
PAPER
UTILIZING NESTED NORMAL FORM TO DESIGN REDUNDANCY FREE JSON SCHEMAS

Utilizing Nested Normal Form to Design
Redundancy Free JSON Schemas

https://doi.org/10.3991/ijes.v4i4.6539

Wai Yin Mok
University of Alabama in Huntsville, Huntsville, AL, USA

Abstract—JSON (JavaScript Object Notation) is a light-
weight data-interchange format for the Internet. JSON is
built on two structures: (1) a collection of name/value pairs
and (2) an ordered list of values (http://www.json.org/).
Because of this simple approach, JSON is easy to use and it
has the potential to be the data interchange format of choice
for the Internet. Similar to XML, JSON schemas allow
nested structures to model hierarchical data. As data inter-
change over the Internet increases exponentially due to
cloud computing or otherwise, redundancy free JSON data
are an attractive form of communication because they im-
prove the quality of data communication through eliminat-
ing update anomaly. Nested Normal Form, a normal form
for hierarchical data, is a precise characterization of redun-
dancy. A nested table, or a hierarchical schema, is in Nested
Normal Form if and only if it is free of redundancy caused
by multivalued and functional dependencies. Using Nested
Normal Form as a guide, this paper introduces a JSON
schema design methodology that begins with UML use case
diagrams, communication diagrams and class diagrams that
model a system under study. Based on the use cases’ execu-
tion frequencies and the data passed between involved par-
ties in the communication diagrams, the proposed method-
ology selects classes from the class diagrams to be the roots
of JSON scheme trees and repeatedly adds classes from the
class diagram to the scheme trees as long as the schemas
satisfy Nested Normal Form. This process continues until all
of the classes in the class diagram have been added to some
JSON scheme trees.

Index Terms—JSON, Nested Normal Form, Redundancy
Free JSON Scehems.

I. INTRODUCTION
JSON (JavaScript Object Notation), based on the Ja-

vaScript programming language, is a lightweight data-
interchange format for the Internet. JSON is built on two
structures: (1) a collection of name/value pairs and (2) an
ordered list of values (http://www.json.org/). Virtually all
modern programming languages support these simple data
structures in one form or another. Because of this simple
and straightforward approach, JSON is easy to use and it
has the potential to become the data-interchange format of
choice for the Internet. Maintained by The Object Man-
agement Group (http://www.omg.org/), Unified Modeling
Language (http://www.uml.org/) is the standard modeling
language of the software industry. UML not only provides
a number of diagrams to specify, visualize, and document
software systems, UML is also a methodology that ana-
lysts are guided by its design principles when constructing
UML diagrams. Of all the UML diagrams, use case dia-
grams, communication diagrams, and class diagrams are
particularly relevant to this research. Use case diagrams

specify the main functions of a system under study.
Through use case diagrams, communication diagrams can
be derived, which document the data that are passed be-
tween the users and the system when a use case is carried
out. As a result of use case diagrams and communication
diagrams, data access patterns can be discovered.

Given one or more UML class diagrams, use case dia-
grams and communication diagrams for a system under
study, this paper presents an algorithm that generates
JSON schemas from these diagrams that are free from
redundancy. This approach has several advantages: (1)
UML models are designed to capture the relevant aspects
of a system under study. In addition, UML is also a design
methodology such that the diagrams are constructed ac-
cording to sound design principles. (2) Using UML dia-
grams as the starting point facilitate automatic JSON
schema generation because there are numerous UML
design software tools and the algorithm presented in this
paper can be easily integrated into these design tools.

Like XML schema design research, related work on
JSON schema has started to appear (http://json-
schema.org/). This research is different from those de-
scribed in http://json-schema.org/ because this research
begins with UML diagrams but those described in
http://json-schema.org/ mostly generate JSON schema in a
reverse-engineering manner when JSON data are given.

The rest of the paper is organized as follows. Section II
presents a motivating example and Section III shows the
foundational definitions. The JSON schema generation
algorithm is shown in Section IV and we conclude in
Section V.

II. A MOTIVATING EXAMPLE
Figure 1 shows a use case diagram. It has five use cas-

es, which represents the five main functions provided by
the course management system under study. It also has
four users, one of which is non-human. Figure 1 also
shows the use cases that are used by each user. For exam-
ple, a student is only concerned with the use case “register
for courses,” but a lecturer is associated with the use cases
“select courses to teach” and “request course roster.” A
registrar, on the other hand, will have access to three dif-
ferent use cases and the sole non-human user, the billing
system, needs access to only one use case.

Figure 2a shows a communication diagram that docu-
ments the data that are passed between a student and the
course management system when the use case “register
for courses” is carried out. The communication diagram
also documents the order of the data that are passed be-
tween them. The student first enters his/her name and
student ID to the CMS. Then, the CMS gives permission

iJES ‒ Volume 4, Issue 4, 2016 21

PAPER
UTILIZING NESTED NORMAL FORM TO DESIGN REDUNDANCY FREE JSON SCHEMAS

to the student to login. After that, the student enters the
course ID of the course for which he/she wants to register.
The CMS then passes on the course ID to the database to
check if there is any available seat. If so, the CMS will
allow the student to register. Figure 2b shows another
communication diagram, which documents the data
passed between a lecturer and the CMS when the use case
“request course roster’’ is executed. First, the lecturer
enters his/her name and ID. The CMS then allows the
lecturer to login. After that, the lecturer enters the ID of
the course whose roster the lecturer requests and finally
the roster is returned to the lecturer.

Given a use case diagram that documents the main
functions of a system and the communication diagrams
that specify the data passed between the different entities
when the system’s use cases are carried out, data access
patterns can be discovered. For example, Figure 2a dic-
tates that the name and ID of a student is first accessed,
and then a course ID and the course’s information. Final-
ly, the registered courses are stored along with the student
to facilitate future searches on the courses taken by the
student. Figure 2b dictates that the name and ID of a lec-
turer are first accessed, and then a course ID, and finally
the roster of the course. To facilitate execution of these
use cases, the data used in a use case should be clustered
together in a JSON schema to reduce query time and data
transfer time. For example, a JSON schema may cluster
the student information for each student to facilitate
searches on name and student ID. After registering for
courses, the registered courses should also be clustered
along with each student in a JSON schema to facilitate
retrieval of courses when the student ID is given. On the
other hand, to speed up the execution of the use case “re-
quest course roster,” the roster of each course should be
stored along with the course in a JSON schema. Hence,
different use cases may lead to different JSON schema
designs, and a balance must be maintained among compet-
ing designs. We believe the best solution is based on the
use cases’ execution frequencies. For example, if the use
case “register for courses” will be executed much more
frequently than the use case “request course roster,” then
we should design the JSON schemas that favor the use
case “register for courses.”

Class diagrams, which describe the structure of a sys-
tem by showing the system’s classes, their attributes,
operations (or methods), and the relationships among
objects, are also relevant to this research. Fig. 3 shows a
class diagram, in which there are a class Student, a class
Course, and a class Lecturer. The attributes of each class
are also shown in the figure. The main purpose of class
diagrams is to show the static aspects of the system. In this
regard, class diagrams are different from communication
diagrams because communication diagrams show the
system’s dynamic aspects.

Like XML (EXtensible Markup Language), which was
designed to store and transport data, JSON is hierarchical
because nested data are allowed. We now introduce JSON
scheme trees, whose formal definition will be presented
later. JSON scheme trees are JSON schemas in tree form

to show the nesting of the data. Two sets of redundan-
cy-free JSON scheme trees are shown in Figures 4a and
4b for the class diagram in Figure 3. Which set is the best
for the system depends on the prevalent use case of the
system. As an example, if “register for courses” is the
prevalent use case, then the scheme trees in Figure 4a

Figure 1. A sample use case diagram

Figure 2. Two sample communication diagrams

Figure 3. A sample class diagram

Figure 4. Several possible sets of JSON scheme trees

should be chosen. However, if the use case “request
course roster” is executed more frequently, the JSON
scheme trees in Figure 4b are preferred. As a comparison,
Figure 4c shows a set of JSON scheme trees that will lead
to redundant data, which will be shown in Figure 7.

Actual data help demonstrate the different JSON sche-
mas. Let us assume there are three students, four courses
and two lecturers for the classes in Fig. 3. Fig. 5 shows the
data in JSON format that were constructed according to
the JSON scheme trees in Fig. 4a. The three students are
stored in an array named “students” and similarly the four
courses and the two lecturers are respectively stored in the
named arrays “courses” and “lecturers.”

Figure 4a dictates that the registered courses of each
student are clustered with the student and the courses
taught by each lecturer are also clustered with the lecturer.
For example, John, whose ID is S101, has registered for
courses C111, C222, and C333, and Kyle, whose ID is
L222, is teaching courses C333 and C444. Obviously, the
JSON data in Fig. 5 favor searches on the courses for a

22 http://www.i-jes.org

PAPER
UTILIZING NESTED NORMAL FORM TO DESIGN REDUNDANCY FREE JSON SCHEMAS

studentID or a lecturerID. On the other hand, the JSON
data of Figure 6 clearly favor the use case “request course
roster” because the IDs of the students who have regis-
tered for each course are clustered with the course itself.
Note that the JSON data in Figure 5 and the one in Figure
6 have no redundancy.

As a comparison, the partial JSON data in Figure 7,
which were constructed according to the JSON scheme
trees in Figure 4c, have redundant data. The fact that
lecturer L111 is teaching courses C111 and C222 is rec-
orded twice. This redundant data will lead to high update
cost because multiple copies of the same information need
to be updated together if lecturers’ teaching assignments
change frequently.

{"students":[

 {"studentID":"S101","name":"John","address":"101 Maple street",

"courseIDs":[{"courseID":"C111"},{"courseID":"C222"},{"courseID":"C333"}]},

 {"studentID":"S202","name":"Mary","address":"202 Oak street",

 "courseIDs":[{"courseID":"C111"}]},

 {"studentID":"S303","name":"Tom","address":"303 Cedar street",

 "courseIDs":[{"courseID":"C222"},{"courseID":"C444"}]}],

 "courses":[

 {"courseID":"C111","name":"Intro to IS","description":"The first

course of IS"},

 {"courseID":"C222","name":"IS with others","description":"The second

course of IS"},

 {"courseID":"C333","name":"IS with human","description":"The third

course of IS"},

 {"courseID":"C444","name":"Advanced IS","description":"The last course

of IS"}],

 "lecturers":[

 {"lecturerID":"L111","name":"Kevin","dept":"Math",

 "courseIDs":[{"courseID":"C111"},{"courseID":"C222"}]},

 {"lecturerID":"L222","name":"Kyle","dept":"Information Systems",

 "courseIDs":[{"courseID":"C333"},{"courseID":"C444"}]}]

}

Figure 5. Sample data for the JSON scheme trees in Figure 4a

{"students":[

 {"studentID":"S101","name":"John","address":"101 Maple street"},

 {"studentID":"S202","name":"Mary","address":"202 Oak street"},

 {"studentID":"S303","name":"Tom","address":"303 Cedar street"}],

 "courses":[

 {"courseID":"C111","name":"Intro to IS","description":"The first

course of IS",

 "studentIDs":[{"studentID":"S101"},{"studentID":"S202"}],

 "lecturerIDs":[{"lecturerID":"L111"}]},

 {"courseID":"C222","name":"IS with others","description":"The second

course of IS",

 "studentIDs":[{"studentID":"S101"},{"studentID":"S303"}],

 "lecturerIDs":[{"lecturerID":"L111"}]},

 {"courseID":"C333","name":"IS with human","description":"The third

course of IS",

 "studentIDs":[{"studentID":"S101"}],

 "lecturerIDs":[{"lecturerID":"L222"}]},

 {"courseID":"C444","name":"Advanced IS","description":"The last course

of IS",

 "studentIDs":[{"studentID":"S303"}],

 "lecturerIDs":[{"lecturerID":"L222"}]}],

 "lecturers":[

 {"lecturerID":"L111","name":"Kevin","dept":"Math"},

 {"lecturerID":"L222","name":"Kyle","dept":"Information Systems"}]

}

Figure 6. Sample data for the JSON scheme trees in Figure 4b

{"students":[

 {"studentID":"S101","name":"John","address":"101 Maple street",

 "courseIDs":[{"courseID":"C111","lecturerID":"L111"},

 {"courseID":"C222","lecturerID":"L111"},

 {"courseID":"C333","lecturerID":"L222"}]},

 {"studentID":"S202","name":"Mary","address":"202 Oak street",

 "courseIDs":[{"courseID":"C111","lecturerID":"L111"}]},

 {"studentID":"S303","name":"Tom","address":"303 Cedar street",

 "courseIDs":[{"courseID":"C222","lecturerID":"L111"},

 {"courseID":"C444","lecturerID":"L222"}]}]

}
Figure 7. Partial JSON data that were constructed according to the

JSON scheme trees in Figure 4c

In the remainder of the paper we shall present an algo-
rithm to produce a good JSON schema design from UML
use case diagrams, communication diagrams and class
diagrams.

III. FOUNDATIONAL DEFINITIONS
UML is a well-defined modeling language

(http://www.uml.org/) and JSON’s definition can be found
at http://www.json.org/. Thus, their definitions are not
repeated here. We proceed to the other definitions for this
paper.

Definition 1: Given a UML class diagram !, a JSON
scheme tree ! is a tree such that each node is a class in !.

Given the class diagram in Figure 3, all trees in Figure
4 are JSON scheme trees with respect to Definition 1.
Further, each object in a UML class diagram is represent-
ed by a JSON object, which is an unordered set of
name/value pairs. An object begins with { (left brace) and
ends with } (right brace). Each name is followed by :
(colon) and the name/value pairs are separated by , (com-
ma) (http://www.json.org/). For example, the student John
with the ID “S101” and address “101 Maple street” is
represented by the JSON object {"studen-
tID":"S101","name":"John","address":"101 Maple
street"}. In addition, each set of objects is represented
by a named JSON array of objects. For example, the set of
the three students John, Mary, and Tom is represented by
the named array "students":[].

Definition 2: A JSON scheme tree instance ! for a
JSON scheme tree ! is a named JSON array whose name
is the plural form of the root ! of !. In this array each
object ! of the root ! of ! is represented by a JSON
object ! that is extended as follows: (1) for each child
class of !, ! is extended by an array named by the plural
form of the name of that child class and that array contains
the JSON objects that represent the objects or the IDs of
that child class, (2) this extension is recursively applied to
each pair of parent and child nodes in !, and (3) whenever
an object of a child node is related to more than one object
of a parent class, replace the objects of the child class by
their IDs instead.

To illustrate Definition 2, consider the class diagram in
Fig. 8a. Based on the multiplicity, the relationship be-
tween the classes A and B is many-to-many and so is the
one between the classes C and D. As such, an A object
may relate to many B objects and an B object may relate
to many A objects. Similarly, a C object may relate to
many D objects and a D object may relate to many C
objects. On the other hand, because of the multiplicity 1:1,
a C object can only relate to one B object but a B object
may relate to many C objects. Hence the relationship
between the classes B and C is one-to-many.

Given the JSON scheme trees in Figure 8b, Figure 9
shows a sample JSON scheme tree instance. The array
“Bs” contains two B objects whose IDs are b101 and
b202. Because an A object may relate to more than one B
object, to avoid redundancy each of the B objects is clus-
tered with its attribute x and the IDs of the related A ob-
jects. Because each C object can only relate to one B
object, there are two choices to cluster the related C ob-
jects with each B object. We can cluster the related C
objects or the IDs of the related C objects with each B
object. In Figure 9, we chose to cluster the related C ob-
jects with each B object. Note that there is no redundancy

iJES ‒ Volume 4, Issue 4, 2016 23

PAPER
UTILIZING NESTED NORMAL FORM TO DESIGN REDUNDANCY FREE JSON SCHEMAS

because each C object only appears once. Because the
relationship between the classes C and D is many-to-
many, we only cluster the IDs of the related D objects
with each C object. The other two JSON scheme trees in
Figure 8b are A and D, which are degenerated JSON
scheme trees because they only have the root node. They
are necessary because only the IDs of A and D appear in
the JSON scheme tree rooted with B and thus we need two
more JSON scheme trees to contain all of the attributes of
A and D. A similar argument applies to the JSON scheme
tree instances in Figures 5 and 6.

Based on the relational database theory (Maier, 1983),
the formal definition of Nested Normal Form can be found
in (Mok et al., 1996). However, a UML class diagram
does not have to satisfy all of the underlying assumptions
of the relational database theory. For example, an underly-
ing assumption of the relational database theory is that
every attribute plays a unique role. This is not true for
UML class diagrams because an attribute thereof may
play more than one role. In Fig. 3, the attribute “name”
may denote the name of the class Student or the name of
the class Course. Following the same spirit of (Mok,
2007), we need to modify the definition of Nested Normal
Form for this paper.

Definition 3. Given a UML class diagram !, a JSON
scheme tree ! is in Nested Normal Form if (1) every class
in ! has an attribute called ID, (2) every class in ! is in
BCNF (Maier, 1983), (3) if !1 !!2 is a nontrivial FD
(functional dependency) in ! where !1 and !2 are two
nodes in !, then !1 !! where ! is !2 or ! is a node
above !2 in !, and (4) the MVDs (multivalued depend-
encies) implied by ! and the FDs that hold for ! is equiv-
alent to the MVDs that hold for !. �

With respect to Definition 3, every JSON scheme tree
in Figs. 4a and 4b is in Nested Normal Form. Every JSON
scheme tree in Fig. 8b is also in Nested Normal Form. To
see this, consider the nontrivial scheme tree in Fig. 8b.
Note that C ! B and there is no class above B in that tree.
Thus, it satisfies Definition 3. However, the nontrivial
JSON scheme tree in Fig. 4c is not in Nested Normal
Form. To see this, note that the class diagram in Fig. 3
implies the MVD Course !! Lecturer (a course can be
taught by one or more lecturer) but this MVD cannot be
implied by the tree and the FDs that hold for the tree.
(There are no FDs that hold for that tree.)

IV. ALGORITHM
This section presents an algorithm that generates JSON

scheme trees in Nested Normal Form from UML use case
diagrams, communication diagrams, and class diagrams.

Algorithm 1
Input: a UML class diagram, a UML use case diagram,

a UML communication diagram
Output: a set of JSON scheme trees in Nested Normal

Form with respect to Definition 3
1. Let !1, !2, …, !n be the given use cases in the use

case diagram. Derive a communication diagram !i for
each use case !i.

2. Let !1, !2, …, !n be the communication diagrams
for the use cases !1, !2, …, !n respectively. Let !1, !2,
…, !n be the execution frequencies for the use cases !1,
!2, …, !n respectively. Make a list ! of the classes in the
class diagram in terms of their access frequencies.

Figure 8. A sample class diagram and some sample JSON scheme

trees

{"Bs":[

 {"bID":"b101","x":"x1",

 "aIDs":[{"aID":"a101"},{"aID":"a202"}],

 "Cs":[{"cID":"c101","y":"y1","dIDs":[{"dID":"d101"}]},

{"cID":"c202","y":"y2","dIDs":[{"dID":"d101"},{"dID":"d202"}]},

{"cID":"c303","y":"y3","dIDs":[{"dID":"d202"},{"dID":"d303"}]}]},

 {"bID":"b202","x":"x2",

 "aIDs":[{"aID":"a202"}],

 "Cs":[{"cID":"c404","y":"y4","dIDs":[{"dID":"d303"}]},

{"cID":"c505","y":"y5","dIDs":[{"dID":"d303"},{"dID":"d404"}]}]}],

 "As":[

 {"aID":"a101","w":"w1"},

 {"aID":"a202","w":"w2"}],

 "Ds":[

 {"dID":"d101","z":"z1"},

 {"dID":"d202","z":"z2"},

 {"dID":"d303","z":"z3"},

 {"dID":"d404","z":"z4"}]

}

Figure 9. A sample JSON scheme tree instance for the JSON scheme
trees in Figure 8a

3. Select an unmarked class ! in the class diagram with
the highest access frequency in !. Make ! a root node.
Mark ! “continued.” (A node marked “continued” means
that it can have child nodes.)

4. Let ! be a node in a tree that is marked with “con-
tinued.” For each class ! in the class diagram that is con-
nected with ! with an unmarked relationship, make ! a
child node of ! and mark the relationship “done.” Fur-
ther, if ! has a many-to-one or one-to-one relationship
with !, mark ! “continued” as well.

5. Repeat Steps 3 and 4 until every class in the use case
diagram is marked with “continued” and every relation-
ship with “done.”

6. If a class ! has more than one parent in one or more
trees, replace each occurrence of ! that is not a root node
by the IDs of !. If ! is not a root node, make ! the root
node of a degenerated JSON scheme tree. �

We now trace through the construction of the JSON
scheme trees in Fig. 4a from the use case diagram, the
communication diagram, and the class diagram in Figs. 1,
2, and 3 respectively. Steps 1 and 2 of the algorithm con-
struct the communication diagrams for the use cases. After
that, we next examine the use cases’ execution frequen-
cies. In this step, the analysts and the stakeholders of the
system perform an estimate based on their past experienc-
es. Suppose that “register for courses” is the most fre-
quently executed use case. Hence, the JSON data format
should be designed with this use case in mind. Thus, Step
3 of the algorithm chooses the class Student as the root of
a JSON scheme tree. The class Student is also marked

24 http://www.i-jes.org

PAPER
UTILIZING NESTED NORMAL FORM TO DESIGN REDUNDANCY FREE JSON SCHEMAS

with “continued,” signaling that it can have child nodes. In
the class diagram in Figure 3, the class Course is connect-
ed to the class Student through a many-to-many relation-
ship. Hence, the class Course is added as a child node to
the class Student. However, it is not marked with “contin-
ued” because the relationship between them is many-to-
many. The result is one of the trees in Figure 4a. Suppose
that the class Course is the next frequently access class. It
is then selected as the root of another JSON scheme tree.
The class Lecturer, but not the class Student, is then added
as a child node to Course. The class Student is not added
because the relationship between the classes Student and
Course has already been marked with “done.” Finally, the
class Lecturer is made the root of a JSON scheme tree.
However, the class Course is not added as a child node to
Lecturer because the relationship between Course and
Lecturer has already been marked with “done.”

V. CONCLUSIONS
This paper presents a JSON scheme tree generation al-

gorithm that generates JSON scheme trees in Nested
Normal Form. As a result, the generated JSON scheme
trees are redundancy-free. As our future work, we shall

devise experiments to actually measure the transfer time
and query time against JSON schemas with or without
redundancy to empirically show that JSON schemas in
Nested Normal Form have advantages over those that do
not satisfy Nested Normal Form.

REFERENCES
[1] Maier, D. (1983). The Theory of Relational Databases, Computer

Science Press, Rockville, Maryland, USA.
[2] Mok, W. Y. (2007). Designing nesting structures of user-defined

types in object-relational databases. Information & Software
Technology, 49(9/10), 1017-1029. https://doi.org/10.1016/j.infsof.
2006.10.008

[3] Mok, W. Y., Ng, Y., & Embley, D. W. (1996). A normal form for
precisely characterizing redundancy in nested relations. ACM
Transactions On Database Systems, 21(1), 77-106.
https://doi.org/10.1145/227604.227612

AUTHOR
Wai Yin Mok is with The University of Alabama in

Huntsville, Huntsville, AL 35899 (mokw@uah.edu).
Submitted 03 November 2016. Published as resubmitted by the author

10 December 2016.

iJES ‒ Volume 4, Issue 4, 2016 25

	iJES – Vol. 4, No. 4, 2016
	Utilizing Nested Normal Form to Design Redundancy Free JSON Schemas

