
SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL 

Schema Design and Normalization Algorithm 
for XML Databases Model 

doi:10.3991/ijet.v4i2.768 

Hosam F. El-Sofany1, and Samir A. El-Seoud2 

1Department of Computer Science and Engineering, College of Engineering, Qatar University 
2Computer Science Department, Princess Sumaya University for Technology 

 
 
 

Abstract—In this paper we study the problem of schema 
design and normalization in XML databases model. We 
show that, like relational databases, XML documents may 
contain redundant information, and this redundancy may 
cause update anomalies. Furthermore, such problems are 
caused by certain functional dependencies among paths in 
the document. Based on our research works, in which we 
presented the functional dependencies and normal forms of 
XML Schema, we present the decomposition algorithm for 
converting any XML Schema into normalized one, that 
satisfies X-BCNF. 

Index Terms—XML Databases Design, Functional 
Dependencies, Normal Forms, Normalization, Algorithms 

I. INTRODUCTION 

The eXtensible Markup Language (XML) has recently 
emerged as a standard for data representation and 
interchange on the Internet [1]. Although many XML 
documents are views of relational data, the number of 
applications using native XML documents is increasing 
rapidly. Such applications may use native XML storage 
facilities [2], and update XML data [3]. Updates, like in 
relational databases, may cause anomalies if data is 
redundant. In the relational world, anomalies are avoided 
by developing a well-designed database schema. XML has 
its version of schema too; such as DTD (Document Type 
Definition), and XML Schema [4]. Our goal is to find the 
principles for good XML Schema design. We believe that 
it is important to do this research now, as a lot of data is 
being put on the web. Once massive web databases are 
created, it is very hard to change their organization; thus, 
there is a risk of having large amounts of widely 
accessible, but at the same time poorly organized data.  

Normalization is a process which eliminates 
redundancy, organizes data efficiently and improves data 
consistency. Whereas normalization in the relational 
world has been quite explored, it is a new research area in 
native XML databases. Even though native XML 
databases mainly work with document-centric XML 
documents, and the structure of several XML document 
might differ from one to another, there is room for 
redundant information. This redundancy in data may 
impact on document updates, efficiency of queries, etc. 
Figure 1, shows an overview of the XML normalization 
algorithms that we propose [10-12].  

This paper focus on the normal form theory. This 
theory concerns the old question of well-designed 
databases or in other words the syntactic characterization 
of semantically desirable properties. These properties are 

tightly connected with dependencies such as keys, 
functional dependencies, weak functional dependencies, 
equality generating dependencies, multi-valued 
dependencies, inclusion dependencies, join dependencies, 
etc. All these classes of dependencies have been deeply 
investigated in the context of the relational data model [5-
8]. The work now requires its generalization to XML 
(trees like) model.  

Our goal is to apply the concepts of relational database 
normalization to XML Schema design. We show how to 
transfer an XML Schema X, that based on a set of 
functional dependencies F, into a new specification (X', 
F') that is in XML normal form (X-BCNF) and contains 
the same information. 

 
Figure 1.  An overview of the XML normalization algorithms 

II. MOTIVATING EXAMPLE 
In this section, through an example, we show that, like 

relational databases, XML documents may contain 
redundant information, and this redundancy may cause 
update anomalies. 

Example 1: Consider the following XML Schema that 
describes a part of a "university" database. For every 
course, we store its number (cno), its title and the list of 
students taking the course. For each student taking a 
course, we store the student number (sno), name, and the 
grade in the course.  

An example of an XML document (tree) that conforms 
to this XML Schema is shown in Figure 2 [9]. This 
document satisfies the following constraint:  
"any two student elements with the same sno value must 
have the same name". 

iJET – Volume 4, Issue 2, June 2009 11

http://dx.doi.org/10.3991/ijet.v4i2.768�


SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL 

 

 
Figure 2.  A document containing redundant information 

This constraint (which looks like a FD), causes the 
document to store redundant information: for example, the 
name Deere for student st1 is stored twice, as in relational 
databases, such redundancies can lead to update 
anomalies: for example, updating the name of st1 for only 
one course results in an inconsistent document, and 
removing the student from a course may result in 
removing that student from the document altogether. 

In order to eliminate redundant information, we use a 
technique similar to the relational one, and split the 
information about the name and the grade. Since we deal 
with just one XML document, we must do it by creating 
an extra element of complexType, called  info, for student 
information, as shown in the figure below. 

Each info element has (as children) one name and a 
sequence of number elements, with sno as an attribute. 
Different students can have the same name, and we group 
all student numbers sno for each name under the same 
info element. A restructured document that conforms to 
this XML Schema is shown in Figure 3 [9]. Note that st2 

and st3 are put together because both students have the 
same name.  

This example remembers us with the bad relational 
design caused by nonkey FDs, and how the database 
designer solve this problem by modifying the schema. 

 

 
Figure 3.  A well-designed document 

III. PRIMARILY DEFINITIONS  
To extend the notions of FDs to the XML model, we 

represent XML trees as sets of tuples [9], and find the 
correspondence between documents and relations that 
leads to the definition of functional dependency. 

We first describe the formal definitions of XML 
Schema (XSchema) and the conforming of XML tree to 
XSchema. The definition of XSchema is based on regular 
tree grammar theory that introduced in [14]. Assume that 
we have the following disjoint sets: 

- Ê: set of element names, 
- Â:  set of attribute names, 
- DΤ: set of atomic data types (e.g., ID, IDREF,    

IDREFS, string, integer, date, etc). 
- Str: set of possible values of string-valued attributes 
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- Vert: set of node identifiers 
All attribute names start with the symbol @. The symbols 
φ and S represent element type declarations EMPTY (null) 
and #PCDATA, respectively. 
 
Definition 1 (XSchema): An XSchema is denoted by 6-
tuple:  X = (E, A, M, P,  r, ∑), where: 

• E ⊆  Ê,  is a finite set of element names.  

• A ⊆  Â, is a  finite set of attribute names. 
• M is a function from E to its element type definitions: 

i.e., M(e) = α, where e∈ E, and α is a regular 
expression: α ::= ε | t | α + α | α, α | α* | α? | α+  

     where ε denotes the empty element, t ∈  DΤ, "+" for   
     the union, "," for the  concatenation,  α* for the  
      Kleene closure, α? for (α + ε) and α+ for (α, α*) 
• P is a function from an attribute name a to its 

attribute type definition:  i.e., P(a) = β, where β is a 
4-tuple (t, n, d, f), where: 

- t ∈  DΤ, 
- n is either "?" (nullable) or "¬?" (not nullable), 
- d is a finite set of valid domain values of a or ε if 

not known, and  
- f  is a default value of a or ε if not known.  

• r  ⊆   E is a finite set of root elements, 

• ∑ is a finite set of integrity constraints for XML 
model. The integrity constraints we consider are keys 
(P.K, F.K,…), and dependencies (functional, and  
inclusion). 

 
Definition 2 (Path in XSchema): Given an XSchema  X 
= (E, A, M, P, r, ∑), a string  p = p1 …pn, is a path in X if, 

p1 = r, pi is in the alphabet of M(pi −1), for each i ∈  [2, n 
− 1], and pn is in the alphabet of M(pn−1) or pn = @l for 
some @l ∈  P(pn−1).  
 We define length(p) as n and last(p) as pn. 
 We let paths(X) stand for the set of all paths in X, and 

EPaths(X) for the set of all paths that ends with an 
element type (rather than an attribute or S), that is: 
EPaths(X) = { p ∈  paths(X) | last(p) ∈  E }. 

 An XSchema is called recursive if paths(X) is infinite. 
 
Definition 3 (XML Tree): An XML tree T is defined to be 
a tree, T = (V, lab, ele, att, root) 
Where: 
• V ⊆  Vert is a finite set of vertices (nodes). 
• lab : V → Ê. 
• ele : V → Str ∪  V* 

• att is a partial function V × Â → Str. For each v ∈  V, 

the set {@l ∈ Â | att(v, @l) is defined} is required to 
be finite. 

• root ∈  V is called the root of T. 

The parent-child edge relation on V, {(v1, v2) | v2 occurs 
in ele(v1)}, is required to form a rooted tree. Note that, the 
children of an element node can be either zero or more 
element nodes or one string. 
 
Definition 4 (Path in XML Tree): Given an XML tree T, 
a string: p1…pn with p1 ,…, pn-1∈ Ê and pn∈ Ê ∪ Â∪ {S} 

is a path in T if there are vertices v1 … vn−1∈ V  s.t.  
• v1 = root, vi+1 is a child of vi (1 ≤ i ≤ n − 2), lab(vi) = pi 

(1 ≤ i ≤ n − 1). 
• If pn ∈  Ê, then there is a child vn of vn−1 s.t. lab(vn) = 

pn. If pn = @l, with @l∈ Â, then att(vn−1, @l) is 
defined. If pn=S, then vn−1 has a child in Str.  

• We let paths(T) stand for the set of paths in T. 
 

Now, we give a definition of a tree conforming to the 
XSchema (T╞  X), and a  tree compatible with X (T ⊲ X). 
 

Definition 5: Given an XSchema  X = (E, A, M, P, r, ∑) 
and an XML tree T = (V, lab, ele, att, root), we say that T 
is valid w.r.t.  X (or T  conforms to X) written as (T╞  X ) 
if,  
• lab: V →  E. 
• For each v ∈  V, if M(lab(v)) = S, then ele(v) = [s], 

where s ∈  Str. Otherwise, ele(v) = [v1, … , vn], and the 
string lab(v1) … lab(vn) must be in the regular 
language defined by M(lab(v)). 

• att is a partial function, att: V × A → Str, s.t. for any v 
∈  V and @l ∈  A, att(v, @l) is defined iff @l ∈  
P(lab(v)). 

• lab(root) = r. 
• We say that T is compatible with X (written T ⊲ X) iff  

paths(T) ⊆  paths(X).  

• Clearly, T╞  X ⇒  T ⊲ X. 
 
Definition 6: Given two XML trees T1 = (V1, lab1, ele1, 
att1, root1) and T2 = (V2, lab2, ele2, att2, root2), we say that 
T1 is subsumed by T2, written as T1 ≤ T2 if : 

• V1 ⊆  V2. 
• root1 =  root2. 
• lab2|V1 = lab1. 
• att2|V1×Â  = att1. 
• ∀ v ∈  V1, ele1(v) is a sub-list of a permutation of 

ele2(v). 
 

Definition 7: Given two XML trees T1 and T2, we say 
that T1 is equivalent to T2  written  T1 ≡ T2, iff T1 ≤ T2 and 
T2 ≤ T1 (i.e., T1 ≡ T2  iff T1 and T2 are equal as unordered 
trees). 

• We define [T] to be the ≡-equivalence class of T. 
• We write:  [T]╞  X  if Ti╞  X for some Ti ∈  [T]. 
• It is easy to see that for any T1 ≡ T2,  paths(T1) = 

paths(T2), hence,  
• T1 ⊲ X  iff  T2 ⊲ X. 
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• We shall also write T1 < T2  when  T1 ≤ T2 and T2   
T1. 

 

In the following definition, we extend the notion of tuple 
for relational databases to the XML model. In a relational 
database, a tuple is a function that assigns to each 
attribute a value from the corresponding domain. In our 
setting, a tree tuple t in a XML Schema X is a function 
that assigns to each path in X a value in Vert∪ Str∪ {φ} 
in such a way that t represents a finite tree with paths 
from X containing at most one occurrence of each path. In 
this section, we show that an XML tree can be 
represented as a set of tree tuples.  
 

Definition 8 (Tree tuples): Given XML Schema  X = (E, 
A, M, P, r, ∑), a tree tuple  t ∈  X  is a function,  

t : paths(X) → Vert∪ Str∪ {φ} such that 

 For  p∈ EPaths(X), t(p)∈ Vert∪ {φ}, and  t(r) ≠ φ  

 For  p ∈  paths(X) − EPaths(X),  t(p) ∈  Str∪ {φ} 

 If  t(p1) = t(p2) and  t(p1) ∈  Vert, then  p1 = p2 
 If  t(p1) =  φ and p1 is a prefix of  p2, then t(p2) = φ 
 { p ∈  paths(X) | t(p) ≠ φ } is finite 

T(X) is defined to be the set of all tree tuples in X. For a 
tree tuple t and a path p, we write t.p for t(p). 
 

Example 2: Suppose that X is the XML Schema shown in 
example 1. Then a tree tuple in X assigns values to each 
path in paths(X) such as: 
 
t(courses) = v0 
t(courses.course) = v1 
t(courses.course.@cno) = csc200 
t(courses.course.title) = v2 
t(courses.course.title.S) = Automata Theory 
t(courses.course.taken_by) = v3 
t(courses.course.taken_by.student) = v4 
t(courses.course.taken_by.student.@sno) = st1 
t(courses.course.taken_by.student.name) = v5 
t(courses.course.taken_by.student.name.S) = Deere 
t(courses.course.taken_by.student.grade) = v6 
t(courses.course.taken_by.student.grade.S) = A+ 
 
Definition 9 (treeX): Given XML Schema X = (E, A, M, 
P, r, ∑) and a tree tuple t ∈  T(X), treeX(t) is defined to be 
an XML tree (V, lab, ele, att, root), where: 
 root = t.r  
 V = {v ∈  Vert |  ∃  p ∈  paths(X) such that v = t.p} 

 If  v = t.p and v ∈  V, then lab(v) = last(p) 

 If v = t.p and v ∈  V, then ele(v) is defined to be the list 
containing  

 {t.p' | t.p' ≠ φ  and  p' = p.τ,  τ ∈ E,  or  p' = p.S, 
ordered lexicographically 

 If v = t.p, @l ∈  A and t.p.@l ≠ φ , then att(v, @l ) = 
t.p.@l 

 
Example 3: Let X be the XML Schema from example 1 
and t the tree tuple from Example 2. Then, t gives rise to 
the following XML tree: 
 

 
 
Proposition 1. If  t ∈  T (X),  then treeX(t) ⊲ X. □ 
 

We would like to describe XML trees in terms of the 
tuples they contain. For this, we need to select tuples 
containing the maximal amount of information. This is 
done via the usual notion of ordering on tuples (relations). 

• If we have two tree tuples t1, t2, we write t1⊆  t2 if 
whenever t1.p is defined, then t2.p is also defined, and 
t1.p ≠ φ  ⇒  t1.p = t2.p.  

• As usual, t1⊂  t2 means t1⊆  t2 and t1 ≠ t2. 

• Given two sets of tree tuples, Y and Z, we write: Y ⊆ b 

Z,  if: ∀ t1 ∈  Y  ∃  t2 ∈  Z  s.t.   t1⊆  t2. 
  
Definition 10 (tuplesX): Given XML Schema X and an 
XML tree T such that T ⊲ X, tuplesX(T) is defined to be 
the set of maximal tree tuples t (with respect to ⊆ ), s.t. 
treeX(t) is subsumed by T,  that is: 
max⊆ { t ∈ T (X) | treeX(t) ≤ T } 
 

Note that: 
• T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2). 
• Hence, tuplesX applies to equivalence classes: 

tuplesX([T]) = tuplesX(T). 
• The following proposition lists some simple properties 

of tuplesX(·) 
 
Proposition 2. If T ⊲ X, then tuplesX(T) is a finite subset 
of T(X). Furthermore, tuplesX(·) is monotone: T1 ≤ T2 
implies tuplesX(T1) ⊆ b tuplesX(T2). 
Proof. We prove only monotonicity. Suppose that T1 ≤ T2 
and t1 ∈  tuplesX(T1). We have to prove that ∃ t2 ∈  

tuplesX(T2) such that t1 ⊆  t2. If t1 ∈  tuplesX(T2), this is 

obvious, so assume that t1 ∉  tuplesX(T2). Given that t1 ∈  
tuplesX(T1), treeX(t1) ≤ T1, and therefore, treeX(t1) ≤ T2. 
Hence, by definition of tuplesX(·), there exists t2∈  

tuplesX(T2) such that t1 ⊂  t2, since t1∉  tuplesX(T2). □ 
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Example 4: In example 1, we saw the XML Schema X 
and a tree T conforming to X. In example 2, we saw one 
tree tuple t for that tree, with identifiers assigned to some 
of the element nodes of T. If we assign identifiers to the 
rest of the nodes, we can compute the set tuplesX(T). 
 

{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+), 
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-), 
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A), 
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+)}. 
 
Finally, we define the trees represented by a set of tuples 
Y as the minimal, with respect to ≤, trees containing all 
tuples in Y. 
 
Definition 11 (treesX): Given XML Schema X and a set 
of tree tuples Y ⊆ T (X), treesX(Y) is defined to be:   

min≤{ T | T  ⊲ X  and ∀  t ∈  Y, treeX(t) ≤ T }. 
 

Notice that, if T ∈  treesX(Y) and T ' ≡ T, then T ' is in 
treesX(Y). The following shows that every XML 
document can be represented as a set of tree tuples, if we 
consider it as an unordered tree. That is, a tree T can be 
reconstructed from tuplesX(T), up to equivalence ≡. 
 
Theorem 1. Given XML Schema X and an XML tree T, if 
T ⊲ X, then  trees(tuplesX([T])) = [T]. 
Proof: Every XML tree is finite, and, therefore, 
tuplesX([T]) = {t1, …, tn}, for some n. Suppose that T ∉  
treesX({t1, . . . , tn}). Given that treeX(ti) ≤ T, for each i ∈  
[1, n], there is an XML tree T ' s.t. T ' ≤ T and treeX(ti) ≤ T 

', for each i ∈  [1, n]. If  T ' < T, then there is at least one 
node, string or attribute value contained in T which is not 
contained in T '. This value must be contained in some 
tree tuple tj (j ∈  [1, n]), which contradicts treeX(tj) ≤ T'. 

Therefore, T ∈  treesX(tuplesX([T])).  

Let T' ∈  treesX(tuplesX([T])). For each i ∈ [1, n], treeX(ti) 
≤ T '. Thus, given that,  tuplesX(T) = {t1, …, tn}, we 
conclude that T ≤ T ', and, therefore, by definition of 
treesX,  T ' ≡ T. □ 
 
Example 5: It could be the case that for some set of tree 
tuples Y there is no an XML tree T such that for every t 
∈  Y , tree(t) ≤ T. For example, let X be XML Schema,  X 
= (E, A, M, P, r, ∑), where E = {r, a, b}, A = φ, M(r) = 
(a|b), M(a) = ε  and M(b) = ε. Let t1, t2 ∈  T (X) be defined 
as: 

t1.r     =  v0   t2.r    =  v2 
t1.r.a  =  v1   t2.r.a  =  φ 
t1.r.b   =  φ    t2.r.b   =  v3 

 
Since t1.r ≠ t2.r, there is no an XML tree T such that,  
treeX(t1) ≤  T  and  treeX(t2) ≤ T. 
 
• We say that Y ⊆  T (X) is X-compatible if there is an 

XML tree T:  T ⊲ X and Y ⊆  tuplesX(T). 

• For X-compatible set of tree tuples Y, there is always 
an XML tree T: for every t ∈ Y,  treeX(t) ≤ T. 

 
Proposition 3. If  Y ⊆  T (X) is X-compatible, then: 
  (a) There is an XML tree T such that T ⊲ X  and   
           treesX(Y) = [T], and  
  (b) Y ⊆ b  tuplesX(treesX(Y)).  
Proof: 
(a) Suppose that X = (E, A, M, P, r, ∑). Since Y is X-

compatible, ∃  an XML tree T' = (V', lab', ele', att', 

root') s.t. T ' ⊲ X and Y ⊆  tuplesX(T '). We use T' to 
define an XML tree T = (V, lab, ele, att, root)  s.t. 
treesX(Y) = [T].  
For each v ∈  V', if there is t ∈  Y and p ∈  paths(X) 
s.t. t.p = v, then v is included in V. Furthermore, for 
each v ∈  V, lab(v) is defined as lab'(v), ele(v) = [s1, 
. . . , sn], where each si = t'.p.S  or  si = t'.p.τ  for 
some  t' ∈  Y and τ ∈  E  s.t., t'.p = v. For each @l∈  

A s.t.,  t'.p.@l ≠ φ and  t'.p = v  for some t' ∈  Y,  
att(v, @l) is defined as t'.p.@l. Finally, root is 
defined as root'. It is easy to see that treesX(Y) = [T]. 

(b) Let t ∈  Y and T be an XML tree s.t. treesX(Y) = [T]. 

If t ∈  tuplesX([T]), then the property holds trivially. 
Suppose that t∉ tuplesX([T]). Then, given that 
treeX(t) ≤ T, there is t' ∈  tuplesX([T]) s.t. t⊂ t'. In 

either case, we conclude that there is t'∈  

tuplesX(treesX(Y)) s.t.  t⊆  t'. □ 
 

The example below shows that it could be the case that 
tuplesX(treesX(Y)) properly dominates Y, that is, Y ⊆ b 

tuplesX(treesX(Y)) and tuplesX(treesX(Y)) Y. In 
particular, this example shows that the inverse of 
Theorem 1 does not hold, that is, tuplesX(treesX(Y)) is not 
necessarily equal to Y for every set of tree tuples Y , even 
if this set is X-compatible. Let X be as in example 5 and  
t1, t2 ∈  T (X) be defined as: 

t1.r  =   v0  t2.r =   v0 
t1.r.a   =   v1  t2.r.a =  φ 
t1.r.b  =   φ t2.r.b =   v2 
 

Let t3 be a tree tuple defined as: 
t3.r  =  v0, t3.r.a = v1 and  t3.r.b = v2. 

Then, tuplesX(treesX({t1, t2})) = {t3} since t1 ⊂  t3 and t2 

⊂  t3, and, therefore, {t1, t2} ⊆ b tuplesX(treesX({t1, t2})) 

and  tuplesX(treesX({t1, t2}))  {t1, t2}. 
  

IV. NORMAL FORMS OF XML SCHEMA 

In this section, and by using the definitions of the 
previous sections, we present the normal forms of XML 
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documents. Our goal is to see what relational concepts we 
can usefully apply to XML. Can the normal forms that 
guide database design be applied meaningfully to XML 
document design? 

 
Definition 12 (functional dependencies): Given an XML 
Schema X, a functional dependency (FD) over X is an 
expression of the form: S1 → S2 where S1, S2 ⊆  paths(X), 
S1, S2  ≠ φ. The set of all FDs over X is denoted by 
FD(X). 
• For S ⊆  paths(X), and t, t' ∈  T (X), t.S = t'.S means t.p 

= t'.p ∀ p ∈  S. Furthermore, t.S ≠ φ  means  t.p ≠ φ 

∀ p ∈  S.  
 

Definition 13: If S1 → S2 ∈  FD(X) and T is an XML tree 

s.t. T ⊲ X and S1 ∪  S2 ⊆  paths(T), we say that T 

satisfies S1 → S2 (written T╞  S1 → S2), if ∀ t1, t2 ∈  

tuplesX(T), t1.S1 = t2.S1 and t1.S1 ≠ φ  ⇒   t1.S2  =  t2.S2. 
 

• Note that: if tree tuples t1, t2 satisfy an FD S1 → S2, 
then for every path p ∈  S2, t1.p and t2.p are either both 
null or both not null. 

 
Definition 14: : If for every pair of tree tuples t1, t2 in an 
XML tree T,  t1.S1 = t2.S1 implies they have a null value 
on some p ∈  S1, then the FD is trivially satisfied by T. 
 

• The previous definitions extends to the equivalence 
classes, since, for any FD f, and T  ≡ T', T╞  f  iff  T'╞  
f.  

• We write T╞  F,  for F ⊆  FD(X), if T╞  f  for each  f 
∈ F, and we write T╞  (X, F), if  T╞  X  and T╞  F. 

 
Example 6: Consider the XML Schema in example 1, we 
have the following FDs. Note that, cno is a key of 
course: 
courses.course.@cno → courses.course       (FD1) 

Another FD says that two distinct student subelements of 
the same course cannot have the same sno:  

{courses.course,courses.course.taken_by.student.@s
no} → courses.course.taken_by.student             (FD2) 

Finally, to say that two student elements with the same 
sno value must have the same name, we use 
courses.course.taken_by.student.@sno → 
courses.course.taken_by.student.name.S           (FD3) 

 

Definition 15: Given XML Schema X, a set F ⊆  FD(X) 

and f ∈  FD(X), we say that  (X, F) implies f, written (X, 

F)┝  f , if for any tree T with T╞  X and T╞  F, it is the 

case that T╞  f. The set of all FDs implied by (X, F) will 

be denoted by (X, F)+.  
 

 

Definition 16: an FD f is trivial if (X, φ)┝  f.   
 

A. Primary and Foreign Keys of XML Schema 

In this section, we present the definitions of the primary 
and foreign keys of the XML Schema. We observe that 
while there are important differences between the XML 
and relational models, much of the thinking that 
commonly goes into relational database design can be 
applied to XML Schema design as well. 
 

Definition 17 (key, foreign key, and superkey): Let X = 
(E, A, M, P,  r, ∑) be XML Schema, a constraint ∑ over 
X has one of the following forms: 
• key: e(l) → e, where e∈ E, and l is a set of attributes 

in P(e). It indicates that the set l of attributes is a key 
of  e elements . 

• foreign key: e1(l1) ⊆  e2(l2) and e2(l2) → e2  where e1, 
e2 ∈  E, and l1, l2 are non-empty sequences of 
attributes in P(e1), P(e2), respectively, and moreover 
l1 and l2 have the same length. This constraint 
indicates that l1 is a foreign key of e1 elements 
referencing key l2 of  e2 elements. 

• A constraint of the form e1(l1) ⊆  e2(l2) is called an 
inclusion constraint.  

• Observe that a foreign key is actually a pair of 
constraint, namely an inclusion constraint e1(l1) ⊆  

e2(l2)  and a key  e2(l2) → e2. 

• superkey: suppose that, e⊆ E, and for any two distinct 
paths p1 and p2 in the XML Schema X, we have the 
constraint that: p1(e) ≠ p2(e). The subset e is called a 
superkey of X. 

• Every XML Schema has at least one default superkey 
- the set of all  its elements. 

 

B. First Normal Form for XML Schema (X-1NF) 

First normal form (1NF) is now considered to be a part 
of the formal definition of a relation in the basic relational 
database model. Historically, it was defined as: "The 
domain of an attribute in a tuple must be a single value 
from the domain of that attribute" [13]. 

Of course, XML is hierarchical by nature. An XML 
"tuple" can vary from first normal form in several ways, 
all of them are valid by means of data modeling: 
1. It can have varying numbers of fields and default 

values for attributes.  
2. It can have multiple values for a field, through the 

maxOccurs attribute for particles.  
3. It can have choices of field types instead of a straight 

sequence or conjunction.  
4. Fields can be of complex type.  
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C. Second Normal Form of XML Schema (X-2NF) 

 X-2NF is based on the concept of full functional 
dependency. 

Definition 18: A FD S1 → S2, where S1, S2 ⊆  paths(X) is 
called full FD, if removal of any element's path p from S1, 
means that the dependency does not hold any more, (i.e., 
for any  p ∈  S1, (S1-{p}) does not functional determine 
S2 ). 
 
Definition 19: A FD S1 → S2 is called partial dependency 
if, for some p∈ S1, (S1-{p}) → S2  is hold. 
 
Example 7: Consider the following part of XML Schema 
called "Emp_Proj" 

 
 

with the following FDs: 
FD1:{ Emp_Proj.Sss,Emp_Proj.Pnumber}→  
     Emp_Proj.Hours 
FD2:  Emp_Proj.Sss → Emp_Proj.Ename 
FD3: Emp_Proj.Pnumber →{Emp_Proj.Pname,  
    Emp_Proj.Plocation} 
Note that: 
 FD1 is a full FD (neither Emp_Proj.Sss → 

Emp_Proj.Hours nor  Emp_Proj.Pnumber → 
Emp_Proj.Hours holds). 

 The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} → 
Emp_Proj.Ename is partial because Emp_Proj.Sss → 
Emp_Proj.Ename holds. 

 
Definition 20 (X-2NF): An XML Schema X = (E, A, M, 
P,  r, ∑) is in second normal form (X-2NF) if every 

elements e∈ E and attributes l ⊆  P(e) are fully 
functionally dependent on the key elements of X. 
 
• The test for X-2NF involves testing for FDs whose 

left-hand side are part of the primary key. If the 

primary key contain a single element's path, the test 
need not be applied at all. 

 
 
Example 8: The XML Schema Emp_Proj in the above 
example is in X-1NF but is not in X-2NF. Because the 
FDs FD2 and FD3 make Emp_Proj.Ename, 

Emp_Proj.Pname, and Emp_Proj.Plocation partially 
dependent on the primary key {Emp_Proj.Sss, 
Emp_Proj.Pnumber} of  Emp_Proj, thus violating  the X-
2NF test. 
• Hence, the FDs FD1, FD2, and FD3 lead to the 

decomposition of XML Schema Emp_Proj to the 
following XML Schemas EP1, EP2, and EP3: 

 

D. Third Normal Form of XML Schema (X-3NF) 

X-3NF is based on the concept of transitive 
dependency. 

 

Definition 21: A FD S1 → S2, where S1, S2 ⊆  paths(X) is 
transitive dependency if there is a set of paths Z (that is 
neither a key nor a subset of any key of X), and both  S1 → 

Z  and  Z → S2  hold. 
 
Example 9: consider the following XML Schema called 
"Emp_Dept": 
 

Emp_Dept(Ssn, Ename, Bdate, Address, 
Dnumber, Dname, DmgrSsn)  
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with the following FDs: 
FD1:Emp_Dept.Ssn→{Emp_Dept.Ename,  
    Emp_Dept.Bdate, Emp_Dept.Address,  
    Emp_Dept.Dnumber } 

FD2:Emp_Dept.Dnumber → {Emp_Dept.Dname,  
    Emp_Dept.DmgrSsn} 
 
Note that: 
o  The dependency: 
 Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive  
   through  Emp_Dept.Dnumber in 
Emp_Dept, because    
 both the FDs: 
 Emp_Dept.Ssn → Emp_Dept.Dnumber and 

 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn 
hold, and  Emp_Dept.Dnumber is neither a key itself  nor a 
subset of the key of Emp_Dept. 

  
Definition 22 (X-3NF): An XML Schema X = (E, A, M, 
P,  r, ∑) is in third normal form (X-3NF) if it satisfies X-

2NF and no (elements e ∈  E or l ⊆  P(e)) is 
transitively  dependent on the key elements of X. 

 
Example 10: The XML Schema Emp_Dept in the above 
example is in X-2NF (since no partial dependencies on a 
key element exist), but Emp_Dept is not in X-3NF. 
Because of the transitive dependency of 
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on 
Emp_Dept.Ssn via Emp_Dept.Dnumber.  
 
• We can normalize Emp_Dept by decomposing it into 

the following two XML Schemas ED1, and ED2: 
          ED1(Ssn, Ename, Bdate, Address, Dnumber)  
          ED2(Dnumber, Dname, DmgrSsn)  
 

 
 

E. Boyce-Codd Normal Form of XML Schema (X-
BCNF) 

 Boyce-Codd Normal form of XML Schema (X-
BCNF), proposed as a similar form as X-3NF, but it was 
found to stricter than X-3NF, because every XML Schema 
in X-BCNF is also in X-3NF, however, an XML Schema 
in X-3NF is not necessarily in X-BCNF. The formal 
definitions of BCNF differs slightly from the definition of 
X-3NF 
 

Definition 23 (X-BCNF): An XML Schema X = (E, A, 
M, P,  r, ∑) is in Boyce-Codd Normal Form (X-BCNF) if 
whenever a nontrivial FD S1 → S2 holds in X, where S1, 
S2 ⊆  paths(X), then S1 is a superkey of  X.  
 
Also, we can consider the following definition of X-
BCNF: 
 

Definition 24: Given XML Schema X and F ⊆  FD(X), 

(X, F) is in X-BCNF iff for every nontrivial FD f ∈  (X, 

F)+ of the form S → p.@l or S → p.S, it is the case that,  

S → p ∈  (X, F)+. 
 
In definition 24, we suppose that,  f is a nontrivial FD. 
Indeed, the trivial FD p.@l → p.@l is always in (X, F)+, 

but often p.@l → p ∉  (X, F)+, which does not 
necessarily represent a bad design.  
To show how X-BCNF distinguishes good XML design 
from bad design, we consider example 1 again, when 
only functional dependencies are provided. 
 
Example 11: Consider the XML Schema from example 1 
whose FDs are FD1, FD2, and FD3, shown in example 6. 
FD3 associates a unique name with each student number, 
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which is therefore redundant. The design is not in X-
BCNF, since it contains FD3 but does not imply the 
functional dependency:  
courses.course.taken_by.student.@sno →  
 courses.course.taken_by.student.name 
 

To solve this problem, we gave a revised XML Schema 
in example 1. The idea was to create a new element info 
for storing information about students. That design 
satisfies FDs, FD1, FD2,  as well as 
 courses.info.number.@sno → courses.info 
and can be easily verified to be in X-BCNF. 
 

V. NORMALIZATION ALGORITHM 

The goal of this section is to show how to transform an 
XML Schema X and a set of FDs F into a new 
specification (X', F') that is in X-BCNF and contains the 
same information. 

Throughout the section, we assume that the XML 
Schemas are non-recursive. This can be done without any 
loss of generality. Notice that in a recursive XML Schema 
X, the set of all paths is infinite. We make an additional 
assumption that all the FDs are of the form:  

{q, p1.@l1, . . . , pn.@ln} → p. 
That is, they contain at most one element path on the 

left-hand side. While constraints of the form {q, q', . . . } 
are not forbidden, they appear to be quite unnatural. 
Furthermore, even if we have such constraints, they can be 
easily eliminated. To do so, we create a new attribute @l, 
remove {q, q'} ∪  S → p and replace it by q'.@l →q' and 
{q, q'.@l}∪ S → p.  

 We shall also assume that paths do not contain 
the symbol S (since p.S can always be replaced by a path 
of the form p.@l ).  

A. The Decomposition Algorithm 

For introducing the decomposition algorithm, we make 
the following assumption: if S → p.@l is an FD that 
causes a violation of X-BCNF, then every time that p.@l 
is not null, every path in S is not null. This will make our 
presentation simpler. 

Given XML Schema X and a set of FDs F, a nontrivial 
FD S → p.@l is called anomalous, over (X, F), if it 
violates X-BCNF; that is, S → p.@l ∈  (X, F)+ but S → p 
∉ (X, F)+. A path on the right-hand side of an anomalous 
FD is called an anomalous path, and the set of all such 
paths is denoted by APath(X, F). 

In this sub-section we present an X-BCNF 
decomposition algorithm that combines two basic ideas: 
creating a new element type, and moving an attribute. 
 
1)  Creating New Element Types 

Let X = (E, A, M, P,  r, ∑) be XML Schema and F a set 

of FDs over X. Assume that (X, F) contains an anomalous 

FD {q, p1.@l1, . . . , pn.@ln}→ p.@l , where q∈ EPaths(X) 
and n ≥ 1. For example, the "university" database shown 
in Example 1 contains an anomalous FD of this form 
(considering name.S as an attribute of student): 
  
 
 
{courses, courses.course.taken_by.student.@sno} → 
courses.course.taken_by.student.name.S.  (1) 
 
To eliminate the anomalous FD, we create a new element 
type τ as a child of the last element of q, we make τ1, . . . , 
τn its children, where τ1, . . . , τn are new element types, 
we remove @l from the list of attributes of last(p) and we 
make it an attribute of τ and we make @l1, . . ., @ln 
attributes of τ1, . . . ,τn, respectively, but without removing 
them from the sets of attributes of last(p1), . . . , last(pn), 
as shown in Figure 4. 

 
Figure 4.  creating new element types 

For instance, to eliminate the anomalous functional 
dependency (1), in example 1, we create a new element 
type info as a child of courses, we remove name.S from 
student and we make it an “attribute” of info, we create 
an element type number as a child of info and we make 
@sno its attribute. We note that we do not remove @sno as 
an attribute of student. 
 
Formally, if τ, τ1, . . . , τn are element types that are not in 
E, the new XML Schema, denoted by X[p.@l := q.τ 
[τ1.@l1, . . . , τn.@ln, @l ]], is (E', A, M', P',  r, ∑), where 

E' = E ∪ {τ, τ1, . . . , τn } and 
1. if M(last(q)) is a regular expression s, then 

M'(last(q)) is defined as the concatenation of s and τ*, 
that is (s, τ*). Furthermore, M'(τ) is defined as the 
concatenation of τ1*, . . . , τn*, M'(τi) = ε, for each i 
∈ [1, n], and M'(τ') = M(τ'), for each τ' ∈  E − 
{last(q)}. 
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2. P'(τ) = {@l }, P'(τi) = {@li}, for each i ∈  [1, n], 
P'(last(p)) = P(last(p))−{@l } and P'(τ') = P(τ') for 
each τ' ∈  E − {last(p)}. 
 

After transforming  X into a new XML Schema X' = 
X[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]], a new set of 
functional dependencies is generated. Formally, F [p.@l 
:= q.τ[τ1.@l1, . . . , τn.@ln, @l ]] is a set of FDs over X' 
defined as the union of the following sets of constraints: 
 

1. S1 → S2 ∈  (X, F)+ with S1∪ S2 ⊆  paths(X'). 

2. Each FD over q, pi , pi .@li (i ∈  [1, n]) and p.@l is 

transferred to τ and its children. That is, if S1∪ S2 

⊆  {q, p1, . . . , pn, p1.@l1, . . . , pn.@ln, p.@l } and 

S1 → S2 ∈  (X, F)+, then we include an FD obtained 
from S1 → S2 by changing pi to q.τ.τi , pi .@li to 
q.τ.τi .@li , and p.@l to q.τ.@l . 

3. {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln} → q.τ , and {q.τ, 
q.τ.τi .@li} → q.τ.τi  for i ∈  [1, n]. 

 
2) Moving Attributes 

Let X = (E, A, M, P,  r, ∑) be XML Schema and F a set 

of FDs over X. Assume that (X,F) contains an anomalous 
FD q → p.@l, where q∈ EPaths(X). To eliminate the 
anomalous FD, we move the attribute @l from the set of 
attributes of the last element of p to the set of attributes of 
the last element of q, as shown in Figure 5. 

 
Figure 5.  Moving Attributes 

Formally, to eliminate the anomalous functional 
dependency, we consider the new XML Schema, X[p.@l 
:= q.@m], where @m is an attribute, is defined to be (E, 
A', M, P',  r, ∑),  where A' = A ∪ {@m}, P'(last(q)) = 

P'(last(q)) ∪ {@m}, P'(last(p)) = P(last(p)) − {@l } and 

P'(τ') = P(τ') for each τ'  ∈  E − {last(q), last(p)}. 
 
After transforming X into a new XML Schema X[p.@l := 
q.@m], a new set of functional dependencies is 
generated. Formally, the set of FDs F [p.@l := q.@m] 

over X[p.@l := q.@m] consists of all FDs S1 → S2 ∈  (X, 

F)+ with S1∪ S2 ⊆  paths(X[p.@l := q.@m]).  
 
3) The Algorithm 

The algorithm applies the two transformations 
introduced in the previous sections until the schema is in 
X-BCNF, as shown in Figure 6.  

The algorithm shows in Figure 6, involves FD 
implication, that is, testing membership in (X, F)+ (and 
consequently testing X-BCNF and (X, F)-minimality). 
Since each step reduces the number of anomalous paths, 
then we obtain: 

 
Figure 6.  X-BCNF decomposition algorithm. 

Proposition 4. The X-BCNF decomposition algorithm 
terminates, and outputs a specification (X, F) in X-BCNF. 

 

VI. CONCLUSION AND FUTURE WORKS 

We address the problem of schema design and 
normalization in XML databases model. The main 
contribution of this paper are the proposed normal forms 
for XML Schema, and the decomposition algorithm that 
used to convert any XML Schema into normalized one, 
that satisfies X-BCNF.  

The decomposition algorithm can be improved in 
various ways, and we plan to work on making it more 
efficient. We also would like to find a complete 
classification of the complexity of the FD implication 
problem for various classes of XML Schemas. We plan to 
work on extending XML Schema normal form to more 
powerful normal forms, in particular by taking into 
account multi-valued dependencies. 
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