname, 
Emp_Dept.DmgrSsn} 

 
Note that: 
The dependency: 
Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive 
through Emp_Dept.Dnumber in Emp_Dept, because both 
the FDs: 
 Emp_Dept.Ssn → Emp_Dept.Dnumber and 
 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn 
hold and Emp_Dept.Dnumber is neither a key itself nor a 
subset of the key of Emp_Dept. 

  
Definition 22 (X-3NF): An XML Schema X = (E, A, M, 
P, r, ∑) is in third normal form (X-3NF) if it satisfies X-
2NF and no (elements e  E or l  P(e)) is transitively 
dependent on the key elements of X. 

 
Example 10: The XML Schema Emp_Dept in the above 
example is in X-2NF (since no partial dependencies on a 
key element exist), but Emp_Dept is not in X-3NF. 
Because of the transitive dependency of 
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on 
Emp_Dept.Ssn via Emp_Dept.Dnumber.  

 
We can normalize Emp_Dept by decomposing it into the 
following two XML Schemas ED1 and ED2: 
ED1(Ssn, Ename, Bdate, Address, Dnumber) 
ED2(Dnumber, Dname, DmgrSsn) 

 
<xs:complexType name “ED1”> 
<xs:sequence> 
 <xs: element name = “Sss” type = “string”/> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Bdate” type = “string”/> 
 <xs: element name = “Address” type = “string”/> 
 <xs: element name = “Dnumber” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs:complexType name “ED2”> 
 <xs: element name = “Dnumber” type = “string”/> 
 <xs: element name = “Dname” type = “string”/> 
 <xs: element name = “DmgrSsn” type = “string”/> 
 <xs:sequence> 
<xs:complexType> 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “ED1”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
<xs: key name = “deptNoKey”> 
 <xs: selector xpath = “ED2”/> 
 <xs: field xpath = “Dnumber”/> 
</xs:key> 

 

F. Boyce-codd normal form of XML schema (X-BCNF) 

X-BCNF is proposed as a similar form as X-3NF, but it 
was found to stricter than X-3NF, because every XML 
Schema in X-BCNF is also in X-3NF, however, an XML 
Schema in X-3NF is not necessarily in X-BCNF. The 
formal definitions of BCNF differs slightly from the 
definition of X-3NF 

 
Definition 23 (X-BCNF): An XML Schema X = (E, A, 
M, P, r, ∑) is in Boyce-Codd Normal Form (X-BCNF) if 
whenever a nontrivial FD S1 → S2 holds in X, where S1, 
S2  paths(X), then S1 is a superkey of X.  

Also, we can consider the following definition of X-
BCNF: 

 
Definition 24: Given XML Schema X and F  FD(X), 
(X, F) is in X-BCNF iff for every nontrivial FD f  (X, 
F)+ of the form S → p.@l or S → p.S, it is the case that, S 
→ p  (X, F)+. 

 
The intuition is as follows: Suppose that S → p.@l  

(X, F)+. If T is an XML tree conforming to X and 
satisfying F, then in T for every set of values of the 
elements in S, we can find only one value of p.@l. Thus, 
for every set of values of S, we need to store the value of 
p.@l only once, in other words, S → p must be implied by 
(X, F). 

In definition 24, we suppose that, f is a nontrivial FD. 
Indeed, the trivial FD p.@l → p.@l is always in (X, F)+, 

but often p.@l → p ∉ (X, F)+, which does not necessarily 
represent a bad design. 

To show how X-BCNF distinguishes good XML design 
from bad design, we consider example 1 again, when only 
functional dependencies are provided. 

 
Example 11: Consider the XML Schema from example 1 
whose FDs are FD1, FD2 and FD3, shown in example 6. 
FD3 associates a unique name with each student number, 
which is therefore redundant. The design is not in X-
BCNF, since it contains FD3 but does not imply the 
functional dependency:  
courses.course.taken_by.student.@sno → 
 courses.course.taken_by.student.name 

 
To solve this problem, we gave a revised XML Schema 

in example 1. The idea was to create a new element info 
for storing information about students. That design 
satisfies FDs, FD1, FD2, as well as, 
courses.info.number.@sno → courses.info, can be easily 
verified to be in X-BCNF. 

IV. NORMAL FORMS BASED ON MULTIVALUED 

DEPENDENCIES 

We have discussed only FD, which is by far the most 
important type of dependency in XML database design 
theory. However, in many cases XML documents have 
constraints that cannot be specified as FD. In this part of 
the article, we discuss the concept of multivalued 
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dependency and define fourth normal form of XML 
Schema (X-4NF), based on this dependency. 

 
Definition 25 (multivalued dependency): Given an 
XML Schema X, a multivalued dependency (MVD) over 
X is an expression of the form: S1 S2 where S1, S2  
paths(X), S1, S2 ≠ φ, specifies the following constraint on 
any path state S of paths(X): If two paths t1, t2 T(X) exist 
in paths(X) such that t1.S1 = t2.S1, then two paths t3, t4  
T(X) should also exist in paths(X) with the following 
properties, where we use S3 to denote (X-(S1 ∪ S2)): 

t3.S1= t4.S1 = t1.S1 = t2.S1 
t3.S2 = t1.S2 and t4.S2 = t2.S2 
t3.S3 = t2.S3 and t4.S3 = t1.S3 
 

Whenever S1 S2 holds, we say that S1 multi-determines 
S1. Because of the symmetry in the definition, whenever 
S1 S2 holds in X, so does S1 S3. Hence S1 S2 

implies S1 S3, therefore we can write it as: S1 S2|S3. 
 

Note that: an MVD S1 S2 in XML Schema X is called 
a trivial MVD if: S2  S1 or (S1 ∪ S2) = paths(X). 

 

A. Fourth normal form of XML schema (X-4NF) 

Definition 26 (fourth normal form): An XML 
Schema X is in fourth normal form (X-4NF) with respect 
to a set of dependencies F (that includes functional 
dependencies and multivalued dependencies) if, for every 
nontrivial multivalued dependency S1 S2  F+, S1 is a 
superkey for X. 

Note: F+ is the (complete) set of all dependencies 
(functional or multivalued) that will hold in every path 
paths t  T(X) that satisfies F. It is also called the closure 
of F. 

 
Example 12: Consider the following XML Schema called 
"EMP", with the following MVDs: 
EMP.Ename  EMP.Pname, and  
EMP. Ename  EMP.Dname 

 
<xs: complexType name “EMP”> 
<xs:sequence> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Pname” type = “string”/> 
 <xs: element name = “Dname” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: key name = “empEnamKey”> 
 <xs: selector xpath = “EMP”/> 
 <xs: field xpath = “Ename”/> 
</xs:key> 
<xs: key name = “empPnamKey”> 
 <xs: selector xpath = “EMP”/> 
 <xs: field xpath = “Pname”/> 
</xs:key> 
<xs: key name = “empDnamKey”> 
 <xs: selector xpath = “EMP”/> 

 <xs: field xpath = “Dname”/> 
</xs:key> 

 
The XML Schema "EMP" has no FD since it is an all-

key XML Schema. Because BCNF constraints are stated 
in terms of FD only, an all-key Schema is always in 
BCNF by default. Hence EMP is in X-BCNF. However, 
EMP is not in X-4NF because in the nontrivial MVDs 
EMP.Ename  EMP.Pname and EMP.Ename  
EMP.Dname, and Ename is not a superkey of EMP.  We 
decompose EMP into EMP-PROJECTS and EMP-
DEPENDENTS: 
<xs: complexType name “EMP-PROJECTS”> 
<xs:sequence> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Pname” type = “string”/> 
 <xs:sequence> 
<xs:complexType> 
<xs: key name = “empEnamKey”> 
 <xs: selector xpath = “EMP-PROJECTS”/> 
 <xs: field xpath = “Ename”/> 
</xs:key> 
<xs: key name = “empPnamKey”> 
 <xs: selector xpath = “EMP-PROJECTS”/> 
 <xs: field xpath = “Pname”/> 
</xs:key> 
 
<xs: complexType name “EMP-DEPENDENTS”> 
<xs:sequence> 
 <xs: element name = “Ename” type = “string”/> 
 <xs: element name = “Dname” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: key name = “empEnamKey”> 
 <xs: selector xpath = “EMP-DEPENDENTS”/> 
 <xs: field xpath = “Ename”/> 
</xs:key> 
<xs: key name = “empDnamKey”> 
 <xs: selector xpath = “EMP-DEPENDENTS”/> 
 <xs: field xpath = “Dname”/> 
</xs:key> 

 
Both EMP-PROJECTS and EMP-DEPENDENTS are 

in X-4NF, because the MVDs: 
EMP-PROJECTS.Ename  EMP-PROJECTS.Pname 
in EMP-PROJECTS and EMP-DEPENDENTS.Ename 

 EMP-DEPENDENTS.Dname, in EMP-
DEPENDENTS are trivial MVDs. No other FDs and 
nontrivial MVDs hold in either EMP-PROJECTS or 
EMP-DEPENDENTS. 

 
Note that: The relational view of the XML Schemas 
"EMP", "EMP-PROJECTS", "EMP-DEPENDENTS" and 
the corresponding relation states can be illustrated in the 
following Figure: EMP (Ename, Pname, Dname) 
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V. NORMAL FORMS BASED ON JOIN DEPENDENCIES 

 
Definition 27 (join dependency) : A join dependency 
(JD), denoted by JD(X1, X2, ..., Xn), specified on XML 
Schema X, specifies a constraint on the XML trees T of 
X. The constraint states that every complete XML tree T 
of X should have a non-additive join decomposition into 
X1, X2, ..., Xn, that is, for every such XML tree T we 
have: 

* (X1(T),  X2(T), ...,  Xn (T)) = T 
 
Note that: 
- An MVD is a special case of a JD where n = 2.  
- A join dependency JD(X1, X2, ..., Xn), specified on 

XML Schema X, is a trivial JD if one of the XML 
Schema Xi  in JD(X1, X2, ..., Xn) is equal to X.  

 

A. Fifth normal form of XML schema:   

Definition 28 (fifth normal form): An XML Schema X 
is in fifth normal form (X-5NF) or (Project-Join Normal 
Form (X-PJNF)) with respect to a set of dependencies F 
of functional, multivalued, and join dependencies if, for 
every nontrivial join dependency JD(X1, X2, ..., Xn)  F+ 
(that is, implied by F), every Xi is a superkey of X. 

 
Example 13: Consider the following XML Schema 
called "SUPPLY", with no MVDs is in X-4NF but not in 
X-5NF: 
<xs: complexType name “SUPPLY”> 
<xs:sequence> 
 <xs: element name = “Sname” type = “string”/> 
 <xs: element name = “Part_name” type = “string”/> 
 <xs: element name = “Proj_name” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: key name = “supSnamKey”> 
 <xs: selector xpath = “SUPPLY”/> 
 <xs: field xpath = “Sname”/> 
</xs:key> 
<xs: key name = “supPart_namKey”> 
 <xs: selector xpath = “SUPPLY”/> 
 <xs: field xpath = “Part_name”/> 
</xs:key> 
<xs: key name = “supProj_namKey”> 
 <xs: selector xpath = “SUPPLY”/> 
 <xs: field xpath = “Proj_name”/> 
</xs:key> 

 

Suppose that the following additional constraint always 
holds: "whenever a supplier s supplies part p, and a 
project j uses part p, and the supplier s supplies at least 
one part to project j, then supplier s will also be 
supplying part p to project j". This constraint can be 
restated in other ways and specifies a join dependency 
JD(X1, X2, X3) among the three projections X1, X2, and X3 

defined as following: 
<xs: complexType name “X1”> 
<xs:sequence> 
 <xs: element name = “Sname” type = “string”/> 
 <xs: element name = “Part_name” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: complexType name “X2”> 
<xs:sequence> 
 <xs: element name = “Sname” type = “string”/> 
 <xs: element name = “Proj_name” type = “string”/> 
<xs:sequence> 
<xs:complexType> 
<xs: complexType name “X3”> 
<xs:sequence> 
 <xs: element name = “Part_name” type = “string”/> 
 <xs: element name = “Proj_name” type = “string”/> 
<xs:sequence> 
<xs:complexType> 

 
This shows how the SUPPLY, XML Schema with the join 
dependency is decomposed into three XML Schemas 
"X1", "X2", and "X3" that are each in X-5NF. 

 
Note that: The relational view of the XML Schemas " 
SUPPLY", "X1", "X2", and "X3" and the corresponding 
relation states can be illustrated in the following Figure:  
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