
Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

Debugging Tool to Learn Algorithms:
A Case Study Minimal Spanning Tree

https://doi.org/10.3991/ijet.v12i04.6442

Ahmed Y Khedr

Hail University, Hail, KSA.
Al-Azhar University, Cairo, Egypt.

a.khedr@uoh.edu.sa

Hazem M Bahig
Hail University, Hail, KSA.

Ain Shams University, Cairo, Egypt.
hazem.m.bahig@gmail.com

Abstract—This paper presents a visualization tool that works as a debugger
to learn the minimal spanning tree. The tool allows the user to enter the graph
as a matrix and then enable the user to visualize the execution of the algorithm
step by step. During the visualization, the tool can handle and debug the errors
that occurred by the user. Also, the tool gives the user feedback from the execu-
tion of the algorithm by storing the errors that occurred by the user. The teacher
and students can use the tool inside and outside the class. The tool was evaluat-
ed by the students, and the results show that the tool enhances the understand-
ing of algorithms.

Keywords—minimal spanning tree; education tool; visualizing tool; Kruskal’s
algorithm, Prim’s algorithm.

1 Introduction

Design and analysis of algorithm is one of the core courses to the students in com-
puter science. There are many issues in teaching algorithms need to illustrate in an
attractive way to improve understanding the algorithms. Visualizing algorithms is one
of the efficient methods used to achieve this goal. In visualizing algorithm, we use
text, graphics, animation, and interaction to simulate the execution of each step of the
algorithm.

Many different interactive systems have been designed to learn algorithms in an ef-
ficient way. One type of these systems is designed to teach and learn graph problems.
Stasko [1] proposed XTango visualized system that is based on the path-transition
animation paradigm. The animation system was designed as a general purpose to help
the programmers to deign real-time animations for the algorithms. The system in-
cludes two problems for graphs: minimal spanning tree and shortest path. The ANI-
MAL system [1] is based on three roles of users: developers, visualizer and end users.

90 http://www.i-jet.org

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

EVEGA [3] is designed for some graph problems. The system can create, edit, and
display graphs. The system includes a maximum!flow algorithm. In [3], the authors
present the design and implementation of a learning environment to the data struc-
tures and algorithms. The system includes B-tree and minimal spanning tree. GAIGS
[5] is an algorithm visualization system based on constructing a sequence of discrete
snapshots. Also by using the same strategy, another system was designed and called
R-Zoom [6], which stands for Row-splitting Zoom. Algorithm Explorer [7] is a Mi-
crosoft Windows platform system that supports three-dimensional graphics and audio
visualization. The GeoBuilder [8] is a Java platform that is based on Java. It has the
capability to develop code for multiple users at the same time. The proposed system
allows students to learn remotely without attending the classroom. PILOT [9] is a web
visualization tool for common graph algorithms. JAVENGA [10] is a visualization
system for graph and network algorithms. The system includes problems such as
shortest path and minimal spanning tree. The system can be used step by step or at
once. GraphTea [11] is an interactive tool for Graph Theory teaching courses. The
tool provides a gateway to add new functionalities written in Java and MATLAB. In
[12] a visualization program for graph algorithms that allows the user to construct a
graph, enter algorithms, and watch the step-by-step effect of the algorithm acting on
the graph. LAVES [13][13] is an open source used to help students for understanding
some algorithms such as Vogel’s approximation method and find an edge of mini-
mum weight that are applied to solve problems arising in operations research.

Recently, two visualization tools are proposed. In [14], a visualization tool to con-
struct four geometric spanners algorithms step by steps. In [15], a software tool was
proposed to learn Dijkstra’s algorithm and the graph dominant set using simple wire-
less network models.

In this paper, we propose a visualize software acts as debugging tool to learn and
teach the student for one of the fundamental problems in the graph which is the Min-
imal Spanning Tree, MST. The system has the ability to run the algorithm step by
step. During running the step of the algorithm by the student, the system has the abil-
ity to detect the error that done by the student. Also, the system can support the stu-
dent when an error occurred during execution. Moreover, the system stores all the
information of errors to give the student the feedback of this tracing.

The structure of the paper consists of an introduction and five sections. In Section
2, we present the definition of MST and its algorithms. We describe the details of the
system in Section 3. The description includes the different modes of the system, the
graphic user interface of the system, and the different layers of the system. The mech-
anism of debugging for the tool is given in Section 4. In Section 5, we evaluate the
system to prove that the goals of the system can be achieved. Finally, the conclusion
and future works appear in Section 6.

2 Problem Definition and its Algorithms

Given a connected undirected graph G=(V,E) such that |V|=n, a spanning tree of
that graph is a tree such that all the vertices are connected together. A minimum span-

iJET ‒ Vol. 12, No. 4, 2017 91

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

ning tree (MST) for undirected weighted graph G is a spanning tree, G!=(V,T), with
weight less than or equal to the weight of every other spanning tree. Figure 1 repre-
sents one of the MST for the graph G.

Fig. 1. Graph G and Its MST

MST is one of the fundamental problems in the graph that has many applications
such as (1) Design network: telephone, road, and computer. (2) Find an approxima-
tion solution for NP-hard problems: traveling salesperson problem, and Steiner tree.
(3) Find the solution of some problems by the indirect way such as maximum bottle-
neck paths and reducing data storage in sequencing amino acids in a protein.

There are many algorithms have been proposed to find MST [10][17][18][19][20].
Some of these algorithms are quite complicated or work in special cases such as dense
graphs and graph with integer weights [16][17][18]. The simple and classical algo-
rithms for MST are Kruskal and Prim algorithms [19][20]. Now, we describe the main
steps of Kruskal and Prim algorithms.

The Kruskal's algorithm consists of three main steps as follows.

1. Sort the set of edges, E, of G by the weight in increasing order.
2. Start the MST by forest (V,T) such that T=!.
3. Repeat the following until the number of edges in the tree is n-1.

(a) Select the current edge, e in E-T.
(b) If adding the edge e to T does not create a cycle then adds the edge e in T. Oth-

erwise, we discard the edge e.

The second algorithm is Prim’s algorithm and consists of the following steps.

1. Create two sets of vertices: X={1} and Y={2,3,…,n}.
2. While (Y "!) do

(a) Find an edge e=(x, y) of minimum weight such that x"X and y"Y
(b) Move y from Y to X.
(c) Add the edge (x,y) to T.

3 Description of the System

In this section, we describe our system according to (1) system modes, (2) graphics
user interface, and (3) components of the system.

92 http://www.i-jet.org

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

3.1 System Modes

The system can be used as two main different modes during the execution. The
first mode is using the system as a debugging system. The system debugs the errors
occurred by the students during tracing the algorithm step by step. The system has the
ability to (1) detect the error in the current step; (2) prevent the student to go the next
step before correct the current step; (3) help the student to make the tracing correct,
and (4) give the student many trials to trace the algorithm correctly. This mode of the
system is the main objective of the system.

The second mode is using the system as a learning system. The system used by the
teacher to learn the students during the class. This means that the system can be used
as an auxiliary teaching method. We also can use this system by the students to un-
derstand the algorithm outside the class.

3.2 Graphics User Interface

The Graphics User Interface, GUI, of the system is designed based on Windows
platform and we use C#.NET as a programming language to build the system. The
GUI consists of three main parts as shown in Figure 2. These parts are:

1. Algorithm part. It used to display the algorithm and some explanations about each
step of the algorithm. It consists of two sections. The first one is used to display the
pseudocode of the algorithm. This section appears in the left of the main window.
The second section is used to explain each step of the algorithm during the execu-
tion. This section appears below the pseudocode of the algorithm.

2. Input part. The part appears at the top of the middle of the window. It used to enter
the input data for a weighted graph. It consists of two sections. The first section is
used to enter the number of vertices of the graph G. The second section is used to
enter the input graph using the matrix representation.

3. Tracing part. The part appears in the middle of the window. It used to trace the
steps of the algorithm. In more details, this part is used to display the values of
each input, output, and auxiliary variables of the algorithm.

Also, the GUI contains many buttons appear in different parts of the main window.
These buttons are Ok, Next, and Report. The button Ok is used after the user enters
the input of the problem. The button Ok will be changed to Reset after the user enters
the data. This button is used to restart the execution of the algorithm. The button Next
is used to execute the next step of the algorithm by the system. The button Report is
used to display a report of errors during the execution of the algorithm.

3.3 Components of the System

The system consists of three main layers as follows. (1) User interface layer: It is
responsible for interaction between the user and various components of GUI. The user
may be teacher or student. The details of this layer in Section III.B (2) Debugging
layer: it is responsible for validating the correctness of the action of the user. If the

iJET ‒ Vol. 12, No. 4, 2017 93

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

action of the user is wrong, then the system will handle this error and the system pre-
vents the user to go to the next step. Otherwise, the system allows the user to trace the
next step if it exists. The details of this layer in Section 4. (3) Database layer: It is
responsible for storing all information about the error. We use a simple database con-
tains the identification number of the user (instructor/student) and all errors occurred
during the tracing as a text message.

Fig. 2. Main window after entering the input data.

4 Debugging Methodology

The main idea behind the debugging system is to check every action done by the
user to determine is this action correct or not. This leads to identifying all the ex-
pected errors that may be occurred during entering the input, executing the steps of
the algorithm, and the output result of the algorithm.

To illustrate how this part of the system works, we apply the main idea of debug-
ging methodology on Kruskal and Prim algorithms.

In Kruskal’s algorithm, we can determine all the expected errors that may occur by
the user during the tracing of the algorithm as follows.

For the input of the algorithm: (1) The number of vertices is not a positive integer
number. (2) The weight of edges is not a positive integer, except the symbol “-“ that
is used to indicate no edges between two vertices. For the output of the algorithm:
The set of edges for MST is not complete.

For the steps of the algorithm: (1) The set of edges is not sorted correctly. (2) The
weight of the selected edge is minimal. (3) The selected edge makes cycle.

For Prim’s algorithm, we can determine all the expected errors that may occur by
the user during the tracing of the algorithm as follows. For the input of the algorithm,
similar to Kruskal’s algorithm. For the output of the algorithm, the set of edges for
MST is not complete.

94 http://www.i-jet.org

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

For the steps of the algorithm: (1) the initial values for the two sets, X and Y, are
not correct. (2) The evaluation of the condition for while loop is not true. (3) The
selected edge (x,y) is not minimal. (4) The end points of the edge (x,y) do not satisfy
the condition x"X and y"Y. (5) The value of Y after updating is not correct.

Figure 3 shows how the mechanism of debugging works in the case of Kruskal’s
algorithm. Also, the figure illustrates how the different layers of the system interact.

Fig. 3. Flowchart of the interaction between layers of the system in case of Kruskal's algo-

rithm.

iJET ‒ Vol. 12, No. 4, 2017 95

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

Fig. 4. Window message to indicate an error during sorting the set of edges.

The system starts with entering the user the number of vertices n. By clicking on
Ok button (or enter), the system checks the correctness of n. If n is not correct, then
the system will display a message to indicate this type of error. Otherwise (n is greater
than 0) then the system will create a matrix, M, of dimension n x n to enter the
weighted graph by the user. The user enters the value of mij and the system checks the
correctness of this value. If the value of mij is not correct, the system will display a
message and then allow the user to enter a new value for mij again. After entering a
correct matrix for the input graph, the system creates a matrix of dimension 2 x |E|.
The first row, EDGES, is used to enter a correct ordering for the set of edges accord-
ing to the weight. The value of each cell in this row is a string of length 2 to represent
the start and the end of each edge. The second row, ACycle, is used to determine if
the edge makes a cycle or not. The value of each cell in this row is T (True) or F
(False). If an error occurred in a cell for the first or second row, then the system will
handle this error and a message will appears and then stored it in the database. The
system will allow the user to re-enter a correct value by using “Again” button or help
the user by entering a correct value in a valid position by using “Help” button.

In Figure 4, the user will execute the first step of the algorithm. In this step, the
user will enter the edges in increasing order according to the weights. If the user en-
tered incorrect data, the system would catch this error as shown in Figure 4. Figure 5
shows all edges of the graph in increasing order as in row “EDGES”. Also in Figure
5, the user will take a decision about each edge: is it make a cyclic or not. In the fig-
ure, the user makes an error for the edge “CE” and the system catches this error by
displaying a window message to indicate the decision of the user is wrong.

Remark: by the similar way we debug the Prim’s algorithm.

96 http://www.i-jet.org

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

Fig. 5. Window message to indicate an error occurred during selected edge.

5 Assessment of the System

In this section, we studied the effectiveness of using the proposed system on learn-
ing. We assess the system on a class consists of 22 students from Computer Science
and Software Engineering Department in the College of Computer Science and Engi-
neering, Hail University, KSA. Th

e evaluation of the system is based on designing a questionnaire that consists of ten
questions.

The questionnaire is designed according to Likert scale. In Likert scale, each ques-
tion was given a score from 1 to 5. The value of 1, 2, 3, 4, and 5 indicated strongly
rejected, rejected, neutral, accepted and strongly accepted respectively. The question-
naire consists of the following questions. (1) The system easy to use and the interface
of the system is user-friendly. (2) The system allows the user to enter different graphs.
(3) The system allows the user to trace the algorithm step by step with explanations.
(4) The system can detect all possible errors. (5) The system can handle the error that
occurred by the user. (6) The system allows the user to re-enter a correct answer if the
attempt is wrong. (7) The system saves all errors occurred by the users. (8) The sys-
tem saves the time by gave different examples in a short time. (9) The system can be
considered as a mechanism for self-learning. (10) The system helps and guides the
user to understand the MST algorithms.

The questionnaire was distributed after running the system in the class by the
teacher and asked the students to work on the system outside the class. Twenty stu-
dents are responded to fill the questionnaires from twenty-two students. The results
and analysis of distributed these questionnaires on the sample data are given in Figure
6. When we analyzed the results,, we found that the minimum value for the average
of “Accept” and “Strongly Accept” is 75%. Also, Table 1 shows the assessment re-
sults of Likert scale. The average results are in the “Accept” range. In general, the

iJET ‒ Vol. 12, No. 4, 2017 97

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

students accept the system as a tool to help, guide, and learn the students by an inter-
active way and short time. Moreover, handling the errors and displaying the report of
errors are a good way to give the students feedback on understanding the algorithms.

Fig. 6. Assessment results for ten questions

Table 1. Analysis of assessment results with Likert scale

Question Assessment
Results

Q1) The system easy to use and the interface of the system is user-friendly. 3.85
Q2) The system allows the user to enter different graphs. 4.3
Q3) The system allows the user to trace the algorithm step by step with explanations. 4.3
Q4) The system can detect all possible errors. 3.85
Q5) The system can handle the error that occurred by the user. 4.25
Q6) The system allows the user to re-enter a correct answer if the attempt is wrong. 4.8
Q7) The system saves all errors occurred by the users. 3.65
Q8) The system saves the time by gave different examples in a short time. 4.8
Q9) The system can be considered as a mechanism for self-learning. 4
Q10) The system helps and guides the user to understand the MST algorithms. 4.35

Mean 4.215

98 http://www.i-jet.org

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

6 Conclusion

In this paper, we addressed how to learn the MST algorithms by using a debugging
tool. The main objective of this tool is to debug the errors occurred by the students
while tracing the algorithm step by step. The system can detect the error in the current
step, prevent the student from going the next step before correcting the current step
and help the student to make the tracing correct. Also, the system used as a tool to
learn the students the MST. The system was evaluated by the students to measure the
effect of the system in the learning. The results show that the system is accepted by
the students as a learning tool for MST.

In the future, we extend the system to work on many different problems related to
graphs. Also, we can extend this system for greedy technique. Finally, we apply this
system on different platforms such as web and mobile.

7 Acknowledgment

This research was supported by Research Deanship, Hail University, KSA, on
grant R2-2013-CS- 10.

8 References

[1] J. Stasko, Animating algorithms with XTANGO, ACM SIGACT News, vol. 23, no. 2, pp.
67-71, spring 1992.

[2] G. Roddling and B. Freisleben, ANIMAL: A system for supporting multiple roles in algo-
rithm animation. J. of Visual Languages and Computing, vol. 13, no. 3, pp. 341 – 354,
June 2002. https://doi.org/10.1006/jvlc.2002.0239

[3] S. Khuri and K. Holzapfel, EVEGA: An educational visualization environment for graph
algorithms, ACM SIGCSE Bull vol. 33, no. 3, pp. 101-104, Sep. 2001.
https://doi.org/10.1145/507758.377497

[4] A. Korhonen, “Visual Algorithm Simulation”, Ph.D. dissertation, Dept. Comp. Sci. Eng.,
Helsinki Univ. of Technology, Espoo, Finland, 2003.

[5] T. Naps and B Swander, “An object-oriented approach to algorithm visualization—Easy,
extensible, and dynamic,” in Proc. of the 25th Tech. Symp. on Comput. Sci. Educ.,
SIGCSE, Phoenix, Arizona, USA, March 10-12, 1994, pp. 46-50. https://doi.org/10.1145/
191029.191052

[6] J. Urquiza-Fuentes and Á. Velázquez-Iturbide, “R-Zoom: A Visualization technique for
algorithm animation construction,” in Int. Conf. on Appl. Computing, IADIS, Algarve,
Portugal, Feb. 22-25, 2005, PP. 145-152.

[7] E. Carson et al., “Algorithm explorer: Visualizing algorithm in a 3D multimedia environ-
ment”, in Proc. 38th Tech. Symp. Comput. Sci. Educ., SIGCSE '07, Covington, Kentucky,
USA, 2007, pp.155-159. https://doi.org/10.1145/1227310.1227367

[8] J. Wei et al. GeoBuilder: A geometric algorithm visualization and debugging system for
2D and 3D geometric computing, IEEE Trans. Vis. Comput. Graph., vol. 15, no. 2, pp.
234-248, March-April 2009. https://doi.org/10.1109/TVCG.2008.93

iJET ‒ Vol. 12, No. 4, 2017 99

Paper—Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

[9] S. Bridgeman et al. “PILOT: An interactive tool for learning and grading,” in Proc. of the
thirty-first techn. Symp. on Comput, Sci. Educ., ACM SIGCSE, Austin, Texas, USA,
2000, pp. 139-143. https://doi.org/10.1145/330908.331843

[10] B. Thanasis, JAVENGA: Java-based visualization environment for network and graph al-
gorithms. J. Comput. Applicati. in Eng. Educ., vol 20,no. 2, pp. 255–268, 2012.

[11] M. A. Rostami et al. “Graphtea: Interactive graph self-teaching tool,” in Proc 2014 Int
Conf. Educ. and Educal. Technol., EET'14, Prague, Czech Republic, 2014, pp. 48–52.

[12] D. Pagels, “Graph algorithm visualization program,” in Proc. of the 48th Ann. Midwest In-
struction and Computing Symp., MICS, Grand Forks, North Dakota, USA, April 10-11,
2015, pp. 281-283.

[13] Dominik Kress and Jan Dornseifer, LAVES: An extensible visualization tool to facilitate
the process of learning and teaching algorithms, J. INFORMS Trans. Educ., vol. 15, no. 3,
pp. 201 –214, May 2015. https://doi.org/10.1287/ited.2015.0140

[14] M. Farshi and S. H. Hosseini, “Visualization of geometric spanner algorithms,” in 32nd Int.
Symp. on Computational Geometry, SoCG 2016, Boston, USA June 14-18, 2016, pp.
67:1–67:4.

[15] A. Dapena et al., A framework to learn graph theory using simple wireless network mod-
els. J. Comput. App. in Eng. Educ., vol 24, no. 6, pp. 843–852, Nov. 2016.

[16] Karger et al., A randomized linear-time algorithm to find minimum spanning trees, J.
ACM, vol. 42, no. 2, pp. 321-328, March 1995. https://doi.org/10.1145/201019.201022

[17] M. L. Fredman and D. E.Willard, "Trans-dichotomous algorithms for minimum spanning
trees and shortest paths", 31st IEEE Symp. Found. of Comp. Sci., pp. 719-725, 1990.
https://doi.org/10.1109/fscs.1990.89594

[18] Gabow et al. Efficient algorithms for finding minimum spanning trees in undirected and
directed graphs. Combinatorica, vol. 6, pp. 109-122, June 1986. https://doi.org/10.1007/
BF02579168

[19] A. Levitin, Introduction to the Design and Analysis of Algorithms. Pearson, 2012.
[20] T. Cormen et al. Stein. Introduction to Algorithms. MIT Press, 2009.

9 Authors

Ahmed Y. Khedr is an assistant professor in the Department of Systems and
Computer Engineering in Al-Azhar University, Cairo, Egypt. Ahmed is working now
in Computer Science and Engineering in Hail University, Hail, Saudi Arabia. Ahmed
was funded by the Egyptian government to visit SMU at USA and conduct research in
Mobile Computing with the PDA Mobile research group. Ahmed's research area is
focused on wireless sensor networks, data mining, and e-learning algorithms.

Hazem M Bahig received the B.Sc. degree in Pure Mathematics and Computer
Science from Ain Shams University, Faculty of Science in 1990. He also received
M.Sc. and Ph. D. degrees in Computer Science in 1997 and 2003 respectively from
the same university. Also, he is currently worked in College of Computer Science and
Engineering, Hail University, KSA. His current research interests include high per-
formance computing, algorithm, bioinformatics and e-learning systems for algo-
rithms.

Article submitted 27 November 2016. Published as resubmitted by the authors 23 January 2017.

100 http://www.i-jet.org

	iJET – Vol. 12, No. 04, 2017
	Debugging Tool to Learn Algorithms: A Case Study Minimal Spanning Tree

