A Proposal for the Description of Individual Course Units

http://dx.doi.org/10.3991/ijep.v3iS1.2420

João Paulo Barros¹,², Luis Gomes²,³, and Luís Garcia¹
¹Escola Superior de Tecnologia e Gestão, Beja, Portugal
²UNINOVA-CTS, Monte de Caparica, Portugal
³Universidade Nova de Lisboa, Monte de Caparica, Portugal

Abstract—The description of individual course units is here presented as a privileged way to improve course quality by fostering teacher reflection. To that end, the paper presents a structured way to specify the several parts that compose the course unit descriptions. The most important parts are made strongly interconnected as a way to maximize coherence and force additional reflection during course design. The paper presents a concrete template that expands the recommendations and course unit data present in the ECTS User’s Guide. Besides including the usual course data, the template guides the course designer towards the specification of several alignments between the data. These alignments make the course unit descriptions self-justifying and internally coherent. Additionally, a grading strategy is briefly presented and the intended learning outcomes are classified according to the European Qualification Framework for Lifelong Learning.

Index Terms—course description; learning outcomes; assessment; grading; ECTS; alignment; curricula design; EQF.

I. INTRODUCTION

Presently, the importance attributed to the specification of learning outcomes or, more precisely, intended learning outcomes, has been growing. This is easily demonstrated by the number of official documents where they are mentioned or recommended (e.g. [1-5]). In the European context, the Bologna process, following the Bologna declaration [6], has contributed to a much wider context, the Bologna process, following the Bologna declaration or recommended (e.g. [1-5]). In the European context, the Bologna process, following the Bologna declaration [6] has contributed to a much wider context, the Bologna process, following the Bologna declaration [6].

Next, Section VI briefly discusses how to achieve the relevant alignment: the one between learning outcomes and assessment. After, Section V presents the alignment between assessment and teaching and learning activities. Next, Section VI briefly discusses how to achieve the desirable coherence and alignment between assessment and grading. To that end, a stepwise grading method is briefly presented. Finally, Section VII concludes.

II. MOTIVATION

As already stated, several official documents explicitly recommend the use of ILOs. Hence, the first goal of the presented template is the compliance with those recommendations.

Additionally, the most important motivation comes from the anecdotal evidence that many teachers are not well motivated to effectively use those recommendations and take the best advantage of the specification of those ILOs. Hence, this paper proposes the use of the “description of individual course units”, sometimes called course curriculum as a means to take advantage of the ILOs specification as a starting point in curricula design. That is achieved through the specification of internal interdependencies. In the end, these create a global coherence in the whole course unit, which should foster
an improved learning environment and better learning experiences.

Another motivation for the use of more complete descriptions at the course unit level, is the creation of a solid platform for the specification of further alignments at additional levels: namely between course units and the whole programme, between the programme and the “class of programmes” (bachelor, masters, etc), and also between those classes and the general institutional goals, namely its mission and regulations.

Finally, as in the ECTS User’s Guide, another important motivational factor is the improvement in the information available to the students. A more complete course unit information is better not only at informing the student but also at guiding the teachers. Intended Learning Outcomes and their interconnections to other parts, namely assessment and contents offer the best way to give students the answer to the famous question: why are we studying/doing this?

The following section starts the presentation of the template for the description of individual course units.

III. GENERAL DATA,

The ECTS User’s Guide already specifies a large set of data that should be present in the description of each curricular unit [1, p. 28] (the ones in bold are object of further discussion in this paper):

1. Course unit title;
2. Course unit code;
3. Type of course unit (compulsory, optional);
4. Level of course unit (e.g. first, second or third cycle; sub-level if applicable);
5. Year of study (if applicable);
6. Semester/trimester when the course unit is delivered;
7. Number of ECTS credits allocated;
8. Name of lecturer(s);
9. Learning outcomes of the course unit;
10. Mode of delivery (face-to-face, distance learning);
11. Prerequisites and co-requisites;
12. Recommended optional programme components;
13. Course contents;
14. Recommended or required reading;
15. Planned learning activities and teaching methods;
16. Assessment methods and criteria;
17. Language of instruction;
18. Work placement(s).

In the following sections we propose additional and specific detail related to those three points (9, 13, 14, 15, and 16).

IV. INTENDED LEARNING OUTCOMES AND CONTENTS OF THE COURSE UNIT

Typically, an ILO is defined by a simple and direct sentence. Our template for an ILO adds four additional fields to that sentence. For better readability and completeness, we show part of a description for a human-computer interaction course that follows our template. This is as second year course included in a computer science programme. Students have background in computer programming and in this course they learn user interface design and build functional prototypes. Here, we also show two additional sections, “Aims” and “Contents”, as they are closely related to ILOs:

(Data proposed in the ECTS User’s Guide)

Aims
This course presents the principles and methods that support the design of interactive systems. This knowledge should be applied by students in the development of hardware or software interfaces.

Intended Learning Outcomes
On successful completion of this course unit, the student should be able to:

LO 1: Analyse the usability of an interactive system.
Type: Skill.
Level: SOLO 4.
Main contents: 2.
Secondary contents: 1 and 3.

LO 2: …………………..
(…)

Contents
1. Basic Concepts.
2. Usability Principles and Rules.
3. Universal Design.
5. Task Analysis.
7. Interface Devices.
8. Screen and Navigation Design.

Even before the list of intended learning outcomes and contents, the proposed template includes an “Aims” section. This section, should contain one or two small paragraphs that present the course unit by summarizing its general objectives.

Regarding the intended learning outcomes, the four additional fields are the following:

1. The Type, according to The European Qualifications Framework for Lifelong Learning (EQF) [2] this should be “Knowledge”, “Skills”, or “Competence”;
2. The used taxonomy and the respective level, e.g. “SOLO 4” for the taxonomy by John Biggs [9] or BLOOM 2 for the Bloom’s taxonomy [11] or the revised Bloom’s taxonomy [12];
3. The list of the “main contents” this learning outcome uses;
4. The list of the “secondary contents” this learning outcome uses.

Field 1 aligns learning outcomes with the classification in EQF. Hence, it is also a way to align course outcomes with higher-level outcomes. Naturally, other similar alignments can be added, e.g. relating this learning outcome at course level to outcomes at programme or institutional level. Yet, this also implies an even more
ambitious template, which in our opinion should be left to a second implementation step.

Field 2 is recommended practice for the specification of learning outcomes.

Fields 3 and 4 force an alignment between learning outcomes and a numbered list of course contents. In the authors’ experience, this alignment is extremely important for two reasons:

1. It guarantees that all contents are really necessary, in the sense that they contribute to at least one learning outcome;
2. It acts as a facilitator and motivator for course designers that are using learning outcomes for the first time.

The alignment in the last point connects the “old” view of simply listing contents, to the “new” view that learning outcomes should come first. In this way, the newcomer to the design of learning outcomes can still see and even start from contents, while, at the same time, being forced to define learning outcomes. This is very important as a motivational factor, as it integrates the old and undesirable view of “contents first” with the objective of “learning outcomes first”. The course designer can even start by listing the contents, but after each of the listed contents must be used by one or more learning outcomes as the main or secondary content. Also, it is especially important that the list of ILOs appears before the contents. This is a simple and effective way to value ILOs against contents.

It is probably quite obvious that not all contents are equally relevant for each learning outcome. Yet, instead of defining a (large) scale for specifying the degree of importance, we opted for a simpler approach, where for each outcome, each content is either a main one, a secondary one or it is simply not relevant enough to deserve mention.

Another alignment that should be present is the one between contents and the “Recommended of required reading”. In this way, it becomes clear why each reading is relevant. For example, in each reading, this alignment can take the following form “contributes to contents 2 and 3”. In the presented example, we have the following for each of the recommended readings:

Recommend Readings

 Contributes to all contents, 1 to 11.
 Contributes to contents 4, 5, 8, 10, and 11.
 Contributes to content 9.

Together, these four parts (Aims, ILOs, contents, and readings) define what the course is, what the students should learn, the course themes, and what the students should read. Besides, the last three sections are specified in an interdependent way, thus reinforcing the course unit coherence. Now, we are going to present the specifications for how the course works and what the students and teachers should do. In that sense, the following section shows how to specify a second common alignment: between ILOs and assessment activities (e.g. [8, 9]).

V. FROM LEARNING OUTCOMES TO ASSESSMENT ACTIVITIES

In a less prescriptive way, the ECTS User’s Guide alerts for the importance of connecting learning outcomes to assessment:

“The successful assessment of learning outcomes is the pre-condition for the award of credits to a learner. Therefore, statements of learning outcomes for programme components should always be accompanied by clear and appropriate assessment criteria for the award of credits, which make it possible to ascertain whether the learner has acquired the desired knowledge, understanding and competences” [1, p. 14]

Another important example is given by the report of the European Association for Quality Assurance in Higher Education (ENQA) [5], which also emphasizes the importance of connecting assessment to learning outcomes:

“Student assessment procedures are expected to (...) be designed to measure the achievement of the intended learning outcomes and other programme objectives:” [3, p. 17].

This is also recommended by many authors, to the point that it can be considered good general practice. To this end, we propose that for each assessment activity, the curricular unit description should specify which learning outcomes are being assessed. Additionally, each of the several assessment activities should be classified as “individual work” or “group work”.

Schematically, and summing up the proposals in this section, we continue the presentation using the human-computer interaction course as an example:

Expected Learning Outcomes

On successful completion of this course unit, the student should be able to:

LO 1: …
LO 2: …

Contents

1. Basic Concepts.
2. Usability Principles and Rules.
3. …

Assessment Activities

Individual work:

Group work:

2. Interactive system design. Assesses the intended learning outcomes 2, 3, 4, and 5.
3. Implementation and evaluation of an interactive system. Assesses the intended learning outcomes 6, 7, and 8.

Note that for each assessment activity the teacher must state to which ILO that activity is relevant. This enforcement acts as a reality check for each assessment: implicitly, the teacher has to wonder about several questions, e.g.: “Why do I ask for this assessment?”, “What will I be assessing?”, “Is it really necessary?”, “Is it similar to other assessments”, “Am I assessing all the ILOs?”. This last question is especially relevant, as every learning outcome must be measurable, hence assessable and gradable. It is also well-known that students learn...
better and are better assessed if they are given multiple vehicles: e.g. readings, videos, practice, discussion, etc.. For that reason, each teacher has to specify the type of assessment activity. In other words, the teacher has to classify the assessment activity. Little assessment variability should work as a warning as it can promote surface learning and unfairness among students. Naturally, this is even more important for teaching and learning activities, which are discussed in the next section. The following section also shows how to specify the alignment between assessment and teaching and learning activities.

VI. FROM ASSESSMENT TO TEACHING AND LEARNING ACTIVITIES

Teaching and Learning activities should prepare the student for the respective assessment. We propose that those activities be grouped by type and/or context. Those types and contexts should be provided as a list to choose from. This list can eventually motivate teachers to try new assessment methodologies. Typically, the list should be open, as teachers are usually free to choose the kind of assessment activities for their students. Continuing our template, we would add the following structure (with exemplary content):

Teaching and Learning Activities

Group work:
Designing of an interactive system.
Prepares for assessment activities 2, 3, and 4.

Large class:
Presentation and discussion of course topics.
Prepares for all assessment activities.

Individual work:
Analysis of an interface usability and solution proposal.
Prepares for assessment activities 1 and 4.

Autonomous research:
Research about additional topics.
Prepares for assessment activities 2 and 3.

Here, we have exemplified with four types/contexts for teaching and learning activities. As with assessment activities, the specification of the “types” of activities should increase motivation to increase variability thus fostering reflective teaching and, hopefully, improved student learning.

An important aspect is that the teaching and learning activities must be aligned with the assessment activities. It should be clear that their objective is to prepare students for the assessment activities. Hence, the specification of these connections promotes additional reflection from the course designer and guarantees that no proposed activity is unnecessary for the assessment. This offers an “automatic” answer to the classical student question, which is usually a variation of “What is the use of this?” or “Why am I doing this?”? Now, it should be clear that what the student does is preparation for the assessment activities, which, in turn, measure the accomplishment of all the ILOs.

VII. FROM ASSESSMENT TO GRADING

Finally, we propose the use of a stepwise grading approach. Each assessment activity should be graded accordingly to a mixture of summative and subtractive criteria. The subtractive criteria should be used when important but simple requirements are not complied. For example, in computer programming, code formatting by itself can be seen as necessary but not sufficient to contribute to a better grade in a given assignment. Additionally, the summative requirements can be divided in two steps: essential and non-essential. The non-essential are only counted if and only if the essential ones are totally accomplished. This avoids the temptation to deliver a fully incomplete work that “does” a bit of everything but fails to accomplish anything meaningful. Finally, the higher grades should be achieved only if the student adds something more that is not specified, thus valuing and encouraging creativity. A much more complete explanation for this stepwise grading method was already presented in [13].

VIII. CONCLUSIONS

Taking advantage of some of the numerous sources already available about course design and course description, especially the ECTS User’s Guide [1] and the work by Biggs and Tang [3], this paper presented a proposal for a course description template that expands and details the data and general advice contained in the ECTS User’s Guide. To that end, it adds further detail to each major component in the curricula (learning outcomes, readings, assessment activities, teaching and learning activities, and grading) and emphasizes several alignments between the curricula components and between those and the EQF document. All these dependencies and additional data contribute to a more complete, coherent, and useful course descriptions as they induce additional reflection from the teacher, in the role of course designer. In the end, the here proposed template should provide improved course descriptions at all levels and for all the stakeholders, while being especially useful for students.

REFERENCES

SPECIAL FOCUS PAPER
A PROPOSAL FOR THE DESCRIPTION OF INDIVIDUAL COURSE UNITS

AUTHORS

João Paulo Barros is with the Instituto Politécnico de Beja, Escola Superior de Tecnologia e Gestão, Beja, Portugal and UNINOVA-CTS, Monte de Caparica, Portugal (joao.barros@ipbeja.pt)

Luís Gomes is with UNINOVA-CTS, Monte de Caparica, Portugal and Universidade Nova de Lisboa, Faculty of Sciences and Technology, Monte de Caparica, Portugal (lugo@fct.unl.pt)

Luís Garcia is with the Instituto Politécnico de Beja, Escola Superior de Tecnologia e Gestão, Beja, Portugal (luisbgarcia@ipbeja.pt)

This article is an extended and modified version of a paper presented at the IGIP2012 conference, held 26 - 28 September 2012, in Villach, Austria. Received 3 December 2012. Published as resubmitted by the authors 28 January 2013.