
SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

Schema Design and Normalization Algorithm
for XML Databases Model

doi:10.3991/ijet.v4i2.768

Hosam F. El-Sofany1, and Samir A. El-Seoud2

1Department of Computer Science and Engineering, College of Engineering, Qatar University
2Computer Science Department, Princess Sumaya University for Technology

Abstract—In this paper we study the problem of schema
design and normalization in XML databases model. We
show that, like relational databases, XML documents may
contain redundant information, and this redundancy may
cause update anomalies. Furthermore, such problems are
caused by certain functional dependencies among paths in
the document. Based on our research works, in which we
presented the functional dependencies and normal forms of
XML Schema, we present the decomposition algorithm for
converting any XML Schema into normalized one, that
satisfies X-BCNF.

Index Terms—XML Databases Design, Functional
Dependencies, Normal Forms, Normalization, Algorithms

I. INTRODUCTION

The eXtensible Markup Language (XML) has recently
emerged as a standard for data representation and
interchange on the Internet [1]. Although many XML
documents are views of relational data, the number of
applications using native XML documents is increasing
rapidly. Such applications may use native XML storage
facilities [2], and update XML data [3]. Updates, like in
relational databases, may cause anomalies if data is
redundant. In the relational world, anomalies are avoided
by developing a well-designed database schema. XML has
its version of schema too; such as DTD (Document Type
Definition), and XML Schema [4]. Our goal is to find the
principles for good XML Schema design. We believe that
it is important to do this research now, as a lot of data is
being put on the web. Once massive web databases are
created, it is very hard to change their organization; thus,
there is a risk of having large amounts of widely
accessible, but at the same time poorly organized data.

Normalization is a process which eliminates
redundancy, organizes data efficiently and improves data
consistency. Whereas normalization in the relational
world has been quite explored, it is a new research area in
native XML databases. Even though native XML
databases mainly work with document-centric XML
documents, and the structure of several XML document
might differ from one to another, there is room for
redundant information. This redundancy in data may
impact on document updates, efficiency of queries, etc.
Figure 1, shows an overview of the XML normalization
algorithms that we propose [10-12].

This paper focus on the normal form theory. This
theory concerns the old question of well-designed
databases or in other words the syntactic characterization
of semantically desirable properties. These properties are

tightly connected with dependencies such as keys,
functional dependencies, weak functional dependencies,
equality generating dependencies, multi-valued
dependencies, inclusion dependencies, join dependencies,
etc. All these classes of dependencies have been deeply
investigated in the context of the relational data model [5-
8]. The work now requires its generalization to XML
(trees like) model.

Our goal is to apply the concepts of relational database
normalization to XML Schema design. We show how to
transfer an XML Schema X, that based on a set of
functional dependencies F, into a new specification (X',
F') that is in XML normal form (X-BCNF) and contains
the same information.

Figure 1. An overview of the XML normalization algorithms

II. MOTIVATING EXAMPLE
In this section, through an example, we show that, like

relational databases, XML documents may contain
redundant information, and this redundancy may cause
update anomalies.

Example 1: Consider the following XML Schema that
describes a part of a "university" database. For every
course, we store its number (cno), its title and the list of
students taking the course. For each student taking a
course, we store the student number (sno), name, and the
grade in the course.

An example of an XML document (tree) that conforms
to this XML Schema is shown in Figure 2 [9]. This
document satisfies the following constraint:
"any two student elements with the same sno value must
have the same name".

iJET – Volume 4, Issue 2, June 2009 11

http://dx.doi.org/10.3991/ijet.v4i2.768�

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

Figure 2. A document containing redundant information

This constraint (which looks like a FD), causes the
document to store redundant information: for example, the
name Deere for student st1 is stored twice, as in relational
databases, such redundancies can lead to update
anomalies: for example, updating the name of st1 for only
one course results in an inconsistent document, and
removing the student from a course may result in
removing that student from the document altogether.

In order to eliminate redundant information, we use a
technique similar to the relational one, and split the
information about the name and the grade. Since we deal
with just one XML document, we must do it by creating
an extra element of complexType, called info, for student
information, as shown in the figure below.

Each info element has (as children) one name and a
sequence of number elements, with sno as an attribute.
Different students can have the same name, and we group
all student numbers sno for each name under the same
info element. A restructured document that conforms to
this XML Schema is shown in Figure 3 [9]. Note that st2

and st3 are put together because both students have the
same name.

This example remembers us with the bad relational
design caused by nonkey FDs, and how the database
designer solve this problem by modifying the schema.

Figure 3. A well-designed document

III. PRIMARILY DEFINITIONS
To extend the notions of FDs to the XML model, we

represent XML trees as sets of tuples [9], and find the
correspondence between documents and relations that
leads to the definition of functional dependency.

We first describe the formal definitions of XML
Schema (XSchema) and the conforming of XML tree to
XSchema. The definition of XSchema is based on regular
tree grammar theory that introduced in [14]. Assume that
we have the following disjoint sets:

- Ê: set of element names,
- Â: set of attribute names,
- DΤ: set of atomic data types (e.g., ID, IDREF,

IDREFS, string, integer, date, etc).
- Str: set of possible values of string-valued attributes

12 http://www.i-jet.org

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

- Vert: set of node identifiers
All attribute names start with the symbol @. The symbols
φ and S represent element type declarations EMPTY (null)
and #PCDATA, respectively.

Definition 1 (XSchema): An XSchema is denoted by 6-
tuple: X = (E, A, M, P, r, ∑), where:

• E ⊆ Ê, is a finite set of element names.

• A ⊆ Â, is a finite set of attribute names.
• M is a function from E to its element type definitions:

i.e., M(e) = α, where e∈ E, and α is a regular
expression: α ::= ε | t | α + α | α, α | α* | α? | α+

 where ε denotes the empty element, t ∈ DΤ, "+" for
 the union, "," for the concatenation, α* for the
 Kleene closure, α? for (α + ε) and α+ for (α, α*)
• P is a function from an attribute name a to its

attribute type definition: i.e., P(a) = β, where β is a
4-tuple (t, n, d, f), where:

- t ∈ DΤ,
- n is either "?" (nullable) or "¬?" (not nullable),
- d is a finite set of valid domain values of a or ε if

not known, and
- f is a default value of a or ε if not known.

• r ⊆ E is a finite set of root elements,

• ∑ is a finite set of integrity constraints for XML
model. The integrity constraints we consider are keys
(P.K, F.K,…), and dependencies (functional, and
inclusion).

Definition 2 (Path in XSchema): Given an XSchema X
= (E, A, M, P, r, ∑), a string p = p1 …pn, is a path in X if,

p1 = r, pi is in the alphabet of M(pi −1), for each i ∈ [2, n
− 1], and pn is in the alphabet of M(pn−1) or pn = @l for
some @l ∈ P(pn−1).
 We define length(p) as n and last(p) as pn.
 We let paths(X) stand for the set of all paths in X, and

EPaths(X) for the set of all paths that ends with an
element type (rather than an attribute or S), that is:
EPaths(X) = { p ∈ paths(X) | last(p) ∈ E }.

 An XSchema is called recursive if paths(X) is infinite.

Definition 3 (XML Tree): An XML tree T is defined to be
a tree, T = (V, lab, ele, att, root)
Where:
• V ⊆ Vert is a finite set of vertices (nodes).
• lab : V → Ê.
• ele : V → Str ∪ V*

• att is a partial function V × Â → Str. For each v ∈ V,

the set {@l ∈ Â | att(v, @l) is defined} is required to
be finite.

• root ∈ V is called the root of T.

The parent-child edge relation on V, {(v1, v2) | v2 occurs
in ele(v1)}, is required to form a rooted tree. Note that, the
children of an element node can be either zero or more
element nodes or one string.

Definition 4 (Path in XML Tree): Given an XML tree T,
a string: p1…pn with p1 ,…, pn-1∈ Ê and pn∈ Ê ∪ Â∪ {S}

is a path in T if there are vertices v1 … vn−1∈ V s.t.
• v1 = root, vi+1 is a child of vi (1 ≤ i ≤ n − 2), lab(vi) = pi

(1 ≤ i ≤ n − 1).
• If pn ∈ Ê, then there is a child vn of vn−1 s.t. lab(vn) =

pn. If pn = @l, with @l∈ Â, then att(vn−1, @l) is
defined. If pn=S, then vn−1 has a child in Str.

• We let paths(T) stand for the set of paths in T.

Now, we give a definition of a tree conforming to the
XSchema (T╞ X), and a tree compatible with X (T ⊲ X).

Definition 5: Given an XSchema X = (E, A, M, P, r, ∑)
and an XML tree T = (V, lab, ele, att, root), we say that T
is valid w.r.t. X (or T conforms to X) written as (T╞ X)
if,
• lab: V → E.
• For each v ∈ V, if M(lab(v)) = S, then ele(v) = [s],

where s ∈ Str. Otherwise, ele(v) = [v1, … , vn], and the
string lab(v1) … lab(vn) must be in the regular
language defined by M(lab(v)).

• att is a partial function, att: V × A → Str, s.t. for any v
∈ V and @l ∈ A, att(v, @l) is defined iff @l ∈
P(lab(v)).

• lab(root) = r.
• We say that T is compatible with X (written T ⊲ X) iff

paths(T) ⊆ paths(X).

• Clearly, T╞ X ⇒ T ⊲ X.

Definition 6: Given two XML trees T1 = (V1, lab1, ele1,
att1, root1) and T2 = (V2, lab2, ele2, att2, root2), we say that
T1 is subsumed by T2, written as T1 ≤ T2 if :

• V1 ⊆ V2.
• root1 = root2.
• lab2|V1 = lab1.
• att2|V1×Â = att1.
• ∀ v ∈ V1, ele1(v) is a sub-list of a permutation of

ele2(v).

Definition 7: Given two XML trees T1 and T2, we say
that T1 is equivalent to T2 written T1 ≡ T2, iff T1 ≤ T2 and
T2 ≤ T1 (i.e., T1 ≡ T2 iff T1 and T2 are equal as unordered
trees).

• We define [T] to be the ≡-equivalence class of T.
• We write: [T]╞ X if Ti╞ X for some Ti ∈ [T].
• It is easy to see that for any T1 ≡ T2, paths(T1) =

paths(T2), hence,
• T1 ⊲ X iff T2 ⊲ X.

iJET – Volume 4, Issue 2, June 2009 13

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

• We shall also write T1 < T2 when T1 ≤ T2 and T2
T1.

In the following definition, we extend the notion of tuple
for relational databases to the XML model. In a relational
database, a tuple is a function that assigns to each
attribute a value from the corresponding domain. In our
setting, a tree tuple t in a XML Schema X is a function
that assigns to each path in X a value in Vert∪ Str∪ {φ}
in such a way that t represents a finite tree with paths
from X containing at most one occurrence of each path. In
this section, we show that an XML tree can be
represented as a set of tree tuples.

Definition 8 (Tree tuples): Given XML Schema X = (E,
A, M, P, r, ∑), a tree tuple t ∈ X is a function,

t : paths(X) → Vert∪ Str∪ {φ} such that

 For p∈ EPaths(X), t(p)∈ Vert∪ {φ}, and t(r) ≠ φ

 For p ∈ paths(X) − EPaths(X), t(p) ∈ Str∪ {φ}

 If t(p1) = t(p2) and t(p1) ∈ Vert, then p1 = p2
 If t(p1) = φ and p1 is a prefix of p2, then t(p2) = φ
 { p ∈ paths(X) | t(p) ≠ φ } is finite

T(X) is defined to be the set of all tree tuples in X. For a
tree tuple t and a path p, we write t.p for t(p).

Example 2: Suppose that X is the XML Schema shown in
example 1. Then a tree tuple in X assigns values to each
path in paths(X) such as:

t(courses) = v0
t(courses.course) = v1
t(courses.course.@cno) = csc200
t(courses.course.title) = v2
t(courses.course.title.S) = Automata Theory
t(courses.course.taken_by) = v3
t(courses.course.taken_by.student) = v4
t(courses.course.taken_by.student.@sno) = st1
t(courses.course.taken_by.student.name) = v5
t(courses.course.taken_by.student.name.S) = Deere
t(courses.course.taken_by.student.grade) = v6
t(courses.course.taken_by.student.grade.S) = A+

Definition 9 (treeX): Given XML Schema X = (E, A, M,
P, r, ∑) and a tree tuple t ∈ T(X), treeX(t) is defined to be
an XML tree (V, lab, ele, att, root), where:
 root = t.r
 V = {v ∈ Vert | ∃ p ∈ paths(X) such that v = t.p}

 If v = t.p and v ∈ V, then lab(v) = last(p)

 If v = t.p and v ∈ V, then ele(v) is defined to be the list
containing

 {t.p' | t.p' ≠ φ and p' = p.τ, τ ∈ E, or p' = p.S,
ordered lexicographically

 If v = t.p, @l ∈ A and t.p.@l ≠ φ , then att(v, @l) =
t.p.@l

Example 3: Let X be the XML Schema from example 1
and t the tree tuple from Example 2. Then, t gives rise to
the following XML tree:

Proposition 1. If t ∈ T (X), then treeX(t) ⊲ X. □

We would like to describe XML trees in terms of the
tuples they contain. For this, we need to select tuples
containing the maximal amount of information. This is
done via the usual notion of ordering on tuples (relations).

• If we have two tree tuples t1, t2, we write t1⊆ t2 if
whenever t1.p is defined, then t2.p is also defined, and
t1.p ≠ φ ⇒ t1.p = t2.p.

• As usual, t1⊂ t2 means t1⊆ t2 and t1 ≠ t2.

• Given two sets of tree tuples, Y and Z, we write: Y ⊆ b

Z, if: ∀ t1 ∈ Y ∃ t2 ∈ Z s.t. t1⊆ t2.

Definition 10 (tuplesX): Given XML Schema X and an
XML tree T such that T ⊲ X, tuplesX(T) is defined to be
the set of maximal tree tuples t (with respect to ⊆), s.t.
treeX(t) is subsumed by T, that is:
max⊆ { t ∈ T (X) | treeX(t) ≤ T }

Note that:
• T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2).
• Hence, tuplesX applies to equivalence classes:

tuplesX([T]) = tuplesX(T).
• The following proposition lists some simple properties

of tuplesX(·)

Proposition 2. If T ⊲ X, then tuplesX(T) is a finite subset
of T(X). Furthermore, tuplesX(·) is monotone: T1 ≤ T2
implies tuplesX(T1) ⊆ b tuplesX(T2).
Proof. We prove only monotonicity. Suppose that T1 ≤ T2
and t1 ∈ tuplesX(T1). We have to prove that ∃ t2 ∈

tuplesX(T2) such that t1 ⊆ t2. If t1 ∈ tuplesX(T2), this is

obvious, so assume that t1 ∉ tuplesX(T2). Given that t1 ∈
tuplesX(T1), treeX(t1) ≤ T1, and therefore, treeX(t1) ≤ T2.
Hence, by definition of tuplesX(·), there exists t2∈

tuplesX(T2) such that t1 ⊂ t2, since t1∉ tuplesX(T2). □

14 http://www.i-jet.org

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

Example 4: In example 1, we saw the XML Schema X
and a tree T conforming to X. In example 2, we saw one
tree tuple t for that tree, with identifiers assigned to some
of the element nodes of T. If we assign identifiers to the
rest of the nodes, we can compute the set tuplesX(T).

{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+),
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-),
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A),
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+)}.

Finally, we define the trees represented by a set of tuples
Y as the minimal, with respect to ≤, trees containing all
tuples in Y.

Definition 11 (treesX): Given XML Schema X and a set
of tree tuples Y ⊆ T (X), treesX(Y) is defined to be:

min≤{ T | T ⊲ X and ∀ t ∈ Y, treeX(t) ≤ T }.

Notice that, if T ∈ treesX(Y) and T ' ≡ T, then T ' is in
treesX(Y). The following shows that every XML
document can be represented as a set of tree tuples, if we
consider it as an unordered tree. That is, a tree T can be
reconstructed from tuplesX(T), up to equivalence ≡.

Theorem 1. Given XML Schema X and an XML tree T, if
T ⊲ X, then trees(tuplesX([T])) = [T].
Proof: Every XML tree is finite, and, therefore,
tuplesX([T]) = {t1, …, tn}, for some n. Suppose that T ∉
treesX({t1, . . . , tn}). Given that treeX(ti) ≤ T, for each i ∈
[1, n], there is an XML tree T ' s.t. T ' ≤ T and treeX(ti) ≤ T

', for each i ∈ [1, n]. If T ' < T, then there is at least one
node, string or attribute value contained in T which is not
contained in T '. This value must be contained in some
tree tuple tj (j ∈ [1, n]), which contradicts treeX(tj) ≤ T'.

Therefore, T ∈ treesX(tuplesX([T])).

Let T' ∈ treesX(tuplesX([T])). For each i ∈ [1, n], treeX(ti)
≤ T '. Thus, given that, tuplesX(T) = {t1, …, tn}, we
conclude that T ≤ T ', and, therefore, by definition of
treesX, T ' ≡ T. □

Example 5: It could be the case that for some set of tree
tuples Y there is no an XML tree T such that for every t
∈ Y , tree(t) ≤ T. For example, let X be XML Schema, X
= (E, A, M, P, r, ∑), where E = {r, a, b}, A = φ, M(r) =
(a|b), M(a) = ε and M(b) = ε. Let t1, t2 ∈ T (X) be defined
as:

t1.r = v0 t2.r = v2
t1.r.a = v1 t2.r.a = φ
t1.r.b = φ t2.r.b = v3

Since t1.r ≠ t2.r, there is no an XML tree T such that,
treeX(t1) ≤ T and treeX(t2) ≤ T.

• We say that Y ⊆ T (X) is X-compatible if there is an

XML tree T: T ⊲ X and Y ⊆ tuplesX(T).

• For X-compatible set of tree tuples Y, there is always
an XML tree T: for every t ∈ Y, treeX(t) ≤ T.

Proposition 3. If Y ⊆ T (X) is X-compatible, then:
 (a) There is an XML tree T such that T ⊲ X and
 treesX(Y) = [T], and
 (b) Y ⊆ b tuplesX(treesX(Y)).
Proof:
(a) Suppose that X = (E, A, M, P, r, ∑). Since Y is X-

compatible, ∃ an XML tree T' = (V', lab', ele', att',

root') s.t. T ' ⊲ X and Y ⊆ tuplesX(T '). We use T' to
define an XML tree T = (V, lab, ele, att, root) s.t.
treesX(Y) = [T].
For each v ∈ V', if there is t ∈ Y and p ∈ paths(X)
s.t. t.p = v, then v is included in V. Furthermore, for
each v ∈ V, lab(v) is defined as lab'(v), ele(v) = [s1,
. . . , sn], where each si = t'.p.S or si = t'.p.τ for
some t' ∈ Y and τ ∈ E s.t., t'.p = v. For each @l∈

A s.t., t'.p.@l ≠ φ and t'.p = v for some t' ∈ Y,
att(v, @l) is defined as t'.p.@l. Finally, root is
defined as root'. It is easy to see that treesX(Y) = [T].

(b) Let t ∈ Y and T be an XML tree s.t. treesX(Y) = [T].

If t ∈ tuplesX([T]), then the property holds trivially.
Suppose that t∉ tuplesX([T]). Then, given that
treeX(t) ≤ T, there is t' ∈ tuplesX([T]) s.t. t⊂ t'. In

either case, we conclude that there is t'∈

tuplesX(treesX(Y)) s.t. t⊆ t'. □

The example below shows that it could be the case that
tuplesX(treesX(Y)) properly dominates Y, that is, Y ⊆ b

tuplesX(treesX(Y)) and tuplesX(treesX(Y)) Y. In
particular, this example shows that the inverse of
Theorem 1 does not hold, that is, tuplesX(treesX(Y)) is not
necessarily equal to Y for every set of tree tuples Y , even
if this set is X-compatible. Let X be as in example 5 and
t1, t2 ∈ T (X) be defined as:

t1.r = v0 t2.r = v0
t1.r.a = v1 t2.r.a = φ
t1.r.b = φ t2.r.b = v2

Let t3 be a tree tuple defined as:
t3.r = v0, t3.r.a = v1 and t3.r.b = v2.

Then, tuplesX(treesX({t1, t2})) = {t3} since t1 ⊂ t3 and t2

⊂ t3, and, therefore, {t1, t2} ⊆ b tuplesX(treesX({t1, t2}))

and tuplesX(treesX({t1, t2})) {t1, t2}.

IV. NORMAL FORMS OF XML SCHEMA

In this section, and by using the definitions of the
previous sections, we present the normal forms of XML

iJET – Volume 4, Issue 2, June 2009 15

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

documents. Our goal is to see what relational concepts we
can usefully apply to XML. Can the normal forms that
guide database design be applied meaningfully to XML
document design?

Definition 12 (functional dependencies): Given an XML
Schema X, a functional dependency (FD) over X is an
expression of the form: S1 → S2 where S1, S2 ⊆ paths(X),
S1, S2 ≠ φ. The set of all FDs over X is denoted by
FD(X).
• For S ⊆ paths(X), and t, t' ∈ T (X), t.S = t'.S means t.p

= t'.p ∀ p ∈ S. Furthermore, t.S ≠ φ means t.p ≠ φ

∀ p ∈ S.

Definition 13: If S1 → S2 ∈ FD(X) and T is an XML tree

s.t. T ⊲ X and S1 ∪ S2 ⊆ paths(T), we say that T

satisfies S1 → S2 (written T╞ S1 → S2), if ∀ t1, t2 ∈

tuplesX(T), t1.S1 = t2.S1 and t1.S1 ≠ φ ⇒ t1.S2 = t2.S2.

• Note that: if tree tuples t1, t2 satisfy an FD S1 → S2,
then for every path p ∈ S2, t1.p and t2.p are either both
null or both not null.

Definition 14: : If for every pair of tree tuples t1, t2 in an
XML tree T, t1.S1 = t2.S1 implies they have a null value
on some p ∈ S1, then the FD is trivially satisfied by T.

• The previous definitions extends to the equivalence
classes, since, for any FD f, and T ≡ T', T╞ f iff T'╞
f.

• We write T╞ F, for F ⊆ FD(X), if T╞ f for each f
∈ F, and we write T╞ (X, F), if T╞ X and T╞ F.

Example 6: Consider the XML Schema in example 1, we
have the following FDs. Note that, cno is a key of
course:
courses.course.@cno → courses.course (FD1)

Another FD says that two distinct student subelements of
the same course cannot have the same sno:

{courses.course,courses.course.taken_by.student.@s
no} → courses.course.taken_by.student (FD2)

Finally, to say that two student elements with the same
sno value must have the same name, we use
courses.course.taken_by.student.@sno →
courses.course.taken_by.student.name.S (FD3)

Definition 15: Given XML Schema X, a set F ⊆ FD(X)

and f ∈ FD(X), we say that (X, F) implies f, written (X,

F)┝ f , if for any tree T with T╞ X and T╞ F, it is the

case that T╞ f. The set of all FDs implied by (X, F) will

be denoted by (X, F)+.

Definition 16: an FD f is trivial if (X, φ)┝ f.

A. Primary and Foreign Keys of XML Schema

In this section, we present the definitions of the primary
and foreign keys of the XML Schema. We observe that
while there are important differences between the XML
and relational models, much of the thinking that
commonly goes into relational database design can be
applied to XML Schema design as well.

Definition 17 (key, foreign key, and superkey): Let X =
(E, A, M, P, r, ∑) be XML Schema, a constraint ∑ over
X has one of the following forms:
• key: e(l) → e, where e∈ E, and l is a set of attributes

in P(e). It indicates that the set l of attributes is a key
of e elements .

• foreign key: e1(l1) ⊆ e2(l2) and e2(l2) → e2 where e1,
e2 ∈ E, and l1, l2 are non-empty sequences of
attributes in P(e1), P(e2), respectively, and moreover
l1 and l2 have the same length. This constraint
indicates that l1 is a foreign key of e1 elements
referencing key l2 of e2 elements.

• A constraint of the form e1(l1) ⊆ e2(l2) is called an
inclusion constraint.

• Observe that a foreign key is actually a pair of
constraint, namely an inclusion constraint e1(l1) ⊆

e2(l2) and a key e2(l2) → e2.

• superkey: suppose that, e⊆ E, and for any two distinct
paths p1 and p2 in the XML Schema X, we have the
constraint that: p1(e) ≠ p2(e). The subset e is called a
superkey of X.

• Every XML Schema has at least one default superkey
- the set of all its elements.

B. First Normal Form for XML Schema (X-1NF)

First normal form (1NF) is now considered to be a part
of the formal definition of a relation in the basic relational
database model. Historically, it was defined as: "The
domain of an attribute in a tuple must be a single value
from the domain of that attribute" [13].

Of course, XML is hierarchical by nature. An XML
"tuple" can vary from first normal form in several ways,
all of them are valid by means of data modeling:
1. It can have varying numbers of fields and default

values for attributes.
2. It can have multiple values for a field, through the

maxOccurs attribute for particles.
3. It can have choices of field types instead of a straight

sequence or conjunction.
4. Fields can be of complex type.

16 http://www.i-jet.org

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

C. Second Normal Form of XML Schema (X-2NF)

 X-2NF is based on the concept of full functional
dependency.

Definition 18: A FD S1 → S2, where S1, S2 ⊆ paths(X) is
called full FD, if removal of any element's path p from S1,
means that the dependency does not hold any more, (i.e.,
for any p ∈ S1, (S1-{p}) does not functional determine
S2).

Definition 19: A FD S1 → S2 is called partial dependency
if, for some p∈ S1, (S1-{p}) → S2 is hold.

Example 7: Consider the following part of XML Schema
called "Emp_Proj"

with the following FDs:
FD1:{ Emp_Proj.Sss,Emp_Proj.Pnumber}→
 Emp_Proj.Hours
FD2: Emp_Proj.Sss → Emp_Proj.Ename
FD3: Emp_Proj.Pnumber →{Emp_Proj.Pname,
 Emp_Proj.Plocation}
Note that:
 FD1 is a full FD (neither Emp_Proj.Sss →

Emp_Proj.Hours nor Emp_Proj.Pnumber →
Emp_Proj.Hours holds).

 The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} →
Emp_Proj.Ename is partial because Emp_Proj.Sss →
Emp_Proj.Ename holds.

Definition 20 (X-2NF): An XML Schema X = (E, A, M,
P, r, ∑) is in second normal form (X-2NF) if every

elements e∈ E and attributes l ⊆ P(e) are fully
functionally dependent on the key elements of X.

• The test for X-2NF involves testing for FDs whose

left-hand side are part of the primary key. If the

primary key contain a single element's path, the test
need not be applied at all.

Example 8: The XML Schema Emp_Proj in the above
example is in X-1NF but is not in X-2NF. Because the
FDs FD2 and FD3 make Emp_Proj.Ename,

Emp_Proj.Pname, and Emp_Proj.Plocation partially
dependent on the primary key {Emp_Proj.Sss,
Emp_Proj.Pnumber} of Emp_Proj, thus violating the X-
2NF test.
• Hence, the FDs FD1, FD2, and FD3 lead to the

decomposition of XML Schema Emp_Proj to the
following XML Schemas EP1, EP2, and EP3:

D. Third Normal Form of XML Schema (X-3NF)

X-3NF is based on the concept of transitive
dependency.

Definition 21: A FD S1 → S2, where S1, S2 ⊆ paths(X) is
transitive dependency if there is a set of paths Z (that is
neither a key nor a subset of any key of X), and both S1 →

Z and Z → S2 hold.

Example 9: consider the following XML Schema called
"Emp_Dept":

Emp_Dept(Ssn, Ename, Bdate, Address,
Dnumber, Dname, DmgrSsn)

iJET – Volume 4, Issue 2, June 2009 17

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

with the following FDs:
FD1:Emp_Dept.Ssn→{Emp_Dept.Ename,
 Emp_Dept.Bdate, Emp_Dept.Address,
 Emp_Dept.Dnumber }

FD2:Emp_Dept.Dnumber → {Emp_Dept.Dname,
 Emp_Dept.DmgrSsn}

Note that:
o The dependency:
 Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive
 through Emp_Dept.Dnumber in
Emp_Dept, because
 both the FDs:
 Emp_Dept.Ssn → Emp_Dept.Dnumber and

 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn
hold, and Emp_Dept.Dnumber is neither a key itself nor a
subset of the key of Emp_Dept.

Definition 22 (X-3NF): An XML Schema X = (E, A, M,
P, r, ∑) is in third normal form (X-3NF) if it satisfies X-

2NF and no (elements e ∈ E or l ⊆ P(e)) is
transitively dependent on the key elements of X.

Example 10: The XML Schema Emp_Dept in the above
example is in X-2NF (since no partial dependencies on a
key element exist), but Emp_Dept is not in X-3NF.
Because of the transitive dependency of
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on
Emp_Dept.Ssn via Emp_Dept.Dnumber.

• We can normalize Emp_Dept by decomposing it into

the following two XML Schemas ED1, and ED2:
 ED1(Ssn, Ename, Bdate, Address, Dnumber)
 ED2(Dnumber, Dname, DmgrSsn)

E. Boyce-Codd Normal Form of XML Schema (X-
BCNF)

 Boyce-Codd Normal form of XML Schema (X-
BCNF), proposed as a similar form as X-3NF, but it was
found to stricter than X-3NF, because every XML Schema
in X-BCNF is also in X-3NF, however, an XML Schema
in X-3NF is not necessarily in X-BCNF. The formal
definitions of BCNF differs slightly from the definition of
X-3NF

Definition 23 (X-BCNF): An XML Schema X = (E, A,
M, P, r, ∑) is in Boyce-Codd Normal Form (X-BCNF) if
whenever a nontrivial FD S1 → S2 holds in X, where S1,
S2 ⊆ paths(X), then S1 is a superkey of X.

Also, we can consider the following definition of X-
BCNF:

Definition 24: Given XML Schema X and F ⊆ FD(X),

(X, F) is in X-BCNF iff for every nontrivial FD f ∈ (X,

F)+ of the form S → p.@l or S → p.S, it is the case that,

S → p ∈ (X, F)+.

In definition 24, we suppose that, f is a nontrivial FD.
Indeed, the trivial FD p.@l → p.@l is always in (X, F)+,

but often p.@l → p ∉ (X, F)+, which does not
necessarily represent a bad design.
To show how X-BCNF distinguishes good XML design
from bad design, we consider example 1 again, when
only functional dependencies are provided.

Example 11: Consider the XML Schema from example 1
whose FDs are FD1, FD2, and FD3, shown in example 6.
FD3 associates a unique name with each student number,

18 http://www.i-jet.org

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

which is therefore redundant. The design is not in X-
BCNF, since it contains FD3 but does not imply the
functional dependency:
courses.course.taken_by.student.@sno →
 courses.course.taken_by.student.name

To solve this problem, we gave a revised XML Schema
in example 1. The idea was to create a new element info
for storing information about students. That design
satisfies FDs, FD1, FD2, as well as
 courses.info.number.@sno → courses.info
and can be easily verified to be in X-BCNF.

V. NORMALIZATION ALGORITHM

The goal of this section is to show how to transform an
XML Schema X and a set of FDs F into a new
specification (X', F') that is in X-BCNF and contains the
same information.

Throughout the section, we assume that the XML
Schemas are non-recursive. This can be done without any
loss of generality. Notice that in a recursive XML Schema
X, the set of all paths is infinite. We make an additional
assumption that all the FDs are of the form:

{q, p1.@l1, . . . , pn.@ln} → p.
That is, they contain at most one element path on the

left-hand side. While constraints of the form {q, q', . . . }
are not forbidden, they appear to be quite unnatural.
Furthermore, even if we have such constraints, they can be
easily eliminated. To do so, we create a new attribute @l,
remove {q, q'} ∪ S → p and replace it by q'.@l →q' and
{q, q'.@l}∪ S → p.

 We shall also assume that paths do not contain
the symbol S (since p.S can always be replaced by a path
of the form p.@l).

A. The Decomposition Algorithm

For introducing the decomposition algorithm, we make
the following assumption: if S → p.@l is an FD that
causes a violation of X-BCNF, then every time that p.@l
is not null, every path in S is not null. This will make our
presentation simpler.

Given XML Schema X and a set of FDs F, a nontrivial
FD S → p.@l is called anomalous, over (X, F), if it
violates X-BCNF; that is, S → p.@l ∈ (X, F)+ but S → p
∉ (X, F)+. A path on the right-hand side of an anomalous
FD is called an anomalous path, and the set of all such
paths is denoted by APath(X, F).

In this sub-section we present an X-BCNF
decomposition algorithm that combines two basic ideas:
creating a new element type, and moving an attribute.

1) Creating New Element Types

Let X = (E, A, M, P, r, ∑) be XML Schema and F a set

of FDs over X. Assume that (X, F) contains an anomalous

FD {q, p1.@l1, . . . , pn.@ln}→ p.@l , where q∈ EPaths(X)
and n ≥ 1. For example, the "university" database shown
in Example 1 contains an anomalous FD of this form
(considering name.S as an attribute of student):

{courses, courses.course.taken_by.student.@sno} →
courses.course.taken_by.student.name.S. (1)

To eliminate the anomalous FD, we create a new element
type τ as a child of the last element of q, we make τ1, . . . ,
τn its children, where τ1, . . . , τn are new element types,
we remove @l from the list of attributes of last(p) and we
make it an attribute of τ and we make @l1, . . ., @ln
attributes of τ1, . . . ,τn, respectively, but without removing
them from the sets of attributes of last(p1), . . . , last(pn),
as shown in Figure 4.

Figure 4. creating new element types

For instance, to eliminate the anomalous functional
dependency (1), in example 1, we create a new element
type info as a child of courses, we remove name.S from
student and we make it an “attribute” of info, we create
an element type number as a child of info and we make
@sno its attribute. We note that we do not remove @sno as
an attribute of student.

Formally, if τ, τ1, . . . , τn are element types that are not in
E, the new XML Schema, denoted by X[p.@l := q.τ
[τ1.@l1, . . . , τn.@ln, @l]], is (E', A, M', P', r, ∑), where

E' = E ∪ {τ, τ1, . . . , τn } and
1. if M(last(q)) is a regular expression s, then

M'(last(q)) is defined as the concatenation of s and τ*,
that is (s, τ*). Furthermore, M'(τ) is defined as the
concatenation of τ1*, . . . , τn*, M'(τi) = ε, for each i
∈ [1, n], and M'(τ') = M(τ'), for each τ' ∈ E −
{last(q)}.

iJET – Volume 4, Issue 2, June 2009 19

mailto:courses.course.taken_by.student.@sno�

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

2. P'(τ) = {@l }, P'(τi) = {@li}, for each i ∈ [1, n],
P'(last(p)) = P(last(p))−{@l } and P'(τ') = P(τ') for
each τ' ∈ E − {last(p)}.

After transforming X into a new XML Schema X' =
X[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l]], a new set of
functional dependencies is generated. Formally, F [p.@l
:= q.τ[τ1.@l1, . . . , τn.@ln, @l]] is a set of FDs over X'
defined as the union of the following sets of constraints:

1. S1 → S2 ∈ (X, F)+ with S1∪ S2 ⊆ paths(X').

2. Each FD over q, pi , pi .@li (i ∈ [1, n]) and p.@l is

transferred to τ and its children. That is, if S1∪ S2

⊆ {q, p1, . . . , pn, p1.@l1, . . . , pn.@ln, p.@l } and

S1 → S2 ∈ (X, F)+, then we include an FD obtained
from S1 → S2 by changing pi to q.τ.τi , pi .@li to
q.τ.τi .@li , and p.@l to q.τ.@l .

3. {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln} → q.τ , and {q.τ,
q.τ.τi .@li} → q.τ.τi for i ∈ [1, n].

2) Moving Attributes

Let X = (E, A, M, P, r, ∑) be XML Schema and F a set

of FDs over X. Assume that (X,F) contains an anomalous
FD q → p.@l, where q∈ EPaths(X). To eliminate the
anomalous FD, we move the attribute @l from the set of
attributes of the last element of p to the set of attributes of
the last element of q, as shown in Figure 5.

Figure 5. Moving Attributes

Formally, to eliminate the anomalous functional
dependency, we consider the new XML Schema, X[p.@l
:= q.@m], where @m is an attribute, is defined to be (E,
A', M, P', r, ∑), where A' = A ∪ {@m}, P'(last(q)) =

P'(last(q)) ∪ {@m}, P'(last(p)) = P(last(p)) − {@l } and

P'(τ') = P(τ') for each τ' ∈ E − {last(q), last(p)}.

After transforming X into a new XML Schema X[p.@l :=
q.@m], a new set of functional dependencies is
generated. Formally, the set of FDs F [p.@l := q.@m]

over X[p.@l := q.@m] consists of all FDs S1 → S2 ∈ (X,

F)+ with S1∪ S2 ⊆ paths(X[p.@l := q.@m]).

3) The Algorithm

The algorithm applies the two transformations
introduced in the previous sections until the schema is in
X-BCNF, as shown in Figure 6.

The algorithm shows in Figure 6, involves FD
implication, that is, testing membership in (X, F)+ (and
consequently testing X-BCNF and (X, F)-minimality).
Since each step reduces the number of anomalous paths,
then we obtain:

Figure 6. X-BCNF decomposition algorithm.

Proposition 4. The X-BCNF decomposition algorithm
terminates, and outputs a specification (X, F) in X-BCNF.

VI. CONCLUSION AND FUTURE WORKS

We address the problem of schema design and
normalization in XML databases model. The main
contribution of this paper are the proposed normal forms
for XML Schema, and the decomposition algorithm that
used to convert any XML Schema into normalized one,
that satisfies X-BCNF.

The decomposition algorithm can be improved in
various ways, and we plan to work on making it more
efficient. We also would like to find a complete
classification of the complexity of the FD implication
problem for various classes of XML Schemas. We plan to
work on extending XML Schema normal form to more
powerful normal forms, in particular by taking into
account multi-valued dependencies.

REFERENCES
[1] W3C 2001 XML Schema: http://www.w3.org/XML/Schema.
[2] Kanne, C.C. and Moerkotte, G. Efficient storage of XML data. In

Proceedings of the 16th International Conference on Data
Engineering, 2000.

20 http://www.i-jet.org

http://www.w3.org/XML/Schema�

SCHEMA DESIGN AND NORMALIZATION ALGORITHM FOR XML DATABASES MODEL

[3] Tatarinov, I., Ives, Z., Halevy, A., and Weld, D. Updating XML.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, New York, 413–424, 2001.

[4] Paredaens, J., DE Bra, P., Gyssens, M. & Van Gucht, d., The
Structure of the Relational Database Model, Springer-Verlag,
1989.

[5] Thalheim, B., Dependencies in Relational Databases, Teubner-
Verlag, 1991.

[6] Embley, D. and Mok,W. Y. Developing XML documents with
guaranteed “good” properties. In Proceedings of the 20th
International Conference on Conceptual Modeling. 426–441,
2001.

[7] Arenas, M. and Libkin, L. An information-theoretic approach to
normal forms for relational, 2003.

[8] Lee, .L., Ling, T. W., and Low, W. L. Designing functional
dependencies for XML. In Proceedings of the 8th International
Conference on Extending Database Technology. 124–141, 2002.

[9] Marcelo Arenas and Leonid Libkin, "A Normal Form for XML
Documents". ACM Transactions on Database Systems, Vol. 29,
No. 1, Pages 195–232, March 2004. (doi:10.1145/974750.974757)

[10] Buneman, P., Jung, A., and Ohori, A. 1991. Using power domains
to generalize relational databases. Theoret. Comput. Sci. 91, 1, 23–
55. (doi:10.1016/0304-3975(91)90266-5)

[11] Grahne, G. 1991. The Problem of Incomplete Information in
Relational Databases. Springer-Verlag, New York, Cambridge,
Mass.

[12] Gunter, C. 1992. Semantics of Programming Languages:
Structures and Techniques.MIT Press, Cambridge, Mass.

[13] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database System. Addison-Wesley, third edition, 2000.

[14] Murali M., and Dongwon L. XML to Relational Conversion using
Theory of Regular Tree Grammers. Proc. of the 28th VLDB
Conference, Hong Kong, China, 2002.

AUTHORS

Hosam F. El-Sofany received his Ph.D. and M. Sc.
degree in Computer Science from Ain Shams University,

Cairo, Egypt. He is currently a Lecturer at the Department
of Engineering and Computer Science, College of
Engineering, Qatar University, Qatar. He have a strong
technical background including: designing and
implementing Web-based systems. He published many
research papers related to the E-learning technology in
various International Journals and conferences. His
research is focused on E-Learning, M-Learning, XML
Databases, Databases Systems, and Semantic Web
Applications. (email: helsofany@qu.edu.qa)

Professor Samir Abou El-Seoud received his BSc
degree in Physics, Electronics and Mathematics from
Cairo University in 1967, his Higher Diplom in
Computing from Technical University of Darmstadt
(TUD) -Germany in 1975 and his Doctor of Science from
the same University (TUD) in 1979. Professor El-Seoud
helds different academic positions at TUD Germany.
Letest Full-Professor in 1987. Outside Germany Professor
El-Seoud spent different years as a Full-Professor of
Computer Science at SQU – Oman and Qatar University
and acted as a Head of Computer Science for many years.
At industrial institutions, Professor El-Seoud worked as
Scientific Advisor and Consultant for the GTZ in
Germany and was responsible for establishing a
postgraduate program leading to M.Sc. degree in
Computations at Colombo University / Sri-Lanka (2001 –
2003). He also worked as Application Consultant at
Automatic Data Processing Inc., Division Network
Services in Frankfurt/Germany (1979 – 1980). Professor
El-Seoud joined PSUT in 2004. Currently, he is the
Chairman of the Computer Science Dept. at PSUT.
(email: selseoud@psut.edu.jo)

Manuscript received 15 December 2008. Published as submitted by
the authors.

iJET – Volume 4, Issue 2, June 2009 21

http://dx.doi.org/10.1145/974750.974757�
http://dx.doi.org/10.1016/0304-3975(91)90266-5�

