
PAPER
A SURVEY OF ASSIGNMENTS IN UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

A Survey of Assignments in Undergraduate
Computer Architecture Courses

http://dx.doi.org/10.3991/ijet.v11i06.5776

Dimitris Kehagias
Technological Educational Institute (T.E.I.) of Athens, Athens, Greece

Abstract—Computer architecture is an essential topic in
undergraduate Computer Science (CS) curricula. Teaching
computer architecture courses to CS students can be chal-
lenging, as the concepts are on a high abstraction level and
not easy to grasp for students. Learning of computer archi-
tecture abstracts is strongly reinforced by hands-on assign-
ment experience. This paper presents results from a survey
of assignments from 40 undergraduate computer architec-
ture courses, which are offered in 40 CS departments. These
surveyed courses are selected from universities listed among
the 120 top North America universities by the Webometrics
Ranking of World Universities 2015. The information used
for this survey is based solely on material publicly accessible
on the websites of courses.

Index Terms—Assignments, Computer Architecture Cours-
es, Computer Science, Survey.

I. INTRODUCTION
Understanding the interaction of hardware with soft-

ware should be considered a minimum in knowledge for
any CS graduate. They should not conceive computer as a
black box that executes programs in a magic, automatic
way. To this end, computer architecture and organization
is an important area in undergraduate CS curricula. This
area is acknowledged as a substantial part of the body of
knowledge in computer science by IEEE Computer Socie-
ty and Association for Computing Machinery in their Joint
Task Force on Computing Curricula [1]. According to this
proposal the knowledge area of “architecture and organi-
zation” (AR) contains core and elective topics. The core
topics are: (a) digital logic and digital systems, (b) ma-
chine level representation of data, (c) assembly level ma-
chine organization, (d) memory system organization and
architecture, and (e) interfacing and communication, while
the elective topics are: (f) functional organization, (g)
multiprocessing and alternative architectures, and (h)
performance enhancements. The same proposal states that
“the core topics are intended to support programs that
elect to require only the minimum of computer architec-
ture of their students. For programs that want to teach
more than the minimum, the same AR topics can be treat-
ed at a more advanced level by implementing a two-
course sequence. For programs that want to cover the
elective topics, those topics can be introduced within a
two course sequence and/or be treated in a more compre-
hensive way in a third course” [1].

Regardless of the number of course sequence in com-
puter architecture offered in an undergraduate CS pro-
gram, the individual topics taught involve many abstract
concepts for a student and as research highlights in [2] the
difficulties encountered by students studying computer

architecture have been well recorded. Teaching computer
architecture courses to CS students can be inefficient if the
teaching methods focus only on the theoretical aspects [3,
4]. A major problem in teaching the courses is how to help
students make the reasoning that connects their theoretical
knowledge with practical experience [5, 6].

Learning of computer architecture abstracts is strongly
reinforced by hands-on assignment experience. In the
context of a computer architecture course, students gain an
in-depth understanding of the inner design and operation
of a modern microprocessor and trade-offs that are present
at the hardware/software interface, by applying classroom
knowledge in a series of assignments. These assignments
can be a combination of homework (paper and pencil
problem sets), and/or labs, and/or projects.

It is usually a challenge to teach a subject in an envi-
ronment where the covered topics are advancing very
rapidly. In such conditions, the instructors must be up to
date with the state of the art. At the same time, they should
continuously revise their lectures, problem sets, and lab-
project assignments to match the new development in the
covered topics. For example, in the new multicore and
many-core era many institutes and universities change
their curriculums of computer architecture courses and
hence the contents of the provided assignments. Should be
noted also that the level and the specific contents of topics
taught in computer architecture courses vary from institu-
tion to institution. Therefore, many approaches may exist
in the type and content of the assignments given in a com-
puter architecture course.

In the context of an undergraduate computer architec-
ture course introducing appropriate hands-on lab and pro-
ject assignments besides the lectures will make the course
more interesting and will provoke the students to dive
more deeply to learn that no magic is required to make a
computer work. Liang [7] performed a nice survey of
hands-on assignments and projects. Concerning practical
contents of hands-on assignments several simulators are
usually used. A good survey on simulators suitable for
teaching courses in computer architecture is presented by
Nikolic et al. [8].

In this paper, we present an overall and up-to date pic-
ture of various types of assignments in undergraduate
computer architecture courses, their categorization, as well
as programming languages, tools and platforms used in
these assignments. To this end, the author surveyed as-
signments collected from 40 undergraduate computer
architecture courses. These surveyed courses are selected
from 40 CS departments of universities listed among the
120 top North America universities by the Webometrics
Ranking of World Universities 2015 [9]. The information

68 http://www.i-jet.org

PAPER
A SURVEY OF ASSIGNMENTS IN UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

used for this survey is based solely on material publicly
accessible on the websites of courses.

The rest of the paper is organized as follows. In section
II we categorize the assignments based on their contents
and tools used. Section III presents the results for the
assignments surveyed. Section IV concludes the paper.

II. ASSIGNMENT CATEGORIZATION
Assignments included in computer architecture courses

can be categorized based on their contents and tools used.
With this context, the surveyed assignments fall within
four major categories: (a) problem sets, (b) assembly lan-
guage programming (c) computer architecture design &
test using HDL-based environments and (d) exploring
computer architecture topics using high level program-
ming & instrumentation tools. The last two major catego-
ries are divided into several subcategories as shown in
Table I. There are totally eight subcategories.

A. Problem sets
This category includes pencil and paper problems.

Homework is assigned throughout a semester and typical-
ly consists of problems that come from the textbook, with
other supplementary problems added. Rarely this type of
problems is given as preparation for the lab assignments.

B. Assembly language programming
The ISA (Instruction Set Architecture) abstraction layer

in computer systems is the critical interface between soft-
ware and hardware. Specific ISAs are used in any com-
puter architecture course to help students in learning the
fundamentals of computer architecture. Assembly lan-
guage programming is the best way to study an ISA. As-
signments that involve programming in assembly lan-
guage using a simulator are included in this category.
Usually the assembly language programming includes:
mapping of high-level language constructs into assembly
code, addressing modes and their relation to arrays, inte-
ger and floating point arithmetic, subprograms, parame-
ters, linkage to high level languages, interaction between
assembly language programs and system calls, interrupts
and I/O, and the assembly process.

C. Computer architecture design & test using HDL-
based environments

In the third category fall assignments whose implemen-
tation requires appropriate tools and platforms to enable
the students first to design specific computer system con-
figurations and then simulate and -in some cases- imple-
ment them. The majority of tools and platforms used are
HDL-based. HDLs (hardware description languages) are
programming languages used to describe a circuit behav-
iorally, structurally or both. Students use a HDL and an
associated simulator to design components of computer
systems and explore architectural concepts.
The first subcategory deals with basic digital logic design.
Although logic design usually taught in separate
standalone courses in CS curricula, many computer archi-
tecture courses include the basics of logic design, starting
with simple combinational circuits and building up to state
machines. The knowledge from this subcategory is the
basic foundation for students to understand better comput-
er architecture.

The second subcategory deals with building the
datapath and control of a single-cycle processor sufficient

TABLE I.
ASSIGNMENT CATEGORIZATION

Main categories Subcategories
I. Problem sets Pencil and paper problems

II. Assembly language
programming Coding in assembly language

III. Computer architecture
design & test using
HDL-based environ-
ments

1. Basic digital logic design and test
2. Single-cycle processor
3. Basic pipelined processor
4. Cache hierarchy

IV. Exploring computer
architecture topics us-
ing high level pro-
gramming & instru-
mentation tools

5. Pipelining
6. Caches
7. Branch predictors
8. Set-up/modify simulators

to implement an instruction set like MIPS, and with veri-
fying its correctness. In the third and fourth subcategories
appropriate environments are used in order for students to
experiment and understand the principles and complica-
tions of pipelines and caches respectively.

D. Exploring computer architecture topics using high
level programming & instrumentation tools

The fourth category contains assignments that address
specific topics, not necessary different from the topics that
the third category addresses, whose implementation re-
quires appropriate tools and frameworks that enable the
students to simulate, instrument and modify already creat-
ed systems as well as to setup various simulators and
evaluate their behavior. Students are provided various
implementations where they experiment on architectural
techniques such as branch predictors, caches, and pipelin-
ing, by writing their code in a high level language.

III. SURVEY RESULTS
The surveyed assignments were collected from 40 un-

dergraduate computer architecture courses from 40 CS
departments of universities listed among the 120 top
North America universities by the Webometrics Ranking
of World Universities 2015 [9]. Twenty one of the sur-
veyed courses were taught during the fall 2015 semester,
seventeen during the spring 2015 period and two during
the spring and fall 2014 semesters. Prerequisite for a
course to be surveyed was to have a detailed information
web page publicly accessible. A course was selected on
the basis of its description and whether or not the contents
of included assignments were available. For each selected
course we examined the contents of all assignments and
we placed it under the appropriate four categories and
eight subcategories, as shown in Table II. In addition, we
recorded programming languages, tools and platforms
used in these assignments as well as books suggested by
instructors.

Thirty two courses have a main textbook that is re-
quired together with other reference material, while 7
courses have an optional textbook. The textbook "Com-
puter Architecture: A Quantitative Approach" by John
Hennessy and David Patterson [10] was required by 7
courses while the textbook “Computer Organization and
Design: The Hardware/Software Interface” also by David
Patterson and John Hennessy [11] was required by 23
courses.

iJET ‒ Volume 11, Issue 6, 2016 69

PAPER
A SURVEY OF ASSIGNMENTS IN UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

A. Assignment distribution
For each one of the forty surveyed courses, Table II

shows the assignment distribution under the four catego-
ries and the eight subcategories presented in section II.
The column WT shows the weight percentage that as-
signments contribute to the final grade of students. For the
course 03 the weight is not given. As an example take
from Table II the course 05. It contributes 50% of the final
grade and has assignments in categories I, II, III and IV. In
the last two categories it has assignments in subcategories
1, 5, 7 and 8.

TABLE II.
ASSIGNMENT DISTRIBUTION

A/A WT
(%)

Assignment main categories & subcategories

I. II.
III. IV.

1 2 3 4 5 6 7 8
01 25 ! ! !
02 25 ! ! ! ! !
03 ! ! ! ! !
04 45 ! ! ! ! !
05 50 ! ! ! ! ! !
06 50 ! ! ! !
07 55 ! ! !
08 50 ! ! ! !
09 30 ! ! ! ! !
10 45 ! ! !
11 45 ! ! ! !
12 45 !
13 50 ! ! ! !
14 40 ! ! ! ! !
15 45 ! ! ! ! !
16 50 !
17 40 ! ! ! ! !
18 100 ! !
19 10 ! !
20 40 ! ! ! !
21 18 !
22 40 ! !
23 70 ! ! ! !
24 25 !
25 55 ! ! !
26 20 ! !
27 20 !
28 25 ! ! !
29 60 ! ! !
30 20 ! !
31 30 ! !
32 30 ! ! ! !
33 15 ! !
34 55 ! !
35 40 !
36 30 ! !
37 30 ! !
38 25 ! !
39 20 !
40 40 ! !

According to the assignment distribution for each
course as shown in Table II, the distribution of courses on
the 4 categories and the 8 subcategories are shown in Figs
1 and 2 respectively. As shown in Fig. 1, fourteen courses
have assignments in category IV, thirteen in category III,
eighteen in category II and thirty six in category I. As-
signments in the problem sets (category I) and the assem-
bly language programming (category II) are most popular.
Taking an example in Fig. 2 it can be seen that six courses
have assignments in subcategory three. Subcategories 1, 2
and 8 are most popular.

According to the assignment categorization for each
course as shown in Table II, the number of courses that
cover different numbers of subcategories and categories
are shown in Figs 3 and 4 respectively. From Fig. 3 it can
be noticed that eight courses have assignments in four
different subcategories, while there is no course having
assignments in more than four different subcategories. As
shown in Fig. 4 only one course has assignments in all
categories, while twenty courses have assignments in two
different categories.

Figure 1. Course distribution over the 4 categories

Figure 2. Course distribution over the 8 subcategories

Figure 3. Course distribution over subcategory coverage

70 http://www.i-jet.org

PAPER
A SURVEY OF ASSIGNMENTS IN UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

Figure 4. Course distribution over category coverage

B. Problem sets
Thirty six of the surveyed courses have assignments

with problem sets and 30 of them have additional assign-
ments in other categories or subcategories.

C. Assembly language programming
The assembly programming is centered on the MIPS

processor (ISA) [11], which is a well-known processor
(ISA) in the computer architecture academic community.
Besides MIPS processor there are other processors that are
targeted to the assembly programming such as LC-2K
(Little Computer 2000) and Y86.

The LC-2K is a small example computer and Instruc-
tion Set Architecture (an 8-register, 32-bit computer with
65536 words of memory) used at the university of Michi-
gan. Y86 is more RISK-like ISA based on x86 (IA-32)
with simpler instruction formats and addressing modes.

The functional simulators used for interpreting, execut-
ing, and debugging assembly programs are SPIM [12],
QtSPIM [12], and MARS [13]. SPIM is a self-contained
simulator that runs MIPS32 programs. QtSPIM, the new-
est version of SPIM, is an open-source simulator, written
in C++ and Qt that runs MIPS32 programs. MARS is an
Integrated Development Environment (IDE) that simulates
the execution of MIPS assembly programs.

D. Computer architecture design & test using HDL-
based environments

Verilog [14] HDL is used by the vast majority of the
surveyed courses to design and verify major components
of a computer architecture, while four courses use a
graphic way (Logisim [15]) for design and verification.
Twelve of the surveyed courses have their first assignment
dealing with the design of basic combinational circuits
and classic memory elements. There is one surveyed
course that uses Vivado FPGA design tool from Xilinx
[16] in its assignments. Vivado is a commercial software
suite for synthesis and analysis of HDL designs.

There are many HDL design and simulation tools used
in the surveyed courses. Icarus Verilog (iverilog) is an
open source Verilog simulation and synthesis tool for
compiling Verilog models into simulators [17]. It can be
used with open source GTKWave tool to simulate and
view waveforms [18]. Instead of using iverilog-
GTKWave tools, Modelsim [19] can be used as a multi-
language HDL simulation environment. Logisim is an
educational tool for designing and simulating digital logic
circuits [15]. Synopsys VCS (Verilog Compiler Simula-
tor) is a Verilog compilation tool and VirSim a graphical

user interface to VCS for debugging and viewing wave-
forms [20].

The processors selected to design and verify their cor-
rectness in the surveyed courses using HDL-based envi-
ronments are RISC-style processors such as MIPS. They
may also be educational processors that come with a
course. Such examples are processors for the PARCv2
ISA, the LC4 processor, PAW and the W450 processor.
The PARCv2 instruction set architecture [21] is a subset
of MIPS32, developed primarily for educational purposes.
LC4 processor implements every instruction on the LC4
ISA designed and used at the University of Pennsylvania.
At Princeton University students design, implement, and
test a microprocessor which executes the PAW in-
struction set. W450 processor has an ISA somewhere
between CISC and RISC used at the University of Water-
loo.

E. Exploring computer architecture topics using high
level programming & instrumentation tools

Ten of the surveyed courses include assignments con-
sisting of computer architecture foundations such as pipe-
lining, memory hierarchies and branch prediction that are
worked out by high level coding using C, C++, Java, or
Python and frameworks for the instrumentation of pro-
grams.

Students write simulators that are designed to display
the functionality of pipelined processors along with per-
formance statistics, or simulators for several cache archi-
tectures evaluating their performance. They also imple-
ment programs to simulate various branch predictors on a
number of branch traces from real benchmark programs.
The simulation infrastructure is built using a binary in-
strumentation tool called Pin [22]. It supports binary in-
strumentation of executables on all Intel platforms. Pin
contains various tools for use, a few of which are the data
cache, branch predictor simulators, and a tool to measure
instruction counts and to analyze the latency of load in-
structions.

Other educational simulation tools used in the surveyed
courses include Chisel and SSIM. Chisel is a simulation
environment from UC Berkeley [23]. It implements an
entire functioning processor (BOOM) where students run
experiments on it and analyze the design. SSIM is a simu-
lator that models the SEQ processor design, presented in
the textbook “Computer Systems: A Programmer's Per-
spective”, by Randal E. Bryant and David O'Hallaron.

Under this category the processors selected to imple-
ment in the surveyed courses are processors similar to
MIPS and x86 processors. They may also be an educa-
tional processor that comes with a course. Such examples
are the processors RISC-V Berkeley BOOM and LC-2K.
RISC-V Berkeley out-of-order Machine (BOOM), used in
UC Berkeley’s computer architecture and engineering
course, is heavily inspired by the MIPS R10k and the
Alpha 21264 out-of-order processors [24, 25].

IV. CONCLUSIONS
Computer architecture courses in undergraduate CS

curricula are usually accompanied by assignments so that
students can better obtain a practical understanding of the
topics lectured. This paper presents an overall and up-to
date picture of various types of assignments used in un-
dergraduate computer architecture courses at the top North

iJET ‒ Volume 11, Issue 6, 2016 71

PAPER
A SURVEY OF ASSIGNMENTS IN UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

America universities. This survey might help educators to
select and/or create assignments and tools for their com-
puter architecture courses.

REFERENCES
[1] IEEE/ACM, “The Joint Task Force on Computing Curricula of

Association for Computing Machinery (ACM) and IEEE Comput-
er Society”, Computer Science Curricula 2013 Final Report.

[2] N. Thomas, F. Carroll, R. Kop, and S. Stocking, “iBook learning
experience: the challenge of teaching computer architecture to first
year university students”, In Proceedings: WORLDCOMP’12- The
2012 World Congress in Computer Science, Computer Engineer-
ing, and Applied Computing, July 16-19, 2012, USA.

[3] A. Y. El!Din, and H. Krad, “Teaching computer architecture and
organization using simulation and FPGAs”, International Journal
of Information and Education Technology, Vol.1, No.3, 2011.

[4] A. Siddiqul, M. Khan, and S. Akhtar, “Supply chain simulator: A
scenario!based educational tool to enhance student learning”
Computers & Education, Vol.51, No.1, 2008, pp. 252!261.
http://dx.doi.org/10.1016/j.compedu.2007.05.008

[5] R. Cassells, “What The Data Says About Generation Y Australian
Chief Executive”, Melbourne, Australia: Committee for Economic
Development of Australia (CEDA), 2007.

[6] C. Yehezkel, W. Yurcik, M. Pearson, and D. Armstrong, “Three
simulator tools for teaching computer architecture: EasyCPU, Lit-
tle Man Computer, and RTLSim”, ACM Journal of Educational
Resources in Computing, Vol.1, No.4, 2001, pp. 60!80.
http://dx.doi.org/10.1145/514144.514732

[7] X. Liang, “A survey of hands-on assignments and projects in
undergraduate computer architecture courses”, In Advances in
Computer and Information Sciences and Engineering, T. Sobh,

Ed. Springer Netherlands, 2008, pp. 566–570.
http://dx.doi.org/10.1007/978-1-4020-8741-7_101

[8] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses
in computer architecture and organization”, IEEE Transactions on
Education, Vol.52 No.4, 2009, pp. 449–458.
http://dx.doi.org/10.1109/TE.2008.930097

[9] Webometrics Ranking of World Universities:
http://www.webometrics.info/en/Americas/North_America

[10] John L. Hennessy and David A. Patterson, Computer Architecture:
A Quantitative Approach, 5th edition, Morgan Kaufmann, 2012.

[11] David A. Patterson and John L. Hennessey, Computer Organiza-
tion & Design: The Hardware/Software Interface, 4th or 5th edi-
tion, Morgan Kaufmann, 2014.

[12] J. Larus, SPIM: A MIPS32 Simulator, http://spimsimulator.
sourceforge.net.

[13] D. K. Vollmar and D. P. Sanderson, MARS: An Education-
Oriented MIPS Assembly Language Simulator, March 2006,
http://courses.missouristate.edu/KenVollmar/mars/fp288-
vollmar.pdf

[14] Verilog, http://www.verilog.com/
[15] http://www.cburch.com/logisim/index.html
[16] http://www.xilinx.com/products/design-tools/vivado.html

AUTHOR
Dimitris Kehagias is with the Informatics Department,

Technological Educational Institute of Athens, Ag. Spiri-
dona, 12210, Athens, Greece (dkehayas@teiath.gr).

Submitted 19 April 2016. Published as resubmitted by the author 23
May 2016.

72 http://www.i-jet.org

