
PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

An Experience of Educational Innovation for the
Collaborative Learning in Software Engineering

doi:10.3991/ijet.v6i2.1662

Juan C. Yelmo and Juan Fernández-Corugedo
Universidad Politécnica de Madrid, Madrid, Spain

Abstract—This paper describes the experience in collabora-
tive learning based educational innovation for the Software
Engineering Subject at the Telecommunications Engineer-
ing School of the Universidad Politécnica de Madrid. We
describe the context of evolution of the Software Engineer-
ing related subjects in the Master’s degree in Telecommuni-
cations Engineering (specialization in Telematics) for their
adaptation to the educational and organizational postulates
of the European Space for Higher Education. In this con-
text, we describe a pilot project for the adaptation of the
Software Engineering Lab course, which includes the devel-
opment and validation of a software engineering tool envi-
ronment and a web platform for collaborative work.

Index Terms—Collaborative Learning, Education Innova-
tion, European Space for Higher Education, Software Engi-
neering.

I. INTRODUCTION

This paper describes the experience in educational in-
novation around the collaborative learning of Software
Engineering related subjects at the Master’s degree in
Telecommunications Engineering (a five years academic
degree), specialization in Telematics (computer networks,
computer science and telecom services) at the Universidad
Politécnica de Madrid (UPM), Spain. The current Mas-
ter’s degree program is now evolving in the context of the
Bologna Declaration [1] convergence process into a new
Bachelor plus Master degree organization.

In this context, we describe a pilot project for the adap-
tation of the Software Engineering Lab subject according
to the educational and organizational postulates of the
European Space for Higher Education.

The Software Engineering Lab is a fifth year course that
follows an educational methodology based on collabora-
tive work, continuous evaluation, close monitoring of
students teams and instructional feedback. Students team
up in groups of three to five members where each member
is assigned a role and a shared responsibility in achieving
common goals. Each team is assigned a software devel-
opment case study, in general a distributed software appli-
cation or telecom service, which must be carried out along
a semester with the tutorship of a supervisor, the support
of a software engineering tool environment and a web
platform for project management and collaborative work.

The Lab follows a continuous evaluation systems based
on the evaluation and assessment of technical deliver-
ables, prototype demonstrations, oral presentations, work-
plan accomplishment, peer evaluation, etc. This evaluation
is made at team level, in order to foster team building and
team performance, but individual students are observed to
check student progress and learning gaps. The results of

the evaluation process are used to monitor the learning
process itself and to provide feedback to students. Finally,
the students also evaluate the learning process and Lab
organization and resources through questionnaires con-
ducted at University level.

The general process of evaluation and improvement of
the learning process and Lab organization and resources
was intensified in the course 2005-06, in which this sub-
ject was declared a pilot experience by the general pro-
gramme of the UPM for the implantation of new educa-
tional methodologies within the European Space for
Higher Education and the European Credit Transfer Sys-
tem (ECTS).

The pilot project for the adaptation of the Software En-
gineering Lab course included revision of goals, contents,
organisation, methodology, grading policy, effort measure
for students and teachers and lab environment and tools
supporting collaborative work. In this paper we describe
in detail the APIS application, a web-based tool for Soft-
ware Engineering Project Management developed at the
Department of Telematics to support iterative software
processes based on the Unified Software Development
Process Model (RUP) [2]. This tool was initially designed
as a front-end for the BSCW [3] collaborative environ-
ment supporting a lightweight version of the RUP. APIS
has been redesigned as a standalone web application sup-
porting remote collaboration in the definition and man-
agement of educational case studies in software develop-
ment. The focus of the new design was put on better edu-
cational support, usability, robustness and easy mainte-
nance and evolution.

The rest of this paper provides information on the aca-
demic context of the software engineering discipline
within the Telecommunications Engineering degree at
UPM and then goes into details about the organization and
educational methodology of the Software Engineering Lab
course and the goals and results of this pilot experience in
educational innovation. The paper finally focuses on the
tool environment supporting the learning process and in
particular APIS, as an example of application supporting
the collaborative learning in software engineering.

II. SOFTWARE ENGINEERING IN TELEMATICS

The Telecommunications Engineering degree at UPM
(actually, core modules, structure and number of semes-
ters for this degree are common to all universities in
Spain) is a five-year university programme where students
are given the option to choose specialization at the second
semester of the fourth year. The three available specializa-
tions are Electronics, Communications and Telematics
(Fig. 1).

26 http://www.i-jet.org

http://dx.doi.org/10.3991/ijet.v6i2.1662�

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

Figure 1. Structure of the degree program in Telecommunications

Engineering

In the case of Telematics, the first specific modules are
Communications Software and Software Engineering. In
the fifth year, Telematics student take as a mandatory
module the Communications Software Lab and can choose
between two focused concentrations: Communications
Networks and Services and Computer Science. In practice,
both sub-disciplines are partly open and share several
elective modules. One of the common modules is the
Software Engineering Lab, which is a mandatory module
for Computer Science students but elective for the rest of
students. Fig. 2 summarises graphically the structure of
the specialization in Telematics.

In summary, most of the learning process related to the
software engineering discipline takes place in the Software
Engineering and Software Engineering Lab modules,
within the specialisation in Telematics.

The Software Engineering module is an introductory
course providing a conceptual background in software
engineering that can be applied to any kind of computer-
based systems. The purpose of the course is providing the
students with the knowledge and abilities needed to un-
derstand and tackle the technical aspects of the discipline
as well as its economic, organizational and social facets.

The three main topics of this module are:
 The Software Development Process. A general

overview of software life cycle models and the dif-
ferent processes, techniques and tools involved in the
development of software systems, from the require-
ments elicitation to the software quality assurance.
The focus is put in processes and key areas as re-
flected in ISO 12207 [4] and SWEBOK [5].

 Object Orientation Techniques. A general method-
ology for the analysis and design of software systems
based on the object oriented approach, the Unified
Process Model and the Unified Modelling Language
[1].

 IT Project Management. An overview of software
project management concepts and techniques (esti-
mation, planning, risk management, etc.) as well as
economic aspects and human factors related to
teamwork in software development projects [6].

The syllabus for this module is completed with a num-
ber of invited talks on advanced topics in software engi-
neering and professional aspects given by renowned prac-
titioners with responsibility in industrial-strength software
development projects. As an example, some of the topics
treated in recent years have been: The ITIL1 standard for

1 http://www.itil-officialsite.com

Figure 2. Structure of the specialisation in Telematics

IT service management, core banking platform architec-
tures and innovation management and intellectual prop-
erty rights in software development projects.

The Software Engineering module has evolved in the
last years towards a learning process model based on
continuous evaluation and the combination of classroom
lectures, guided lab assignments and group work.

Regarding the Software Engineering Lab, its main goal
is to reinforce the learning process in software engineering
by providing skills and practical abilities related to tech-
niques, methodologies, industry standards, tools and nota-
tions widely used in the industrial development of soft-
ware systems.

In this module the application field gets more concrete,
focusing on telecommunication systems and information
society services.

Next section provides more details on the organization
and learning process of the Software Engineering Lab.

III. THE SOFTWARE ENGINEERING LAB

The Software Engineering Lab is a hands-on, project-
oriented course in which students tem up and freely organ-
ise to work in a case study either on-site at the Lab or
remotely through Internet. Case studies are intended to be
realistic and motivating information society services,
which must be analysed, and designed by the Lab teams.
This includes a proof-of-concept prototype and a final
demonstration. Nevertheless, the focus is not put on the
implementation of a product or service but rather on the
development methodology, thus limiting the implementa-
tion effort by providing the student with pre-existing ser-
vice components and telecom service emulators. Case
Studies must be developed using processes, tools and
techniques in common use in the software industry. In
particular, the Lab assignments are intended to emphasize
the learning of the following software engineering topics:
 Management and planning of software development

projects
 Collaborative coordination and team building
 Software configuration management
 Use of standards for modelling and documentation of

software systems
 Architectural design of telecom services
 Object-oriented design of software systems
 Use of tools supporting the different phases of the

software development process

iJET – Volume 6, Issue 2, June 2011 27

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

Students’ teams are formed by a group of four or five
members and share work and responsibility by assigning
each member a main role. Name and responsibilities for
each role depend on the process model chosen for the
development of the case study, but in general team mem-
bers play one of the following main roles:
 Project manager. Coordinates the team and has re-

sponsibility on project planning and monitoring. The
project manager is also responsible for representing
the team, negotiating restrictions and presenting re-
sults.

 Integrator. He/she is responsible for the configura-
tion management and integration of software mod-
ules and components.

 Analyst. Elicits and interprets system requirements,
formalize these requirements into analysis models
and elaborates the system specification.

 Designer. He/she is responsible for the elaboration of
a system design for the case study and develops a
plan for a solution in terms of software components.
Usually designers are also responsible for system im-
plementation.

Once the team is assigned a case study, they can pro-
ceed with the project by using the process model and the
set of techniques, notations, tools and standards proposed
by the supervisor.

Regarding the process model, we have used several life
cycle models in the past: waterfall model, unified model,
lightweight agile models, etc. but from the pilot project we
decided to adopt a lightweight iterative model tailored
from the Unified Process Model.

The students present their results and achievements
along the semester by a number of deliverables and public
presentations. These deliverables consist of technical and
management documents, analysis and design models,
source code, test cases and in general any intermediate or
final software artifacts that represent a relevant outcome
of the project. The time schedule for milestones and the
list of deliverables depends upon the concrete process
model and the project plan elaborated by the team at the
beginning of the semester.

Lab teams give one or two intermediate presentations
for supervisors and the rest of students in order to report
about project progress, justify design decisions and selec-
tion of tools and technologies and also to try to convince
the audience about the advantages and relevance of the
system under development and the adequacy of the im-
plementation approach. There is also a final presentation
at the end of the semester, which also includes a demon-
stration of the system or service developed. It is in general
a limited operational prototype implementing the main
uses cases of the system.

The Software Engineering Lab uses a continuous
evaluation approach for the learning process based on
submitted deliverables and presentations and the corre-
sponding instructional feedback. Feedback is important to
acknowledge students for their effort, provide reinforce-
ment for their accomplishments and explain the students
what they are doing that is correct or incorrect.

Students also participate in the evaluation process by
providing evaluation and feedback after the final presenta-
tion of the case studies (but for their own case study). For
this purpose they fulfil an evaluation form that provides

instructions on how to assess different aspects of the pres-
entation: goals, organisation, contents, communications
skills, use of multimedia resources, rhythm and duration,
interaction with audience, demonstration, etc.

IV. TOOL ENVIRONMENT SUPPORTING THE LEARNING

PROCESS

The Department of Telematics Engineering at UPM has
two lab areas that all together provide about 160 com-
puters that are available for lab classes and work assign-
ments. There are computers with different operating sys-
tems including Windows, Linux and Mac OS X and all of
them can be managed and restarted remotely, even reload-
ing a clean operating system image from the network after
failure o malicious manipulation. The operating system
image also includes a set of common tools for all the
courses of the department: office applications suite, e-
mail, web browser, etc.

The lab network has several general-purpose servers
supporting the learning process and the management and
operation of the lab itself: system administration, Web
server, Moodle server, access control, binaries server,
routers, etc. The access control server provides authenti-
cated remote access of students to the lab resources from
anywhere on the Internet (Web and Virtual Network
Computing). Actually, the remote access is the most
common way to access lab resources nowadays, since
most of the students have their own computer and wide-
band Internet access, allowing them to work on lab as-
signments at home while collaborating with other class-
mates participating in the same assignment.

Besides these common lab resources, each course in the
department can have its own virtualised server with spe-
cific tools, servers, execution environment, users man-
agement policy, etc. This is the case of the Software Engi-
neering Lab, which has its own server with specific tools
environment for the development and deployment of the
case studies and the specific collaboration tools supporting
the learning process. The specific development tools in the
server change quite frequently depending on the technol-
ogy evolution and the specific case studies proposed each
academic year. As an example, some of the tools and
components installed in the last term were the following:
 Development and execution environment: Java run-

time environment, Eclipse with specific plug-ins,
Subversion, Apache Tomcat, Axis, MySQL, PHP5,
etc.

 Telecom service components and emulators: SMS-
Center, MMS-Center, Position service (Ericsson
MPS), Web desktop for cloud computing services
(eyeOS), etc.

 Development toolkits for mobile terminals: Java ME,
Android, etc.

Educational licenses of commercial software engineer-
ing tools are also available, such as IBM RSA (UML
based development) and IBM Doors (Tool supporting the
requirements engineering process).

Finally, the Lab has specific information and collabora-
tion tools supporting the learning process: A Web site
with public information about the course and restricted
information and documentation for students and a Moodle
community as Learning Management System and remote
collaboration environment.

28 http://www.i-jet.org

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

As a result of the educational innovation pilot project
we have completed the tool environment with a new tool
developed at the Department. It is a web-based application
supporting the collaborative learning of the software engi-
neering discipline. This tool is described in detail in the
next section.

V. APIS, A TOOL SUPPORTING COLLABORATIVE

LEARNING IN SOFTWARE ENGINEERING

The Unified Process model is a software development
process model proposed initially by Rational Software
(company acquired by IBM in 2003). This is the same
company and team that elaborated the Unified Modeling
Language, a standardized modeling language for software
systems. The RUP is a risk-driven, iterative model that
proposes to organize projects in a number of mini-projects
(iterations) that incrementally complete and refine the
system under development until the final version is ready
for operation. Each of the mini-projects can be considered
on its own as a sequential development process, in which
progress is seen as flowing steadily downwards (i.e. a
waterfall life cycle model). The complete project is a
collection of mini-projects organized in the following four
phases:
 Inception: Business case, project feasibility, initial

project planning.
 Elaboration: Iterative requirement capture, imple-

mentation of main use cases, system architecture
 Construction: Incremental implementation of the

rest of the system
 Transition: System deployment in the operation en-

vironment, system validation, product release.

After the thorough review of the Software Engineering
Lab course in the context of the pilot project of educa-
tional innovation and Bologna convergence, we decided to
adopt a tailored, lightweight version of the Unified Proc-
ess Model for the Lab assignments. By lightweight we
mean that only the most relevant project artifacts for the
system modeling and documentation are elaborated and
submitted by project teams and, on the other hand, that
students only perform project activities in the Inception
and Elaboration phases with the following objectives:
getting a global view of system goals and requirements,
establishing technical and economic feasibility, elaborat-
ing a use case based requirement capture and developing
only a prototype implementing the main system use cases.
The only additional learning goals are related to project
management, software configuration management and
tool environment activities. This is consistent with the
educational nature of the Lab assignments, since case
studies are not intended for commercial release or real
exploitation. In this context, the milestone that, in the
case of a real project, corresponds to the end of the Elabo-
ration phase happens to coincide with the end of the aca-
demic project for the Lab teams and the final presentation
of project results. Usually students choose to carry out one
or two iterations in the Inception phase and two or three
iterations in the Elaboration phase. This implies between
three and five milestones and the corresponding deliver-
able submissions in a semester.

The Web-based collaborative tool developed in the De-
partment to manage RUP-based software development
process models is called APIS. APIS allows the definition

of projects, participants, roles, iterations, artifacts and
deliverables. APIS can be used by supervisors and Lab
teams to adapt the general-purpose RUP to the specific
needs of a particular case study, team organization and
workplan. Along the duration of the project, APIS can be
used to upload artifacts and internal documents and sub-
mit deliverables, i.e. a set of artifacts that constitutes a
submission commitment at a project milestone.

APIS also allows the remote collaborative work of team
members and the project monitoring by the supervisors. In
its initial implementation, APIS was designed as a front-
end of BSCW [3], a well known platform supporting
collaborative work supporting document management for
deliverables, instant messaging, calendar, notes, events,
etc. then APIS was successfully used by Lab student dur-
ing several courses and, in the academic year 2009-10, has
been redesigned in order to improve functionality and
performance and make it a stand-alone application that
can be used on its own, integrated with BSCW or with any
other collaborative work platform, in particular Moodle
[7].

Next subsections provide a more detailed description of
APIS functionality, architecture and implementation tech-
nologies.

A. Functional requirements

The main goal of the APIS application is providing the
users support in performing all the tasks and management
activities in a software development project according to
a particular software development methodology.

The specific support functionalities depend on the type
of user and the role that the user is playing in the context
of the project. Currently, APIS considers three types of
users:
 Student. This type of user includes all the students

registered for he Lab course. There are two access
profiles for the students in APIS: Lab Team, and
User. These users will use APIS to carry out all pro-
ject activities of the case study assigned to the Lab
team. The roles that user in a team can play in APIS
are those described above in section III.

 Professor. This type of user includes Lab professors
and, in general, academic staff. This kind of users
can access the application using two profiles: Super-
visor and Administrator. These users will access
APIS in order to monitor project progress and team
performance and also to carry out system administra-
tion tasks.

 Authorized personnel. This group includes all users
authorized by lab professors to perform system ad-
ministration tasks.

Fig. 3 gives an intuitive overview of the functional re-
quirements for APIS in the form of a UML Use Case
Diagram. This diagram depicts four actors that have been
identified from the user profiles for the different types of
users described above. The characteristics of the different
actors can be summarized as follows:
 Team. This actor represents the group of students

working on a case study. Through this actor, the stu-
dents in a team can create and configure a new pro-
ject and get status information for a existing project.

 User. This actor represents all the roles of partici-
pants in a software development project: project

iJET – Volume 6, Issue 2, June 2011 29

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

manager, integrator, analyst, designer, etc. Through
this actor students can perform project development
and management tasks.

 Supervisor. This actor represents the professor of the
course. Supervisors use the application to assign case
studies to teams and to monitor project progress.

 Administrator. This actor represents the users in
charge of system administration and monitoring
tasks.

Figures 4 and 5 show, as an example, two screen snap-
shots of the APIS graphical user interface for two different
actors.

B. Non-functional requierements
In this section we describe some additional require-

ments on APIS that are not functions intended to solve
users needs but rather technical constraints and quality
factors.

1) Security
Some primary requirements related to security have to

do with access control mechanisms (authentication and
authorization) and session management. In this sense, we
have implemented a role-based access control (RBAC)
scheme. This approach is based on the organization of the
users of the system in a hierarchy of roles and the map-
ping of systems functions to roles. This way each user can
perform an operation only if that operation is authorized
for the current, authenticated role of the user.

The authenticator manager of the application makes use
of the LDAP server of the UPM, which has a centralized
identity server for students and staff and enforces the
common policies for access control at University level.
This way APIS does not need to store passwords or cre-
dentials, making the application more secure and easy to
maintain and upgrade.

At the level of session management, requests in open
sessions are validated twice in order to check session
validity and to avoid session hijacking. Hijacking happens
when a malicious user steals the session identifier to gain
unauthorized access to the system.

2) Usability
Usability has to do with the ease of use and learnability

of a software system and thus it is of particular importance
for an application intended to support a learning process.

The design process of the APIS application has put spe-
cial care in the definition of user needs and the user inter-
action patterns needed by users to fulfill these needs: data
capture, navigation, document upload, presentation, etc.

APIS also provides general and contextual on-line help
to give assistance to the users as well as tutorials, aca-
demic materials, technical documents on software engi-
neering topics and document templates for project artifacts
and deliverables.

3) Maintainability
This quality factor has to do with the ease with which a

software system can be maintained in order to correct
defects, incorporate new functionalities or cope with a
changing environment.

This requirement is also very important in general and,
in particular, when the system is not developed by a soft-
ware company with a mature process framework and a
powerful development environment and quality assurance

process. This is the case for an academic development that
is carried out by students who leave the university after
finishing their studies and are replaced by new students
pursuing their MSc degree. The new students must be able
to understand and evolve systems that were initially de-
veloped by former students that are not available any
longer. In this context, the design of the APIS application
has put the focus on maintainability by providing techni-
cal documents detailing the system specification and de-
sign and documenting the source code as well as setting
up an automated software configuration management
system to keep control of system versions and change
requests.

Figure 3. Use cases diagram for APIS

Figure 4. APIS graphical user interface. Supervisor view

Figure 5. APIS graphical user interface. Team view

30 http://www.i-jet.org

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

C. Architecture and implementation technologies
APIs is a Web-based distributed software system with a

high level system design (architectural design) following
the so-called three-tier client-server architecture. This
means that the systems is structured in three independent
subsystems that may be deployed in several computing
nodes in a network.

These subsystems are the following:
 Presentation. Components in this subsystem imple-

ment the application interaction model with the user
and the presentation of output information for the
user. APIS uses a Web browser and other compo-
nents that allow the dynamic generation of web pages
and interactive web applications.

 Logic. This is the subsystem controlling the whole
application, i.e. the application logic.

 Data. This is the subsystem interfacing with the per-
sistent data store of the application (e.g. a database).

Apart from the usual advantages of modular software
with well-defined interfaces, the three-tier architecture is
intended to allow any of the three tiers to be upgraded or
replaced independently as requirements or technology
change.

The following list shows a summary of the technologies
used to implement the APIS application.
 Java platform (J2EE). Programming and execution

environment.
 Apache Struts. Framework for the development of

Java Web applications.
 Apache iBatis. Persistence framework which auto-

mates the mapping between SQL databases and im-
plementation objects

 Javascript and AJAX. Scripting languages for inter-
active Web applications.

 HTML y CSS. Data format and presentations style
sheets

 Apache Tomcat. Execution container for Java com-
ponents.

 MySQL. Relational database management system.

D. System testing
In order to confirm that the implemented functionality

meets specifications and that it fulfills its intended purpose
we have designed and executed a big number of test cases
on individual system components and on the system as a
whole. In this sense, we have carried out unit tests, inte-
gration tests, stress tests (simulating many concurrent
users interacting with the application) and system tests
(alpha and beta tests).

These tests provided a reasonable level of confidence
about the system fulfilling functional and non-functional
requirements and satisfying user needs and expectations.

VI. CONCLUSIONS

In this paper we have summarized our experience of
educational innovation around the software engineering
learning process in the MSc degree in Telecommunica-
tions Engineering at the Universidad Politécnica de Ma-
drid. In particular, we have described a project for the
adaptation of the Software Engineering Lab course to the
new educational and organizational guidelines coming

from the so-called Bologna convergence process in
Europe. In this context, we have described in detail the
purpose of the pilot project, the organization and educa-
tional methodology of the course, the tool environment
supporting the learning process and APIS, a Web-based
tool supporting the collaborative, project-based learning in
software engineering.

The experience has allowed us to revise and improve
the efficiency of the learning process in terms of course
organization, educational methodology, tool environment
supporting the process, students motivation and course
results, not only from the point of view of scores but in
terms of the acquisition of new knowledge, skills and
abilities.

This judgment is based on observation and assessment
of course results by the professors involved in the course
and also on the various evaluation questionnaires fulfilled
by course students. We set our own specific questionnaire
to evaluate specific items related to the educational inno-
vation pilot project and additionally another University-
wide general questionnaire is passed to students every
year at the end of each semester. This general evaluation
process has been redesigned in the 2009-10 academic year
to conform the general guidelines of the Spanish Agency
for Quality Assurance and Accreditation in Higher Educa-
tion (ANECA). The results of all the questionnaires have
been downright positives and encouraging.

Besides the evaluation of course results and students
satisfaction, we had a specific interest in measuring the
needed dedication (workload) of students to pass the
course in terms of quantified effort in ECTS. This resulted
in an estimation of around 3.7-4.4 ECTS for the course,
depending on the hours of study corresponding to one
ECTS (25-30). From these results, the equivalent effort
for the professors in the course is about 50-55 hours per
course.

We have quite a few remaining challenges ahead to
keep the course and discipline evolving in the right direc-
tion to meet the requirements of a changing and demand-
ing environment, but maybe the most important one is the
adaptation of the discipline in the context of the new struc-
ture for the Telecommunication Engineering degree in
terms of a Bachelor plus a Master degrees imposed by the
Spanish translation of the European directives regarding
the Bologna convergence process.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution
and dedication to this project of Mercedes Garijo and
Miguel Angel de Miguel, Software Engineering Lab pro-
fessors, who have shared their classrooms and ideas with
us over the years.

We would like also to acknowledge the debt we owe to
Pedro Clemente and Luis Mateos, former students and
authors of the fist version of APIS.

Last but not least, our thanks to the UPM’s vice chan-
cellorship for academic organization and strategic plan-
ning for their support and funding of this educational
innovation project.

REFERENCES
[1] Confederation of EU Rectors’ Conferences and the Association of

European Universities (CRE). The Bologna Declaration on the

iJET – Volume 6, Issue 2, June 2011 31

PAPER
AN EXPERIENCE OF EDUCATIONAL INNOVATION FOR THE COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING

European Space for Higher Education: an Explanation.
http://ec.europa.eu/education/policies/educ/bologna/bologna.pdf

[2] C. Larman, Applying UML and Patterns. An introduction to
Object-Oriented Analysis and Design and Iterative Development,
3ª edición, Upper Saddle River, NJ, USA: Prentice Hall PTR,
2004.

[3] W. Appelt. WWW based Collaboration with the BSCW System.
SOFSEM’99: Theory and Practice of Informatics. Lecture Notes
in Computer Science, 1999, Volume 1725/1999, 762,
doi:10.1007/3-540-47849-3_4.

[4] ISO/IEC 12207:2008 “Systems and software engineering – Soft-
ware life cycle processes,” ISO JTC 1/SC 7, Mar. 2008.

[5] A. Abran, J. W. Moore. Eds “Guide to the Software Engineering
Body of Knowledge (SWEBOK)” IEEE computer Society, Mar.
2004.

[6] J.T. Marchewka. Information Technology Project Management.
Providing Measureable Organizational Value. 3ª Edición. John
Wiley & Sons, 2009.

[7] R. Perez-Rodriguez, M. Caeiro-Rodriguez, L. Anido-Rifon.
Adding Process-driven collaboration support in Moodle. Frontiers
in Education Conference, 2009. FIE’09. 18-21 Oct. 2009.

AUTHORS

Juan C. Yelmo is with the Department of Telematics
Engineering at the Universidad Politécnica de Madrid,
Spain (e-mail: jcyelmo@ dit.upm.es).

Juan Fernández-Corugedo was with the Department
of Telematics Engineering at the Universidad Politécnica
de Madrid. He is now with Medianet Software, Madrid,
Spain. (e-mail: jfcorugedo@yahoo.com).

This article is an extended version of a paper presented at the IEEE
EDUCON20211 Conference, held from April 4th-6th, 2011, in Amman,
Jordan. This paper is the winner of the EDUCON2011 Best Paper
Award. Received, May, 3rd, 2011. Published as resubmitted by the
authors May 16th, 2011.

32 http://www.i-jet.org

http://ec.europa.eu/education/policies/educ/bologna/bologna.pdf�
http://dx.doi.org/10.1007/3-540-47849-3_4�

