
AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

An Architecture to Support Learning, Awareness,
and Transparency in Social Software Engineering

0doi:10.3991/ijet.v5s1.1194

Wolfgang Reinhardt and Sascha Rinne
University of Paderborn, Paderborn, Germany

Abstract—Classical tools for supporting software engineer-
ing teams (collaborative development environment, CDE)
are designed to support one team during the development of
a product. Often the required data sources or experts reside
outside of the internal project team and thus not provided
by these CDEs. This paper describes an approach for a
community-embedded CDE (CCDE), which is capable of
handling multiple projects of several organizations, provid-
ing inter-project knowledge sharing and developer aware-
ness. The presented approach uses the mashup pattern to
integrate multiple data sources in order to provide software
teams with an exactingly development environment.

Index Terms—Learning Systems, Knowledge Management,
Cooperative Development Environments, Learning Com-
munities

I. INTRODUCTION

Traditional clichés about software developers loose
their validity more and more. Times, when programmers
sat in dark cellars and tried to solve all problems on their
own are over once and for all. In the meantime software
engineering has become a very knowledge-intensive [5]
and communicative process (not only but also triggered by
agile methods for software development) where the actors
heavily exchange data (see Google-Code1), connect with
like-minded (see Google Summer of Code2), blog about
experiences in their own weblogs, provide code snippets
free of charge (see Django-Snippets3) or help novices with
words and deeds in large mailing lists. This social soft-
ware engineering – the creation of software and related
artefacts within a social network – gained a lot of attention
in recent software engineering research [1,17]. Besides the
improvements of integrated development environments
(IDE, e.g. Eclipse4) or procedure models (e.g. eXtreme
Programming [3]) research is addressing improvements of
the daily working and learning environments of the devel-
opers. The main function of collaborative development
environments (CDE) [2] is to support the whole develop-
ment process of a team of software developers from start
to finish. This includes version control of code artefacts as
well as process documentation, coordination of tasks or
support for division of labour.

CDEs usually are set up for one specific project; the
possibilities for inter-project-collaboration within an or-
ganization with multiple software projects are very limited
because the single CDEs are not able to exchange data.

1 http://code.google.com/
2 http://code.google.com/soc/
3 http://www.djangosnippets.org/
4 http://www.eclipse.org/

Furthermore many developers are using data pools (bulle-
tin boards, developer communities, mailing lists and a lot
more) outside the organization in order to solve a specific
problem. Furthermore existing CDEs lack in providing a
transparent view on the progress of a project, awareness of
developers’ competencies and support for individual in-
formal learning processes.

This paper describes an approach for a community-
embedded CDE (CCDE), which is capable of handling
multiple projects of several organizations, providing inter-
project knowledge sharing and developer awareness. The
presented approach uses the mashup pattern to integrate
multiple data sources in order to provide software teams
with an exactingly development environment. Further-
more we present requirements for a community of devel-
opers and sketch a first prototypical architecture for such a
CCDE.

II. RELATED WORK

The goal of this section is to behold the main aspects
enlisted in the conception and implementation of a CCDE
in order to derivate functional and technical requirements.
Furthermore this section serves for definition and disso-
ciation of the used terms.

A. Knowledge Management and Learning in Software
Engineering

The different facets of the concept of knowledge have
been discussed for over 2000 years now. Based on a fuzzy
understanding of knowledge several theories for knowl-
edge management came up and raised the idea of simply
exchanging knowledge between individuals or organiza-
tions (among others [8]). It is probably the most important
assessment to be made in this context that „you cannot
store knowledge“ [7] as in interpersonal communication
only data is exchanged. Information emerges by interpret-
ing this data with own prior knowledge in the personal
context. Information then is the foundation for personal
actions and decisions. So knowledge is first of all a ra-
tional capacity and not a transferable item. POLYANI
distinguishes between tacit and explicit knowledge,
whereas explicit knowledge is stored in textbooks, soft-
ware products and documents, while tacit knowledge is in
the mind of people as memory, skills, experience and
creativity [10]. When tacit knowledge is externalised and
transformed into explicit knowledge (properly speaking it
is data now), we call this implicit knowledge. Implicit
knowledge is of very high value for organisations such as
software projects, as it gives hints how to solve specific
problems in the future.

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 19

http://dx.doi.org/ijet.v5s1.1194�

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

Regardless of the ambiguous definitions of knowledge
and the claims for necessity and importance for knowl-
edge management, software engineering is a dynamic
process, which is reliant on latest knowledge in the subject
domain. This knowledge is dynamic and evolves with
technology, organisational culture and changing needs of
the organisation [9]. Knowledge management in software
engineering can be improved by recognising the need for
informal communication and exchange of data in order to
support the exchange of implicit knowledge amongst de-
velopers. Learning and working environments thus should
support awareness of developers, sharing of implicit
knowledge and foster informal, ad hoc exchange of short
messages [6,11] as well as facilitating inter-project social
networks in form of communities of interest.

Informal learning is characterized as a process that does
not follow a specified curriculum but rather happens by
accident, sporadically and naturally during daily interac-
tions and shared relationships. Experience shows that the
majority of real learning is informal [4]. Informal learning
is what happens when tacit knowledge of a person is
communicated to another person, which internalizes and
interprets the data and thus expands his own knowledge.
Examples of such informal learning situations within
software engineering projects are spontaneous meetings,
short messages, phone calls but also asynchronous com-
munication like entries in bulletin boards, comments in
source code or comments in blogs. As hardly any formal
training for developers takes place, in software engineer-
ing informal learning is the only way to stay up to date.
Previous approaches for supporting ad hoc communica-
tion focus on intra-project improvements and do not in-
clude experts from outside the project. Connecting with
others and using artefacts from outside the own project
seem to be a crucial factor in supporting learning within a
project.

B. Social Software Engineering
The term social software engineering denotes both the

engineering process of so called social software and the
software engineering within social relationship in collabo-
rative teams. For this paper the latter denotation is the
focus of interest.

Studies show, that the main part of modern software
engineering is carried out in teams, requiring strong inter-
actions between the people involved in a project [1,13,14].
Social activity thus represents a substantial part of the
daily work of a developer. Social network structures in
social network sites (SNSs) emerge by adding explicit
friendship connections between users. By contrast, social
networks in the software engineering mainly result from
object-centred sociality [15]. Developers do not just
communicate with each other – they connect through
shared artefacts. These social connections normally exist
only within a project even though many of the artefacts
used come from outside of the project. The consulted do-
main specific experts often do not reside within the own
organisation, but in other communities.

C. Collaborative Development Environments
BOOCH and BROWN [2] define a CDE as “a virtual

space wherein all stakeholders of a project – even if dis-
tributed by time or distance – may negotiate, brainstorm,
discuss, share knowledge, and generally labor together to
carry out some task, most often to create an executable

deliverable and its supporting artifacts”. So CDEs are a
virtual working environment whose key functions can be
clustered in the following categories: a) coordination of
developers work, b) cooperation of developers, and c)
formation of a community. CDEs shall create a working
environment that tries to keep frictional losses at a mini-
mum. Frictions are costs for setup and launch of the work-
ing environment, inefficient cooperation while artefact
creation and dead time caused by mutual dependencies of
tasks.

BOOCH and BROWN define five several stages of ma-
turity of CDEs [2]; besides simple artefact storage (stage
1) and basic mechanisms for collaboration (stage 2), ad-
vanced artefact management (stage 3), advanced mecha-
nisms for collaboration (stage 4) the main feature of CDEs
on stage 5 is to “encourage a vibrant community of prac-
tice” [2].

As the current median is somewhere around stage 1 and
2 [2], it is the goal of our efforts to enhance existing CDEs
for single projects with a community component that al-
lows project-spanning collaboration. This community-
embedded CDE (CCDE) shall provide the classical func-
tions of a CDE stated above but also allow the seamlessly
exchange of artefacts [12], data and expertise amongst
projects and developers from multiple projects. The re-
mainder of this paper describes specific requirements for a
CCDE and presents an initial architectural design.

III. SOLUTION DESIGN

The following section introduces the requirements for a
CCDE to support awareness and transparency in multi-
project environments. We define functional and non-
functional requirements for the CCDE and introduce pos-
sible data sources needed in social software engineering
projects (SSEP). Finally this section provides a first archi-
tectural design of the CCDE eCopSoft.

A. Organisational Requirements on a CCDE
As stated in section 2.B, social software engineering is

a collaborative development process performed by a team
of people that often are separated by time and space [18].
A CCDE aims at closing the gap between the members of
a team by providing project awareness and transparency
as well as providing options to connect with other devel-
opers and teams. From an organisational point of view a
CCDE splits into two parts: I) the developers community
and II) the single projects hosted at the CCDE. The re-
quirements for the first part of a CCDE requires methods,
services and tools for networking, presentation of contents
and exchange of opinions to foster data exchange and the
emergence of a community feeling. Thus, a CCDE should
be equipped with the typical community features of SNSs
like groups, wikis, bulletin boards, user profiles and friend
lists. On top of this basic services and tools the commu-
nity component of a CCDE should offer domain specific
areas like a job market for developers, an event review
and a news corner for trending development topics. All
services and tools of the developer community are to en-
sure the shared identity of developers, the sharing of news
and opinions as well as the start of new projects.

The second important parts of a CCDE are the project
spaces. A project space is basically the home of a hosted
project on the CCDE. A project space has to support the
members of the project in collaborative and coordinative

20 http:www.i-jet.org

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

tasks. With our CCDE we claim to foster transparency and
awareness of collaborative projects, for what reason a
project space must provide fundamental tools such as
wikis, e-mails, repository, bug tracker, and roadmap plan-
ning. Further data sources for the deployment in software
projects are discussed in section 3.B. Any user of the
CCDE must be able to start a new project and easily select
the required services and tools for his project. The instan-
tiation of the single tools has to take place automatically
and without human intervention. Adding new developers
to a project must be possible in various ways: either the
members of the project are selected a priori by the creator
of the project or added to the project afterwards. For the
latter one it is important to discern between public and
private projects. It must be possible to allow anyone to
contribute to a project (public) or to approve new devel-
opers for the project. The creator must be able to broad-
cast his search for new developers to the community (e.g.
by sending a microblogging message or adding an entry in
a bulletin board) and also to browse the existing develop-
ers in order to directly ask them to join the project.

B. Data sources in software engineering projects
The potential data sources relevant for software engi-

neering project are manifold. This section tries to identify
the most important resources to support collaborative
software engineering in the project spaces of the CCDE.

The selection of data sources that are applicable in a
CCDE is essentially dependent on the available interfaces
of the respective backend systems. It is crucial that the
applicable data sources provide interfaces (e.g. open APIs)
that allow the installation, configuration and query of data
without sweeping adaptations of the data sources. To inte-
grate a new data source in the project spaces the imple-
mentation and upload to the server of a new connector
module is sufficient.

Basically we need to distinct between data sources or
systems that incorporate coordination activities and those
that incorporate communication activities of the develop-
ment team. The latter is to be distinguished between in-
formal and formal communication [18]. Informal com-
munication is considered as explicit communication via
diverse communication channels such as telephone, video,
audio conference, voice mail, e-mail or other verbal con-
versations. Formal conversation refers to explicit commu-
nication such as written specification documents, reports,
protocols, status meetings or source code [6]. Thus essen-
tial systems and tools to support communication in soft-
ware engineering projects include e-mail, wiki, version
control systems, blogs, instant messaging or microblogs as
well as shared bookmarks and shared RSS feeds. Also
modern communication channels like VoIP or video chat
could be part of the communicative toolbox of a project
space. Coordination activities address system-level re-
quirements, objectives, plans and issues. Working with the
customer and end users carries them out. To support co-
ordinative activities the following data sources and sys-
tems ought to be integrated in a project space: roadmap
planning, issue and bug tracker, collaborative calendars,
and collaborative to-do lists.

For many of the data sources mentioned well-known
software systems exist that offer open APIs. Along with
MediaWiki5 and StatusNet6, several version control sys-

5 http://www.mediawiki.org

tems and mail servers exist that can be a possible data
source for the integration in a project space. For other data
sources (e.g. shared bookmarks or VoIP) these software
systems applicable in a CCDE are still to be found. Be-
sides the open APIs it is also a necessary feature of the
data sources that they store their data persistently, so that
another person or tool can reuse the respective artefact in
another context later.

C. Requirements on a sophisticated Integration Layer
The main duty of an integration layer is to process the

data of all connected backend systems in a way that a cen-
tral and comprehensive access to all data is possible. By
integrating the different data sources into a common layer
it will becomes feasible to gain additional information that
could not be provided from a single backend system be-
forehand.

Therefore the integration layer has to be informed about
changes in the different backend systems and start an
analysis of the changed artefacts consequently. Changes
on an artefact in a backend system have to trigger a uni-
form change event that can be processed and stored by the
integration layer. A change event will typically deploy the
analysis of the specific artefact, which requires the auto-
matic processing of various artefact types like e-mail, wiki
articles, source code and many more. Further on different
analyses techniques have to be integrated pursuing differ-
ent targets. These techniques ought to range from simple
stuff like language detection and keyword analyses to so-
phisticated semantically analyses of textual artefacts and
precise source code analyses. The analysis framework has
to be highly extensible allowing the later addition of new
techniques. All data gained throughout the analysis have
to be stored in a central data structure. An efficient design
of the data structure aims at fast and precise querying of
the data and easy integration.

The integration layer is obliged to enhance a manually
entered developer profile with automatically generated
data in order to keep it up-to-date. To be able to do this
and to be able to retrace the chronological sequence in the
modifications of an artefact, each user interaction with one
of the backend systems has to be stored as an entry in the
event log of the integration layer. Additional data ex-
tracted from an event (e.g. path to a source code file, cate-
gories of a wiki entry etc.) must be stored in a global data
model where artefacts are being connected system- and
project spanning. With this connection it shall become
possible to gain additional information about artefacts and
developers and to answer specific queries like:
 Who is the main developer of a package, class or

method?
 Which artefacts from other systems are highly related

to the current one?
 Who is an expert in a specific development domain

or technique?
 Which developers from the community could be in-

vited to work on a new project?
 What is the expertise of a developer?

D. Architectural design
The requirements stated above demand for a system

that allows the connection of various data sources and that

6 http://status.net/

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 21

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

provides multiple interfaces to access the integrated data
in various ways. For that reason our prototypical imple-
mentation eCopSoft (event-based cooperative software
engineering platform) consists of several components on
different layers (cf. fig. 1) that make use of the typical
mashup design pattern: easy and fast integration of multi-
ple data sources, done by accessing APIs to produce re-
sults that were not the original reason for producing the
raw source data [16].

There is a central server component (eCopSoft core)
that is responsible for harvesting and processing data from
all connected data sources on the system layer. The sys-
tem layer mainly consists of the data sources described in
section 3.C. From a technical point of view these systems
run autonomous on a server and are connected to the
eCopSoft server via their respective APIs. The eCopSoft
core processes the data from all data sources, extracts
event data and other metadata and stores it in an internal
database. Those involved in a project can access the data
stored in the backend systems and the additionally gener-
ated and aggregated metadata with various clients on the
presentation layer. These tools connect to server via the
eCopSoft API.

The eCopSoft application is a modular and flexible sys-
tem that holds administrative and operating data, assures
the connection to the backend systems and provides inter-
faces for accessing the operating data with various clients.
Furthermore eCopSoft provides a central management for
users and projects. The integration layer is the most im-
portant component in the eCopSoft architecture – all
events of the backend systems are processed here. Nor-
mally an event represents a user interaction with one of
the backend systems. The connector modules of the data
sources act as event provider, whereas the event consum-
ers in the integration layer process these events. Each
event holds information about the user that initiated the
event, the changed artefact, which kind of operation the
user was carrying out (e.g. create, update, link…) as well
as other event-specific information if required. On arrival
of an event at the event consumers, the event and all con-

taining information are stored in the event database. The
event data is processed by the eCopSoft core and used to
update the user profiles in the user profile database. Based
on these comprehensive additional data about the usage of
and work with artefacts in a development team the coop-
erative work can be explored in new ways. A visual pro-
ject dashboard, artefact networks, artefact usage patterns
or expert lists showing individual expertise are enhancing
the individual and organizational learning process with
artefact and user awareness and transparency.

To connect the several data sources with eCopSoft a
connector module will be implemented for each data
source. A connector module assures the creation of the
project-related instances and forwards the operating data
from the backend system to the integration layer. The
connector modules encapsulate the specific interfaces of
the backend systems represent them homogenous at server
side. The creation of events can either be actively trig-
gered by a backend system (e.g. by a SVN hook) or pas-
sively by periodically querying the data source for new
data (e.g. polling a RSS feed). The automatically instantia-
tion of the backend systems is handled via scripts as part
of the eCopSoft application. We will script the instantia-
tion of the backend systems because most systems do not
provide an API for doing that out of the box. Furthermore
a scripted instantiation allows various adaptations to meet
the specific requirements of the eCopSoft architecture.

The clients on the presentation layer can connect to
eCopSoft via a web services API. Mediated through the
API queries for projects, developers, or artefacts are real-
isable. These queries can be qualified with additional cri-
teria or weighted. Therewith it is possible to query the
system for experts to a specific artefact or all artefacts that
a specific developer contributed to. In the first instance we
plan three main clients:

1. A web-based project home (cf. fig. 2, 3),
2. An Eclipse expert view plug-in and
3. An admin interface to administer the whole system.

Figure 1. Schematical architecture of eCopSoft

22 http:www.i-jet.org

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

Figure 2. Screenshot of the eCopSoft web frontend showing a Trac

environment for a project

Figure 3. Screenshot of the eCopSoft web frontend showing the inte-

grated webmail client for the project e-mail address

Large parts of the eCopSoft system base on the Java
platform7, which ensures reliability, portability and scal-
ability. Furthermore, when it comes to problem solving,
there are numerous existing Java libraries that provide
finished, tested and proven solutions to specific problems.
This reuse of existing frameworks accelerates the whole
development process a lot. To ensure future extensibility
and the integration of further connector modules, eCop-
Soft will be developed on an OSGi platform8.

IV. CONCLUSION AND OUTLOOK

This paper introduced the concept of a community-
embedded collaborative development environment
(CCDE) whose main functions are to combine classical
approaches from collaborative development environments
with the strengths of communities of interest. We pro-
vided requirements on functions of a community of devel-
opers as well as functional requirements for a technical
integration layer to enhance awareness and transparency
in social software engineering. With the help of a sophisti-
cated integration layer the transparency of the develop-
ment process can be increased as common events connect
the hitherto separated backend systems. Thereby connec-

7 http://java.sun.com/
8 http://www.osgi.org/About/Technology

tions between artefacts (e.g. wiki articles and Java classes)
manifests that have been hidden before. On the other hand
an integration layer increases the personal awareness by
connecting artefacts of a project directly with its contribu-
tors and thus allowing direct communication. With the
help of the automatically extended developer profile the
expertise and working fields of a developer become
clearer. The artefact awareness will be increased by pro-
viding related artefacts, additional metadata (semantic
information, classifications, used patterns…) and a lucid
overview of recent changes of artefacts. Furthermore the
integration layer will allow anonymously connecting to
developers from other project in order to get help from
them.

Although not being a classical mashup, the presented
CCDE approach connects data from various sources in a
way that developers and users of the community could
gain an advantage. In our opinion this advantage turns out
to be in the assistance of individual work and the steady
learning process by a more transparent process and en-
hanced awareness on various levels. Furthermore the pos-
sibility for a project spanning exchange of domain knowl-
edge and artefacts enhances the data exchange and the
collaboration within an organisation and thus fosters
learning and interrelation. The easier data exchange, the
higher awareness of the development process and contex-
tualised data and experts creates an increased satisfaction
with the whole development process and thus motivates
developers.

The presented prototype eCopSoft is currently under
development at the University of Paderborn and will be
evaluated in software development courses. Furthermore
we plan to run the CCDE as a campus-wide platform for
software engineering projects, allowing the exchange of
experience and data among multiple projects. The eCop-
Soft platform furthermore shall reduce the administrative
overhead of providing CDEs to numerous software pro-
jects by providing a one-click-deployment for new pro-
jects. The first evaluation results of eCopSoft will be part
of another publication.

REFERENCES
[1] N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nescic, “A survey of

social software engineering,” in 23rd IEEE/ACM International
Conference on Automated Software Engineering - Workshops, pp.
1–12, 2008.

[2] G. Booch, and A. W. Brown, “Collaborative development envi-
ronments,” in Advances in Computers, vol. 59, pp. 2–29, 2003.

[3] K. Beck, Extreme Programming Explained. Embrace Change.
Addison-Wesley, 1999.

[4] J. Cross, Informal Learning – Rediscovering the Pathways that
inspire innovation and performance. Pfeiffer, 2006.

[5] P. N. Robillard, “The role of knowledge management in software
development,” in Communications of the ACM, vol. 42, no. 1, pp.
87-94, 1999.

[6] W. Reinhardt, “Communication is the key – Support Durable
Knowledge Sharing in Software Engineering by Microblogging,”
in Proceedings of Conference on Software Engineering 2009,
Workshop Software Engineering within Social software Environ-
ments, 2009

[7] I. Nonaka et al., “Emergence of “Ba”,” in Knowledge Emergence,
2001.

[8] P. Schütt, „Kleine feine Unterschiede: Daten, Information und
Wissen,“ in Wissensmanagement 02/2009, pp. 10-12, 2009.

[9] A. Aurum, F. Daneshgar, J. Ward, “Investigating Knowledge
Management practices in software development organisations –

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 23

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

An Australian experience,” in Information and Software Technol-
ogy, vol. 50, pp. 511-533, 2008.

[10] M. Polyani, The Tacit Dimension. Routledge & Kegan Paul, Lon-
don, 1966.

[11] P. N. Robillard, and M. P. Robillard, Types of collaborative work
in software engineering. J. Syst. Softw., vol. 53, no. 3, pp. 219–
224, 2000. (doi:10.1016/S0164-1212(00)00013-3)

[12] A. Sarma, “A survey of collaborative tools in software develop-
ment,” Technical Report at University of Irvine, Institute for
Software Research, 2005.

[13] T. DeMarco, and T. Lister, Peopleware: productive projects and
teams. Dorset House Publishing, New York, 1987.

[14] C. Jones, Programming productivity. McGraw-Hill, New York,
1986.

[15] K. Knorr-Cetina, “Sociality with Objects: Social Relations in
Postsocial Knowledge Societies,” in Theory, Culture & Society,
vol. 14, no. 4, pp. 1-30, 1997 (doi:10.1177/026327697014004001)

[16] Wikipedia. Mashup (web application hybrid). (Revision as of
10:23, 27.05.2009). Available at
http://en.wikipedia.org/w/index.php?title=Mashup_(web_applicati
on_hybrid)&oldid=292635186

[17] J. Münch, and P. Liggesmyer (Eds.), Proceedings of the Software
Engineering 2009 conference, Workshops. Social Aspects in Soft-
ware Engineering, 2009.

[18] J. Herbsleb, and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” in
IEEE Transactions on Software Engineering, vol. 29, no. 6, pp.
481–494, June 2003.

AUTHORS

Wolfgang Reinhardt is Ph.D. student at the Computer
Science Education group at the University of Paderborn,
Germany (e-mail: wolle@upb.de).

Sascha Rinne is doing his graduate studies at the De-
partment of Computer Science at the University of Pader-
born (e-mail: rinnes@upb.de).

This work was supported in part by the MATURE project funded by the
EU under contract no. 216356 (http://mature-ip.eu).
This article was modified from a presentation at the International Confer-
ence of Interactive Computer Aided Learning ICL2009, September 2009
in Villach, Austria. Submitted 11 September 2009. Published as resub-
mitted by the authors on 17 January 2010.

24 http:www.i-jet.org

http://dx.doi.org/10.1016/S0164-1212%2800%2900013-3�
http://dx.doi.org/10.1177/026327697014004001�
http://en.wikipedia.org/w/index.php?title=Mashup_(web_application_hybrid)&oldid=292635186�
http://en.wikipedia.org/w/index.php?title=Mashup_(web_application_hybrid)&oldid=292635186�
http://mature-ip.eu/�

