
PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

An Algebraic Method for Analysing Control
Flow of BPMN Models

http://dx.doi.org/10.3991/ijes.v3i3.4862

Outman El Hichami1, Mohamed Naoum1, Mohammed Al Achhab2,
Ismail Berrada3 and Badr Eddine El Mohajir1

1 The Faculty of Sciences, Tetouan, Morocco
2 The National School of Applied Sciences, Tetouan, Morocco

3 The Faculty of Sciences and Technology, Fez, Morocco

Abstract—This paper introduces an approach for formal
verification of BPMN models. The incompatible constructs
of the BPMN patterns can lead to wrong or incomplete
semantics which resulting the behavioral errors such as
deadlock and multiple termination. This research is
motivated by the need to create a correct business process
and in order to generate a more complete formalization of
BPMN semantics than existing formalizations. We first
introduce the chosen patterns which are the most used in the
modelisation of the service-based business processes. Then,
we illustrate a definition of the execution semantics of these
patterns by using the rules of Max+ Algebra formulas,
which have important benefits.

Index Terms—Formal semantics, BPMN, Business process.

 INTRODUCTION I.
The Business Process Modeling Notation (BPMN) [1]

is a standard notation for business process modeling. It
presents an execution semantics of process instances that
defines precisely how models in the BPMN notation
should behave.

The BPMN models are composed of a set of activity
nodes and a set of control nodes that can be connected by
a flow relation. Others notations exist, for which we refer
to a subset of BPMN related to control flow modelling in
order to define a precise execution semantics of BPMN
elements which are the most used in the modelisation of
the service-based business processes.

The most challenging process modeling problem is to
make it possible to create models with semantic errors. In
fact, this modelisation based on process model (e.g.,
BPMN), and because the mix constructs in BPMN have
an incompletely specified meaning, and the lack of an
unambiguous denition of the BPMN notation can cause
the behavioral errors.

Which business process model is correct is typically
modeled with respect to several quality criteria. An
important quality criterion is choosing an appropriate
definition semantics of the patterns which are used in the
modelisation of the business processes. Another model
quality criterion is necessary to define a precise mapping
between the adopted user-friendly notation and a formal
language in order to support formal verification
techniques. Therefore, several approaches have been
proposed to the formal validation of BPMN [4],[5],[6],[7].
All these approaches are based on the mapping of BPMN
to a formal presentation like Petri Nets [8], YAWL [9],

PROMELA1, and PNML [10] in order to use the formal
analysis tools available for these models.

For illustrative purposes, we develop a complete
execution semantics of BPMN patterns associated with
control flow in terms of Max+ Algebra equations, which
is a useful mathematical tool, to specify and evaluate the
performance of interaction and interoperability in the
processes composition. Max+ Algebra has emerged as the
suitable mathematical structure to model the phenomena
of synchronization, assembly, concurrency, and
parallelism. It is dedicated to the analysis of systems
properties whose behavior can be represented by linear
equations. Consequently, our execution semantics covers
more rules from the BPMN standard than any other formal
semantics so far.

As already stated, the main motivation of our work is
given by choice phenomena, synchronization, and
concurrency in BPMN models. To manage these
phenomena, especially where conflicts appear, the
analytical behavior of the graphical model using Max+
Algebra system in order to arbitrate and resolve these
conflicts is given. Therefore, certain errors such as
deadlocks and multiple terminations in process models
can be detected in the first phases of the business process
modeling [2],[3] without having establishing all steps of
model-checking [11].

The remainder of this paper is organized as follows. In
section 2, we start by a related work of the used
formalisms and their application domains. In section 3, a
brief overview of BPMN standard and an abstract syntax
of Max+ Algebra system is given. Analysis of execution
semantics for BPMN elements related to control flow
modelling are presented in section 4 and section 5. Section
6 concludes the paper and presents some perspectives.

 RELATED WORK II.
Several current approaches are interested by modeling,

analyzing, and evaluating the performance of business
process. Furthermore, we mention that many of these
researchers do not yet support all possible behavioral
semantics of business process regarding the patterns
related to control flow.

A variety of techniques define a formal semantics of
BPMN [12],[13], which use Petri nets as the target formal
model. However, Petri nets are limited in the semantics
that they can represent. It is difficult to represent the
inclusive and complex gateway. Such concepts can be
represented in Max+ Algebra equations. Our work

1 http://spinroot.com/spin/Man/

20 http://www.i-jes.org

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

supports this claim by showing that the formalization of
this paper is relatively complete.

Among the modeling tools used there are:
Communicating Sequential Processes (CSP) [16]. In [17]
a BPMN model is mapped to a set of CSP. The CSP
models produced in this technique may be large and
complex, and they do not preserve the structure of the
BPMN model.

For an overview of business process modeling, we refer
to [19], the authors introduce an approach, based on
Business Process Execution Language (BPEL) [14], to
formalize and verify BPMN. However, the types of
verification problems for BPEL are different from those in
BPMN. In particular, deadlocks and multiple terminations
that may arise in BPMN models do not arise in BPEL
systems.

When examining the BPMN process models described
by [20], which rely on a mapping from a subset of BPMN
to !-calculus. This tool can be used to check the
soundness [21] of BPMN models. However, this
mapping only covers a small subset of BPMN. For
example, they do not deal with the patterns related to
control flow. Whereas our approach can describe this
phenomenon.

In this paper we use Max+ Algebra rules for which
efficient analysis techniques are available for representing
BPMN models where conflicts appear and to defining
their execution semantics. Another benefit of using Max+
Algebra is their expressive power for studying and
analyzing composed BPMN pattern.

 PRELIMINARIES III.
In this section, we present concepts and definitions that

will be used throughout the rest of the paper. We start with
the BPMN that is used to modelize the business process.
Then we give a brief description of Max+ Algebra, which
is used to model the synchronization and parallelism
phenomena of the service-based business processes in the
form of linear equations.

 Business process modeling notation (BPMN) A.
Before elaborating a formal semantics of BPMN, this

section provides a gentle introduction to the BPMN
elements related to control flow modelling that define the
behavior of the processes and have an impact on the
conflict situation (see Table I). Hence, three types of
nodes named event, task, and gateway are considered as
well as one type of edges called sequence flow. The main
elements of BPMN include the following:

TABLE I.
THE BPMN ELEMENTS RELATED TO CONTROL FLOW MODELLING

Elements Description

An event is represented with a circle and
denotes something that happens during the
cours of the process, affecting the process
flow. This could be a start and end event.

A task describes a type of work that has to be
completed within a business process.

A sequence flow is used to show the order in
which particular activities will be performed
in a process. It links two objects in a process
diagram.

A default sequence flow is taken only if all
the other outgoing sequence flows from the
task or gateway are not valid.

Gateways are used to control how the
sequence flows converge or diverge within a
process. Some of the typical types of
gateways are the following ones:

1. Parallel gateway: uses for
synchronizing parallel flow
without checking any conditions;
each outgoing sequence flow
receives a token [18] upon
execution of this gateway. For
incoming flows, the parallel
gateway will wait for all
incoming flows before triggering
the flow through its outgoing
sequence flows.

2. Exclusive gateway: is used to
create alternative paths within a
process flow. For a given instance
of the process, only one of the
paths can be taken.

3. Inclusive gateway: uses to create
alternative but also parallel paths
within a process flow. However,
it should be designed so that at
least one path is taken.

4. Complex gateway: uses to model
complex synchronization
behavior and to describe the
precise behavior. For example,
this expression could specify that
tokens on three out of five
incoming sequence flows are
needed to activate the gateway.

 Max+ Algebra B.
In Max+ Algebra, we work with the Max+ semi-ring

which is the set !!!"# ! !! ! !.
Scalar operations: Let a, b and c!!! !!"#! The

operations maximum (implied by the max operator !)
and addition (plus operator !) for these scalars are
defined as:

• !! !! ! !!"# !! !
• !! !! ! !! ! !
• ! is associative: !! ! ! ! ! !! !! !
• ! is commutative: !! ! ! !! !
• ! admits a neutral element noted as !: !! ! ! !
• ! is associative: !! ! ! ! ! !! !! !
• ! admits a neutral element noted as !: !! ! ! !
• ! is distributive over!!: !! !! ! !

! !! ! ! !!! !!
• ! is absorbing for!!: !! ! ! !! ! ! !!

In !!"#: ! ! !! , ! ! !!

 FORMAL MODELS FOR BPMN USING MAX+ IV.
ALGEBRA

In this section, we show how to transform BPMN
processes into Max+ Algebra equations. For purposes of
this paper, we focus on the BPMN elements related to
control flow modelling. The introduction of a token [18]
facilitates the description of the behavior of conflicted
system with algebraic formulas or linear representations.
Furthermore, the execution semantics of BPMN elements
under our consideration are the most used in the
modelisation of the service-based business processes2.

2 For more details, see Section 4

iJES ‒ Volume 3, Issue 3, 2015 21

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

In the next section we illustrate how to generate the
Max+ Algebra model of the chosen patterns.

Figure 1. Execution semantics for BPMN elements

 Cumulative application and firing condition A.
Before giving the Max+ Algebra model, let us define:

• The firing of a task occurs after the end of a
time !! associated to this task.

• To calculate the cumulative total at the firing
of the task !!, we define the following
cumulative application that represents the date
of !!! firing of the task !!

!! ! !! ! !!"#!! (1)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!! ! !!"#! ! ! ! !!!!! ! ! ! ! !!!!

Where !!! is the number of all tasks in the BPMN
model.

Remark: When a token arrives at a task !!, we note
!! ! !.

A sequence flow that has an exclusive or inclusive
gateway as its source requires a condition to direct the
flow. Consequently, we associate to each tasks a boolean
variable that acts as a firing condition. A sequence flows
is fired if this condition evaluates to true.

Formally, to express the firing condition related to the
outgoing sequence flow connect to the task !!, we define
the following function:

!"#$! !! ! ! !!"#$!!"#$%!!! (2)
!! ! !"#$!!!!

 Sequential pattern B.
Only task nodes are considered as sequential structure

since they have exactly one incoming and one outgoing
branch. This pattern is used to model dependencies
between tasks so that one task cannot start before another
is finished.

Figure 2. Sequence model

The analytical behavior of the model presented in Fig. 2
is given as follows:
!! ! !!! !! ! ! !!

!! ! ! ! !!! !!!!!
!! ! ! ! !!! !!!!!

!!!!!!!!!!!!!!!! !!!!! ! !
!!!! ! ! ! !!!!! !!!!!!!
!! ! ! ! !! ! !!!!!!!

 (3)

The system (3) can be written in the following equation
form:
!! ! !!! !! ! ! !!

!! !

! !!

!

!!!

! !! ! !!!!!!!!!!!!!!!!!

 Parallel gateway pattern C.
This pattern describes the synchronization

phenomenon. It is used to synchronize multiple concurrent
branches and to spawn new concurrent threads on parallel
branches without checking any conditions. So that the
gateway can not be fired if all previous branches are
activated (see Fig. 3).

Figure 3. Parallel gateway pattern

The analytical behavior of this graphical model is given
in system (5). All the tasks !!! ! ! !!! ! !! will be executed
when a token arrives on its incoming sequence flow over
all upstream tasks !!! ! ! !!! ! !!:

22 http://www.i-jes.org

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

!! ! !!!!!! !!! !"!!!! ! !" !! !! ! ! !!!
!! ! !! ! ! !!! !!! ! ! !!!!!!! !! !!!!!!!
!! ! !! ! ! !!! !!! ! ! !!!!!!!!! ! ! !!!!!!

!!!!!!!!!!!!!!!! !!!!! ! !
!!!! ! !! ! ! !!!!! !!! ! ! !!!!!!!!! ! ! !!!!!!
!! ! !! ! ! !!! !!! ! ! !!!!!!!!! ! ! !!!!!!

 (5)

Where !" ! is the set of all downstream tasks of !" and
! !" is the set of all upstream tasks of !".

The system (5) can be expressed as:
!! ! !!!!!! !!! !"!!!! ! !" !! !! ! ! !!!

!! ! !! !!! !! !

!

!!!

!! ! !! !!! !! !

!

!!!
! !!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!! ! !! !!!!! !! !

!

!!!

!! ! !! !! ! !! !

!

!!!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 Exclusive gateway pattern D.
The Fig. 4 describes an exclusive gateway model. In

this pattern, m tasks are in conflict situation. When a token
arrives at any incoming sequence flows, it can activate the
gateway, but we don't know which downstream task will
be fired. So, the task that will be fired can be chosen by
the evaluation of the conditions in order. The first
condition that evaluates to true determines the sequence
flow the token is sent to. If and only if none of the
conditions evaluates to true, the token is passed on the
default sequence flow.

Figure 4. Exclusive gateway pattern

Furthermore, it is not obvious to formally express the
firing of the downstream tasks. With the aim to describe
this functioning by Max+ Algebra equations and in order
to facilitate the mathematical analysis, we associate to
each task the following function:

 ! ! !!"# ! ! !!! !!!! (7)

! ! !!!!

When only a task !! is fired for the !!" firing

(i.e.,! !! ! ! !), all other tasks !! (with !! ! !!) are
not fired (i.e., ! !! ! ! !).

The behavior of the modeled exclusive gateway pattern
is represented by the system (8):
!! ! !!!
!!!! !!! !"!!!! ! !" !!!! !! !!! !"!!! !! ! !" !!!

!! ! ! !! ! !! ! ! !!!

!!! !!!!"#$!! ! ! !!! ! !! ! ! ! !! ! !

!!!!!!!!!"#$!!!!! ! ! !!!
!!!! !!! !"!!!! ! !" !!!! !! !!! !"!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ! ! !!!!"#$!! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!

!!! ! ! ! !! ! !! ! ! ! ! ! ! !! ! ! !

!!!

 Inclusive gateway pattern E.
As shown in Fig. 5, the inclusive gateway is activated if

at least one incoming sequence flow has at least one
token. In order to determine the outgoing sequence flows
that receive a token, all conditions on the outgoing
sequence flows are evaluated. The evaluation does not
have to respect a certain order. If none of the conditions
evaluates to true, the token is passed on the default
sequence flow.

Figure 5. Inclusive gateway pattern

Using a standard formalization, this pattern may be

expressed under the following form:
!! ! !!!

!!!! !!! !"!!!! ! !" !!!! !! !!! !"!!! !! ! !" !!!!!!!!

!! ! ! !! ! !! ! ! !!!

!! !!!!"#$!! ! ! !!! ! !! !

!

!!!!!!!!!!

! ! !! ! !

!!!!!"#$!! ! ! !!!
!!!! !!! !"!!!! ! !" !!!! !! !!! !"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ! ! !!!!"#$!! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! ! !! ! !! !

!

!!!!!!!!!!

! ! ! ! ! !! ! ! !

!!!

iJES ‒ Volume 3, Issue 3, 2015 23

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

 Complex gateway pattern F.
A complex gateway (see Fig. 6) can be used to describe

the precise synchronization behavior. it has an attribute
ActivationCondition that refers to the activation of
incoming flows. For example, an ActivationCondition
could be !!! ! !!!!! ! !!!! ! !!"#! ! !!! stating that it
needs !!"#! ! !!! out of the n incoming flow to have a
token in order to proceed.

The complex gateway is in one of the two states:
(represented by the attribute WaitingForStart = True) and
waiting for reset (WaitingForStart = False). If it is waiting
for start, then it waits for the ActivationCondition to
become True. The ActivationCondition is not evaluated
before there is at least one token on some incoming
sequence flow.

When the ActivationCondition becomes True, the
complex gateway uses the synchronization semantics of
the split inclusive gateway. The gateway changes its state
to waiting for reset (WaitingForStart = False).

When waiting for reset, the gateway waits for a token
on each of those incoming sequence flows from which it
has not yet received a token in the first phase. If tokens
arrive later, those tokens cause a reset of the gateway.

When the gateway resets, it consumes a token from
each incoming sequence flow that has a token and from
which it had not yet consumed a token in the first phase.
Then it uses the synchronization semantics of the split
inclusive gateway. Finally, the gateway changes its state
back to the state waiting for start.

Figure 6. Complex gateway pattern

The behavior of the incoming sequence flows related to

the complex gateway pattern is represented by the system
(10).

!! ! !!!

!!"#$#%&'()*$")$!!!! !!! !"!!!! ! !" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! !! !!! !"!!! !! ! !" !! !!"#$%&#$'()'(*$#$'(!!!!!!!!!!!!!!

!! ! ! !! ! !! ! ! !!!"#$!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!! !!!!"#$!! ! ! !!! ! !! !

!

!!!!!!!!!!

! ! !! ! !!!!!

!!!!!"#$!! ! ! !!!!"#$#%&'()*$")$!!!!!!!!!!!!!!!!!!!!
!!!"#$#%&'()*$")$!!!! !!! !"!!!! ! !" !!!!!!!!!!!!!!!!!!!!!!!!!!!
!! !! !!! !"!!! !! ! !" !!!!"# ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!"#$%&#$'()'(*$#$'(! !! ! ! !! ! !! ! ! !!!!!!!!!!!!!!!!

!"#$!! ! !!

!

!!!

! !"#!!!

! !!!!!"#$!! ! ! !!! !!"#$#%&'()*$")$!!!!!!!!!!!!!!!!!!!!!!!!!
!!"#$#%&'()*$")$!!!! !!! !"!!!! ! !" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! !! !!! !"!!"#$%&#$'()'(*$#$'(! !! ! ! !!!!!!!!!!!!!!!!!!!!!
! ! ! ! !!!!"#$!! !!!

!!!

! ! ! ! !! ! !! !

!

!!!!!!!!!!

! ! ! ! !!!!!!!!!!!!!!!!!!!!!

!! ! ! !!!

!!"!

 SEMANTIC ANALYSIS OF MAX+ ALGEBRA MODELS V.
To verify and to create the correct BPMN model in the

early stage of the conception, the transformation into
Max+ Algebra equations of the chosen patterns which are
the most used in the modelisation of the service-based
business processes is given.

Moreover, the interaction between the chosen patterns
into one composed BPMN model can lead to create an
incompatible or an ambiguous semantics in this model
which resulting the behavioral errors such as deadlock,
multiple termination and undesirable cyclic behavior.

In this section, we discuss the use of our proposed
model for detecting the deadlock and multiple
termination. In fact, the correct BPMN model contains
only the compatible composed patterns.

As already mentioned, the execution semantics of
BPMN patterns under our consideration is illustrated in
Fig. 1. If a token is on one sequence flow, then the
destination node for this sequence flow is ready to be
triggered.

 Deadlock Patterns A.
Deadlock patterns have already been identified by

Onada et al. in [15]. Two concepts were behind these
patterns. The first is reachability. Reachability between
two nodes A and B (A (resp. B) represents a task or a task
flow) in a process graph simply means that there is at least
one path from A to B. The second is absolute
transferability. This is a much stronger concept because it
states that a token (work item) can always be transferred

24 http://www.i-jes.org

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

from node A to all input points of node B. What makes
absolute transferability reduce reachability between two
nodes is the existence of routing control nodes in between.

In BPMN, deadlock occurs when a parallel gateway
receives inputs which contain exclusive split. From the
definition of exclusive connector and the definition of
parallel gateway, the parallel gateway requires every
incoming sequences to be processed. However, the
exclusive split chooses only a single outgoing sequence to
be processed. The example of deadlock is shown in Fig. 7.

Figure 7. BPMN contains deadlock

Formally, the analytical behavior of the BPMN model
presented in Fig. 7 is given as follows:
! ! ! !!!!!!!!!!!!!!!" ! ! ! ! !!!"#!!!!! ! !
! ! ! !!!!!!!!!!!!!!!!!!!!!!! ! ! ! !!!!!!!!!!!!!!

On the contrary, to deal with this deadlock error, it is

necessary that the earlier Max+ Algebra equations will be
expressed as:

! ! ! !! !"#!!!!! ! !
! ! ! !!!!!!!!!!!!!!!!!!!! (12)

Therefore, it is clearly that there is a deadlock in the
merge parallel gateway.

Remark: Note that if the ActivationCondition in the
case of the complex gateway never becomes true in the
first phase (WaitingForStart = True), tokens are blocked
indefinitely at the gateway, which causes a deadlock of
the entire process model.

 Multiple Termination Patterns B.
The multiple termination is the situation that there

exists a parallel split before an exclusive gateway as
shown in Fig. 8. Only one sequence is traversed when the
exclusive gateway is executed. This leads to the violation
of soundness criterion [21]. Some of the tasks are not
terminated in one of predefined terminate process.

Figure 8. BPMN contains multiple termination

The analytical behavior of the scenario presented in
Fig.8 is:

! ! ! !! !"#!!!!! ! !
! ! ! !!!!!!!!!!!!!!!!!!!! (13)

And in order to activate the merge parallel gateway, it is
necessary that the cumulative applications are expressed
by this system:
! ! ! !!!!!!!!!!!!!!!" ! ! ! ! !!!"#!!!!! ! !
! ! ! !!!!!!!!!!!!!!!!!!!!!!! ! ! ! !!!!!!!!!!!!!"!

 CONCLUSION VI.
The BPMN standard is a graphical notation that

describes the logic of steps in a business process, but it is
ambiguous and inconsistent when it comes to defining
their semantics. The lack of formal semantics of BPMN
patterns related to control flow motivates the works in this
area for checking the correctness of BPMN models from a
semantic perspective.

This paper deals with the development of a theory and a
generic method to model and analyze business process
with conflicts in Max+ Algebra. This method allows to
arbitrate these conflicts by given the corresponding linear
equations of the chosen BPMN patterns which are the
most used in the modelisation of the service-based
business processes.

In future work, we plan to adapt the proposed approach
with our previous works [4], [7] so that to develop a plug-
in which can integrate the formal verification techniques
of business processes in the design phase.

REFERENCES
[1] OMG. Business Process Modeling Notation (BPMN) Version 2.0.

OMG Final Adopted Specification. Object Management Group,
2011.

[2] W. van der Aalst. , “Workflow verification Finding control-flow
errors using petri-net-based techniques,” Business Process
Management, pp. 19-128, 2000. http://dx.doi.org/10.1007/3-540-
45594-9_11

[3] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst:
Workflow data patterns, “Identification, representation and tool
support,” Conceptual Modeling-ER 2005, pp. 353-368, 2005.
http://dx.doi.org/10.1007/11568322_23

[4] O. El Hichami, M. Al Achhab, I. Berrada and B. El Mohajir,
“Graphical specification and automatic verification of business
process,” the International Conference on Networked systems,
(NETYS 2014), LNCS 8593, Springer, pp. 341-346, 2014.
http://dx.doi.org/10.1007/978-3-319-09581-3_27

[5] W. van der Aalst and B.F. van Dongen , “Discovering Petri Nets
From Event Logs,” pp. 372-422. Springer-Verlag, Berlin, 2013.
http://dx.doi.org/10.1007/978-3-642-38143-0_10

[6] Dirk Fahland, Cadric Favre, Jana Koehler, Niels Lohmann, Hagen
Volzer, Karsten Wolf, “Analysis on demand: Instantaneous
soundness checking of industrial business process models,” Data
Knowl. Eng. 70(5): pp.448-466, 2011.
http://dx.doi.org/10.1016/j.datak.2011.01.004

[7] O. El Hichami, M. Al Achhab, I. Berrada, and B. El Mohajir: ,
“Visual specification language and automatic checking of business
process,” 8th International Workshop on Verification and
Evaluation of Computer and Communication Systems (VECoS
2014), CEUR Workshop Proceedings, Vol.1256, pp. 93-101,
Bejaia, Algeria, September 29-30, 2014.

[8] T. Murata and J.Y. Koh, “Petri nets: Properties, Analysis and
Applications,” an invited surve y paper, Proceedings of the IEEE,
Vol.77, No.4 pp.541-580, 1989. http://dx.doi.org/10.1109/5.24143

[9] J.-H. Ye, S.-X. Sun, L. Wen, and W. Song, “Transformation of
BPMN to YAWL,” In CSSE (2), pp. 354-359. IEEE Computer
Society, 2008. http://dx.doi.org/10.1109/csse.2008.980

[10] L. Hillah, F. Kordon, L. Petrucci, and N. Trves, “PNML
Framework: an extendable reference implementation of the Petri
Net Markup Language,” Petri Nets, LNCS 6128, pp. 318--327,
2010. http://dx.doi.org/10.1007/978-3-642-13675-7_20

[11] G. Holzman , “The Spin Model Checker: Primer and Reference
Manual,” Addison-Wesley, 2004.

[12] R. M. Dijkman, M. Dumas, and C Ouyang, “Formal semantics and
analysis of BPMN process models using Petri nets,” Technical
Report 7115, Queensland University of Technology, Brisbane,
2007.

[13] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and
analysis of business process models in BPMN,” Inf. Softw.

iJES ‒ Volume 3, Issue 3, 2015 25

PAPER
AN ALGEBRAIC METHOD FOR ANALYSING CONTROL FLOW OF BPMN MODELS

Technol, vol. 50, no. 12, pp. 1281-1294, 2008.
http://dx.doi.org/10.1016/j.infsof.2008.02.006

[14] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha,
C. K. Liu, S. Thatte, P. Yendluri, and A. Yiu, “Web Services
Business Process Execution Language Version 2.0,” Committee
Draft. WS-BPEL TC OASIS, 2005.

[15] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda, “Definition of
deadlock patterns for business processes workflow models,” In
HICSS99: Proceedings of the Thirtysecond Annual Hawaii
International Conference on System Sciences-Volume 5, pages
50-65, Washington, DC, USA, IEEE Computer Society, 1999.
http://dx.doi.org/10.1109/hicss.1999.772966

[16] C. A. R. Hoare, “Communicating sequential processes. Commun,”
ACM, vol. 21, pp. 666-677, 1978.

[17] P. Y. H. Wong and J. Gibbons, “A Process Semantics for
BPMN,”Lecture Notes in Computer Science. Springer Berlin
Heidelberg, vol. 5256, ch. 22, pp. 355â!“374, 2008.

[18] Christiansen, DR, Carbone, M. and Hildebrandt, T. , “Formal
semantics and implementation of BPMN 2.0 inclusive gateways”,
in Proc. of the 7th international conference on Web services and
formal methods, ser. Web Services and Formal Methods 2010,
Berlin, Heidelberg: Springer-Verlag, 146-160, 2011.
http://dx.doi.org/10.1007/978-3-642-19589-1_10

[19] C. Ouyang, H.M.W. Verbeek, W.M.P. van der Aalst, S. Breutel,
M. Dumas, and A.H.M. ter Hofstede, “Formal semantics and
analysis of control flow in WS-BPEL”. Science of Computer
Programming, 67(2-3):162-198, Elsevier, 2007.

[20] F. Puhlmann and Matthias Weske, “Investigations on Soundness
Regarding Lazy Activities”. In Proceedings of the International
Conference on Business Process Management (BPM'2006),
volume 4102 of Lecture Notes in Computer Science, pages 145-
160. Springer, 2006.

[21] Fahland, D., Favre, C., Koehler, J., Lohmann, N., Volzer, H.,Wolf,
K., “Analysis on demand: Instantaneous soundness checking of
industrial business process models”. Data Knowl. Eng. 70(5), 448-
466, 2011. http://dx.doi.org/10.1016/j.datak.2011.01.004

AUTHORS
Outman El Hichami is with the Faculty of Sciences,

Tetouan, Morocco.
Mohamed Naoum is with the Faculty of Sciences,

Tetouan, Morocco.
Mohammed Al Achhab is with the National School of

Applied Sciences, Tetouan, Morocco.
Ismail Berrada is with the Faculty of Sciences and

Technology, Fez, Morocco.
Badr Eddine El Mohajir is with the Faculty of

Sciences, Tetouan, Morocco.
Submitted 14 July 2015. Published as resubmitted by the authors 10

October 2015.

26 http://www.i-jes.org

	iJES – Vol. 3, No. 3, 2015
	An Algebraic Method for Analysing Control Flow of BPMN Models

