
Paper—A Cloud-based Malware Detection Framework

A Cloud-based Malware Detection Framework
https://doi.org/10.3991/ijim.v11i2.6577

Eman Ahmed*
Ain Shams University,Cairo, Egypt

e.ah.saad@gmail.com

Amin Sorrour*
Misr University for Science and Technology, 6th of October, Egypt

asorrour@yahoo.com

Mohammed Sobh
Ain Shams University,Cairo, Egypt

mohamed.sobh@eng.asu.edu.eg

Ayman Bahaa-Eldin

The British University in Egypt, Cairo, Egypt
ayman.bahaa@bue.edu.eg

Abstract—Malwares are increasing rapidly. The nature of distribution and
effects of malwares attacking several applications requires a real-time response.
Therefore, a high performance detection platform is required. In this paper, Ha-
doop is utilized to perform static binary search and detection for malwares and
viruses in portable executable files deployed mainly on the cloud. The paper
presents an approach used to map the portable executable files to Hadoop com-
patible files. The Boyer–Moore-Horspool Search algorithm is modified to bene-
fit from the distribution of Hadoop. The performance of the proposed model is
evaluated using a standard virus database and the system is found to outperform
similar platforms.

Keywords—Cloud computing, Security issues, Malware, Static Binary Search,
BMH, Hadoop.

1 Introduction

Scanning files for viruses in a rapid manner can be achieved by utilizing Hadoop
facilities. Hadoop provides parallel working mechanism. However, Hadoop was
mainly created to deal with large data-sets. Most viruses and malwares exist in Porta-
ble Executable (PE) small files or images, which can affect Hadoop performance
dramatically and thereby search performance. In this paper, a system is presented to
carry out PE files static search using hadoop and is organized as: section2: Related
Work, section3: The System Environment (the environment used, hadoop, infected
files and DB used), section4: System General Architecture, section 5: Factors Affect-

iJIM ‒ Vol. 11, No. 2, 2017 113

Paper—A Cloud-based Malware Detection Framework

ing Performance during Testing Phase, section6: The system architecture details and
results and section7: Running on Virtual Multi-node Cluster section8: Concluding the
work done and the future work.

2 Related Work

A vast amount of small files are used across the cloud as PE files, images. Since
cloud environment inherited internet properties, cloud environment is vulnerable to
malwares. Hence, a demand to make researchers study and improve different tech-
niques for scanning of files across clouds in a fast manner. Researchers as (1) handled
this problem using hadoop environment too. But they proposed architecture of how
hadoop framework uses its daemons to cooperate in scanning without further details.
Other Researchers (2) handled the static search using Hadoop and described how to
utilize pre-existing tools together with hadoop without describing how the searching
is handled by antivirus programs, what algorithms could be used, and how to deal
with the antivirus DB. Researchers in (3) described in a very good way how ClamAV
antivirus works and presented a detailed description for the DB file. They presented a
scanning technique to search statically in ClamAV DB but not in cloud environment.
Hence, there is another need to understand practically these details as it might be
helpful for more enhancements to be carried out concerning this field. This paper
presents an approach to better understand how to utilize hadoop facilities in signatures
static search, how to use an antivirus DB to perform this search, what algorithm can
be chosen, what other factors could affect environment performance and how to over-
come them.

3 The System Environment

3.1 The Environment Used

Clouderaquickstart vm is used. Monitoring and General Configurations for
MapReduce Jobs can be done through Cloudera Manager and Hadoop Tracking Inter-
face. Java code is used in writing the application program.

3.2 Hadoop

Hadoop MapReduce is a software framework used for creating applications deal-
ing with vast amounts of data in-parallel on large clusters. A job divides dataset into
independent chunks to be processed by the map tasks in a parallel manner. Then a
sorting to the outputs of the maps is done to form input to the reduce tasks. In atypical
system the input and the output of a given job are stored in a file-system. The frame-
work schedules tasks, monitors them and re-executes any failed tasks.

Hadoop MapReduce Jobs can be implemented through many ways using scripts or
coding. In this case study Java coding was used to create the Jobs with eclipse IDE.

114 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

To run Hadoop Jobs, three modes can be used (4) (5):
Standalone (local Mode): Hadoop uses local file system instead of HDFS and have

one-mapper and one-reducer. Pseudo-Distributed Mode: All daemons run on single
machine and mimic the behaviour of cluster. All daemons run locally and use HDFS.
Multi-mappers and Multi-reducers. Fully-Distributed Mode: Hadoop running on real
clusters. In this case study, the pseudo-distributed mode is used.

As a general term, Daemons means a process running in the background. Hadoop
has five daemons: NameNode, Secondary NameNode, DataNode, JobTracker and
TaskTracker.

3.3 Infected Files and DB Used

To create samples of infected executable files, a tool was developed using Java to
take input clean files and inject virus signatures in random places in the files. The first
signature used was that of eicar test file (6). This file has amazing benefits, one can
test virus scanners using it, has no dangerous effect, and its signature exists in already
known antiviruses DB sets as ClamAV, Symantec and many others. The infected
executable files, created in this case study, were infected by many other viruses listed
in ClamAV antivirus DB (7). These samples were tested by online scanner to check if
they can be found by already known free scanners using VirusTotal Online Scanner
(8).

4 System General Architecture

This case study was done to achieve a system capable of utilizing Hadoop facilities
to speed up binary scans on infected files. The System General Architecture is shown
in the following figure (Fig1). As shown in the figure, the architecture is dealing with
input files to be uploaded in the HDFS to be scanned using DB files by mappers.
Then, a final report is formed by reducer for the scan results.

Fig. 1. System General Architecture

iJIM ‒ Vol. 11, No. 2, 2017 115

Paper—A Cloud-based Malware Detection Framework

5 Factors Affecting Performance during Testing Phase

In the section, the factors affecting the Hadoop byte search are introduced together
with sample tests done to prove them.

The factors affecting the scanning performance in Hadoop environment:

• Resources and Configurations
• Algorithm used to scan the files
• Size of Files
• DB organization and location

5.1 Resources and Configurations

The ClouderaquickstartVM was set to have 8GB Ram and 2CPU. Cloudera Man-
ager is used to adjust some yarn configurations. Some default settings for memory
allocation to mappers and reducers were adjusted as:
"yarn.app.mapreduce.am.resource.mb", "mapreduce.map.memory.mb" and "mapre-
duce.reduce.memory.mb" 2GB. Java Heap Size 512MB. These modifications were
done to speedup performance and avoid memory usage errors.

5.2 Determining a Search Algorithm

Naïve Brute Force Algorithm: Naïve algorithm (Fig2) (9) is a very simple algo-
rithm, sometimes the first one that comes to mind. It is simply, checking the occur-
rence of a pattern inside the bytes of a file, element by element to see if a match ex-
ists. So first, it checks the first element in the pattern against the first element of the
file array; if not, check it against the next element in the file array, and so forth. In the
worst case, searching using naïve algorithm takes O(nm); n is the length of the file
array and m is the length of the pattern.

Fig. 2. Naïve Brute Force Algorithm

116 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

Test1:
Was done using 4 exe input files and Naïve Algorithm (Fig3).

Fig. 3. Test1 Detailed Jobs' Architecture

Results of Test1:
The four files' sizes are F1 (11.5KB), F2 (811bytes), F3 (425KB) and F4

(421bytes). The searching phase took 4hrs. Hence, need for boosting the speed of
search. The first thing to think about is changing the search algorithm as done in test2.

The performance of Test1 (Table1) on pseudo-distributed mode was checked using
Cloudera Manager and Hadoop Tracking Interface.

Table 1. Test1 - Naïve Search Performance for 4 Portable Executable Files

JOB ID JOB Description Elapsed Time INPUT OUTPUT

JOB1 AV-signature prepara-
tion phase 2mins:45secs 9 DB files 1 Text DB File

JOB2
Searching PE files for
viruses and reporting
results phase

4hrs:44mins:27secs
4 files and 1 Text
DB file (read from
HDFS)

Report with scan
results

Boyer–Moore-Horspool Algorithm: BMH algorithm (Fig4) (10) (11) is a fast

search algorithm originally done to check the occurrence of a pattern in a given Text.
It pre-processes the pattern to produce a jump table containing, the number of charac-
ters that can be skipped. The preprocessing in pseudocode is as in the shown figure
(Fig4). And the search function reports the index of the first occurrence of the needle
(pattern) in haystack (file bytes).

iJIM ‒ Vol. 11, No. 2, 2017 117

Paper—A Cloud-based Malware Detection Framework

Fig. 4. Boyer–Moore-Horspool Algorithm

Test2:
Was done using the same 4 exe input files and the Boyer–Moore-

Horspool Algorithm (Fig5).

Fig. 5. Test2 Detailed Jobs' Architecture

In this test the same idea is implemented but using byte array search instead of
string in Text. The search is done from right to left in the pattern. If the first element,
did not find a match it uses the jump table to skip and search in another index in the
file. If the first element, has a match in the file move to next element in the pattern to
the left and so forth till the whole pattern matched. Previous searches (11) proved

118 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

that, this algorithm is considered to be the fastest in byte searches and that is why it is
chosen to be used in this case study.

Results of Test2:
For the same four files: F1 (11.5KB), F2 (811bytes), F3 (425KB) and F4

(421bytes). A time reduction took place in the searching phase from 4hrs to 2hrs.
There is a slight reduction in time but still not enough. From here, another factor is
affecting the searching performance. This could be the size of files, as it will be ex-
plained next.

The performance of Test2 (Table2) on pseudo-distributed mode was checked using
Cloudera Manager and Hadoop Tracking Interface.

Table 2. Test2 - BMH Search Performance for 4 Portable Executable Files

JOB ID JOB Description Elapsed Time INPUT OUTPUT

JOB1 AV-signature prepara-
tion phase 2mins:45secs 9 DB files 1 Text DB File

JOB2
Searching PE files for
viruses and reporting
results phase

2hrs:57mins:51secs
4 files and 1 Text
DB file (read from
HDFS)

Report with scan
results

5.3 Size of Files

The Hadoop Distributed File System (HDFS) and MapReduce are mainly opti-
mized for processing and storing large files. Small files in HDFS reduce the Hadoop
general performance. A file is called small when its size is less than the HDFS block
size, which is 64 MB by default. From here one can define a block size as, the small-
est unit of data that a file system can store. Hence, storing a file of size 1k or 60Mb,
will occupy one single block. Once the file size crosses the 64Mb boundary, a second
block is needed and so on.

Map tasks usually process a block of input at a time. If the file is very small and
there are a lot of them, then each map task processes very little input, and there are a
lot more map tasks, each of which imposes extra overhead. For example a big file as
1GB file is broken into 16 blocks (each 64MB). However, in case using many small
files as 10,000 of 100KB files, the job time can be tens or hundreds of times slower
than the equivalent one with a single input file. This is because each file from the
10,000 files uses one map task. Many blocks means, lots of traffic. Where each re-
quest for a given block, recommends a processing by the Name Node to figure out
where that block can be found. Unfortunately, most PE files and images are all less
than the HDFS default block size. One Solution to this problem is using Hadoop Se-
quence file. SequenceFiles are like containers for smaller files. Packing files into a
SequenceFile makes storing and processing the smaller files more efficient. This way
is handled as coming next.

Test3:
In this Test a sequence file for 10exe files is used as input. The files of sizes:

F1(3.2MB), F2(11.5KB), F3(17.2KB), F4(17.2KB), F5 (811bytes), F6(496.2KB),
F7(496.2KB), F8(425KB), F9(381bytes) and F10(421bytes). To improve the search-

iJIM ‒ Vol. 11, No. 2, 2017 119

Paper—A Cloud-based Malware Detection Framework

ing phase, instead of using one mapper for one sequence file with key,value pairs as
<FilePath,FileBytes>. Two reducers were used, to split the input sequence file into
two sequence files to have two mappers working in parallel. This searching took
about 2mins to search the 10 files.

A comparison between the above three tests during the execution of the scanner
JOB is summarized in the next chart (Fig6). The scanner JOB in Test1, Test2 and
Test3 is JOB2.

Fig. 6. Scanner JOB of the Three Tests in Pseudo-Distributed Mode

From this comparison, the application written in Test3 was the best as it has the
minimum scan time in a pseudo-distributed mode. It has the minimum scanning time
with a larger number of input files (10 files), compared to Test1 and Test2 where 4
input files only were used. A further explanation for the steps of Test3 and results is
discussed in section 6. In section 7, Test3 application is tried again but in a virtual
multi-node cluster.

5.4 DB organization and location:

During all tests the Clam-AV virus signatures database was used. They are 9 files
each holding 1000 record with sizes ranging from 92.5KB to189KB. During Test1
and Test2: the DB 9-files were reduced into one Text file this job occupied 2mins
(Table1) (Table2). In Test3: were gathered in one sequence file for being all small in
size key,value pairs as <VirusName, VirusSignature> and occupied 33secs (Table3).

One Issue remained left was the place of the formed DB sequence file. Two ways
can be used, either leaving it in HDFS the way it is or in Distributed cache. The ad-
vantage of using HDFS is we can store large files in it. However, a massive problem

120 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

may occur as DB should have limited resources of connections. Having the DB in
HDFS means more connections and calls to the DB from DataNodes. This in return
leads to slower performance and eventually DB bottleneck.

The Distributed cache has a maximum limit of 10GB (12). The framework will
copy the necessary files on to the DataNodes before processing any tasks of a job on
any of these DataNodes. Its efficacy comes from the fact that the DB file is copied
once per job. One more advantage is that since it is RAM/memory based the files
used are destructed when the job completes.

In this case study, we are dealing with DB of (1.2 MB) in total. From here, the
choice of Distributed cache fits more. Where the file is copied to caches of
DataNodes to make them search locally and relieve the congestion on DB. Test1,2
were done using MapReduceV1, while Test3 code was done using MapReduceV2 to
be able to use distributed cache.

6 The System Architecture Details and Results

The System Detailed Architecture is shown in figures (Fig7a, Fig7b). Three JOBs
are used. JOB0, forms the input sequence file that containes the key,value pairs
<FilePath,FileBytes>. JOB1, forms the db sequence file that containes the key,value
pairs <VirusName, VirusSignature>. JOB2, is resposible for the searching phase and
it has the two input sequence files produced by JOB0 and the cached DB sequence
file. It performs the search using BMH algorihm and produces a report with the scan
results.

The performance of the system (Table3) on pseudo-distributed mode was checked
using Cloudera Manager and Hadoop Tracking Interface. A Snapshot of searching
phase which is JOB2 is shown in (Fig8).

Table 3. System Performance Using Sequence files and BMH Searching for 10 Portable Exe-
cutable Files

JOB ID JOB Description Elapsed Time INPUT OUTPUT

JOB0 PE-files preparation
phase 40secs 10 files 2 Input Sequence files

JOB1 AV-signature prepa-
ration phase 33secs 9 DB files 1 DB Sequence file

JOB2
Searching PE files for
viruses and reporting
results phase

2mins:14secs
2 Input Sequence files
and cached DB Se-
quence file

Report with scan results

iJIM ‒ Vol. 11, No. 2, 2017 121

Paper—A Cloud-based Malware Detection Framework

a) A Detailed System Architecture illustrating JOB0 and JOB1

b) A Detailed System Architecture illustrating JOB2

Fig. 7.

Fig. 8. Performance of System Searching Phase

122 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

7 Running on Virtual Multi-node Cluster

In this section, the application, done above, was tested on a virtual multi-node clus-
ter. This cluster consists of three virtual machines: n1, n2 and n3. The machines were
built using Cloudera CDH4 and VMware workstation. The machines use centos 64-
bit as guest operating system. CM 5.4.0 is used to trace executions. RAM: n1 (8GB,
1CPU), n2 (2GB, 1CPU), n3 (2GB, 1CPU).

• For HDFS layer: n1 (namenode, secondary namenode), n2, n3 (datanodes).
• For MapReduce Layer: the job is running using MapReduceV2 (Fig10): n1 (re-

source manager), n2 (nodemanager), n3 (nodemanager) (Fig9). YARN has a single
MapReduce JobHistory server that holds the tracing history of the jobs executed in
this cluster. Usually, the job history server runs on the same node as the re-
sourcemanager. n1 is the master in this cluster and has the JobHistory.

Fig. 9. Yarn Instances in the Virtual Multi-node Cluster

N.B.: the container is JVM used for processing. The resourcemanager (RM) is
global manager for all applications (jobs) in the system. One of nodemanagers (NM)
will be allocated as applicationmaster (AM). AM works per-application (per-job).
This AM-job will be tasked using containers of other NM(s) allocated by re-
sourcemanager. AM cooperates with all other NMs to execute and monitor the run-
ning tasks (4).

In this virtual cluster: the nodemanager n3 was chosen by RM n1 to be AM and
jobs were tasked in the nodemanager n2 (Fig11).

iJIM ‒ Vol. 11, No. 2, 2017 123

Paper—A Cloud-based Malware Detection Framework

Fig. 10. YARN Running Architecture

The performance of the system (Table4) on virtual cluster was checked using
Cloudera Manager and Hadoop Tracking Interface. A Snapshot of searching phase
which is JOB2 is shown in (Fig11).

Table 4. System Performance on the Virtual Multi-node Cluster

JOB ID JOB Description Elapsed Time INPUT OUTPUT

JOB0 PE-files preparation
phase 1min:25secs 10 files 2 Input Sequence files

JOB1 AV-signature prepa-
ration phase 1min:17secs 9 DB files 1 DB Sequence file

JOB2
Searching PE files for
viruses and reporting
results phase

2mins:44secs
2 Input Sequence files
and cached DB Se-
quence file

Report with scan results

Fig. 11. Performance of System Searching Phase

124 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

A comparison between the two running modes: pseudo-distributed and virtual mul-
ti-node cluster for the application is shown in the next figure (Fig12).

Fig. 12. Pseudo-Distributed Vs. Virtual Multi-Node Cluster

From the above results, the virtual multi-node cluster elapsed a little bit more time,
because of the limited physical resources used as described previously: n1 (8GB
RAM, 1CPU), n2 (2GB RAM, 1CPU), n3 (2GB RAM, 1CPU). However, in pseudo-
distributed mode, the ClouderaquickstartVM was running at (8GB RAM, 2CPU)
which helped in running tasks faster than the cluster. This shows that if the system is
applied in a real cluster with more physical resources, it might show an increase in the
performance compared to these two modes.

Even in the pseudo-distributed mode still there are limitations in the number of
samples used because it is not powerful as real machines on real networks. Having
limited physical resources, when trying to increase the samples to 20 samples a RAM
error appears which demands using another machine with higher RAM and this will
be carried in future work on a real network. Hence, increasing number of samples
demands increasing network hardware resources.

The advantage of this architecture that it can prepare both types of files input files
and DB before starting the scan. It utilized static search algorithms on cloud environ-
ment while up to our knowledge in previous works either it was not handled on cloud
environment or it was introduced in cloud environment but using preexisting antivirus
tools. Moreover the presented architecture, utilizes the advantages of Hadoop in or-
ganizing and speeding up the search in the cluster nodes.

iJIM ‒ Vol. 11, No. 2, 2017 125

Paper—A Cloud-based Malware Detection Framework

8 Conclusion and Future Work

From the previous discussion, handling static search with Hadoop environment can
be done by overcoming small files' problem. Searching speed is enhanced by using
BMH algorithm. DB location is determined depending on system requirements to
avoid bottlenecks. A simple tool was used to form the infected executable files.
ClamAV DB was used in the scanning. The system was done on several steps to test
the different factors affecting performance. The previous discussion described how to
overcome these factors during testing and proved a noticeable increase in perfor-
mance. Although the testing was done to serve infected files scanning, it can be uti-
lized in other fields as solving the problem of handling and processing of small files
in Hadoop as in image processing. This paper presented a simple way of a better un-
derstand of how to scan infected files using static search across Hadoop platform.

On-going is, bringing this system to real cluster. To this point the system was test-
ed on Hadoop pseudo-distributed mode which is very close to what is happening on a
real cluster. Furthermore, it was tested on multimode cluster of three virtual machines
to see how the application runs in hadoop cluster, but because of limited physical
resources, still there is a need to try it on real cluster.

9 References

[1] Malware Analysis Using Hadoop and MapReduce. NK Dengle, SC Dharmadhikar. s.l. :
AVCOE, Sangamner, 2015. Fourth Post Graduate Conference.

[2] Binarypig: Scalable static binary analysis over hadoop. Hanif, Zachary, Telvis Calhoun,
and Jason Trost. s.l. : Black Hat USA , 2013.

[3] MRSI: A fast pattern matching algorithm for anti-virus applications. Zhou, X., Xu, B., Qi,
Y., & Li, J. s.l. : IEEE, 2008. Networking Seventh International Conference . pp. 256-261.

[4] Hadoop. https://hadoop.apache.org/. [Online] accessed [April-2016].
[5] WordPress. https://learnhadoopwithme.wordpress.com/tag/hadoop-daemons/. [Online] ac-

cessed [April-2016].
[6] European Institute for Computer Anti-Vir Research. INTENDED USE.

http://www.eicar.org/86-0-Intended-use.html. [Online] accessed [April-2016].
[7] ClamAV. https://www.clamav.net. [Online] accessed [April-2016].
[8] Virus Total. https://www.virustotal.com. [Online] accessed [April-2016].
[9] String Matching Methodologies: A Comparative Analysis. Rasool, Akhtar, et al. s.l. :

REM (Text) 234567.11, 2012.
[10] Practical fast searching in strings. Horspool, R. Nigel. s.l. : Software: Practice and Experi-

ence 10.6, 1980, pp. 501-506.
[11] Improving Speed of the Signature Scanner using BMH Algorithm. Kanaujiya, Sunita, S. P.

Tripathi, and N. C. Sharma. s.l.: International Journal of Computer Applications 11.4,
2010.

[12] Amazon. Import files with Distributed Cache. http://docs.aws.amazon.com/ElasticMap
Reduce/latest/DeveloperGuide/emr-plan-input-distributed-cache.html. [Online] accessed
[April-2016].

126 http://www.i-jim.org

Paper—A Cloud-based Malware Detection Framework

10 Authors

Eman Ahmed (corresponding author) is with Ain Shams University, Cairo, Egypt
(e.ah.saad@gmail.com).

Amin Sorrour (corresponding author) is with Misr University for Science and
Technology, 6th of October, Egypt (asorrour@yahoo.com).

Mohammed Sobh is with Ain Shams University, Cairo, Egypt
(mohamed.sobh@eng.asu.edu.eg).

Ayman Bahaa-Eldin is with The British University in Egypt and on leave from
Ain Shams University, Cairo, Egypt (ayman.bahaa@bue.edu.eg).

This article is a revised version of a paper presented at the BUE International Conference on
Sustainable Vital Technologies in Engineering and Informatics, held Nov 07, 2016 - Nov 09, 2016 , in
Cairo, Egypt. Article submitted 26 December 2016. Published as resubmitted by the authors 23 February
2017.

iJIM ‒ Vol. 11, No. 2, 2017 127

	iJIM – Vol. 11, No. 2, 2017
	A Cloud-based Malware Detection Framework

