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Abstract—Traditional data acquisition (DAQ) systems for 
obtaining 3-D range information consist of sensors, DAQ 
measurement hardware and a processor with software. This 
kind of DAQ system is adapted and calibrated for various 
applications, thus imposing significant up-front costs that 
hamper its broad usage in educational laboratories. The 
low-cost Microsoft Kinect has become a promising alterna-
tive solution that has already been widely adopted by con-
sumers and offers a wide variety of opportunities for being 
used in many other areas. The Kinect’s cameras are capable 
of producing high quality synchronized video that consists 
of both color and depth data. This enables the Kinect to 
compete with other sophisticated 3-D sensor DAQ systems 
in terms of performance criteria such as accuracy, stability, 
reliability and error rates. One of the most noticeable Ki-
nect-based applications is the skeleton-based tracking of 
humans, which is made possible by its built-in human skele-
ton recognition functions. Other common usages of the 
Kinect are 3-D surface/scene reconstruction and object 
classification/recognition. However, Kinect-based develop-
ments that focus on the tracking of arbitrary objects have 
rarely been reported, mainly due to a lack of mature algo-
rithms. 

In the first part of this paper, a three-stage approach for 
capturing general motions of objects will be introduced. 
This approach consists of point cloud pre-processing with a 
focus on computational efficiency, object tracking employ-
ing recognition and post-processing including motion analy-
sis. This approach can be tailored to special cases, namely 
the algorithms focus more on computation efficiency when 
the objects of interest have simple shapes or colors, and they 
focus more on reliability for objects with complex geome-
tries or textures. The second part of this paper describes the 
integration of the proposed DAQ system into a multi-player 
game-based laboratory environment. In this implementa-
tion, a physical experiment is triggered by the game avatars 
and the experimental data acquired by the Kinect and ana-
lyzed by the proposed algorithms are then fed back into the 
game environment and used to animate the experimental 
device. 

Index Terms—Engineering Education, Laboratory Devel-
opment, Microsoft Kinect, Data Acquisition, Object Recog-
nition, Motion Tracking. 

I. INTRODUCTION 
Laboratories are widely acknowledged to have signifi-

cant educational value for engineering and science stu-
dents. They often use a data acquisition (DAQ) system for 
the measurement and analysis of certain parameters char-
acterizing physical phenomena [1]. However, the wide 

usage of DAQ systems is hampered by various factors, 
including the high cost of sophisticated sensors, the need 
for adapting and calibrating them for different experi-
ments, which results in long operating times. 

In traditional educational laboratory setups, the sensors 
used to measure range data (linear/angular position, veloc-
ity, etc.) are usually simple and only capture one degree of 
freedom (i.e. one direction of translation or rotation) at a 
time. A system that can measure complex spatial motions 
requires at least one set of devices (i.e. sensor and its sup-
porting hardware) for each degree of freedom. However, 
this makes such a system too difficult to be built, modi-
fied, calibrated and maintained. One feasible alternative 
solution for tracking complex motions is using a 3-D 
scanner, which can determine the geometry, location and 
posture of objects at each scan and then use multiple scans 
to track objects. While 3-D scanners offer these potential-
ly powerful functions and outstanding accuracy, they also 
exhibit various shortcomings. Commercially available 3-D 
scanners with high scanning speed and accuracy are very 
expensive. Furthermore, all 3-D scanners require a rotat-
ing platform to be used, need to be integrated with a DAQ 
system and typically have a limited frame rate that pre-
vents them from being used for tracking fast movements 
[2]. 

In light of these considerations, a low cost and easy to 
use sensor such as the Kinect becomes a desired substi-
tute. Compared to other sophisticated 3-D scanners, the 
Kinect has a compatible range of measurement, field of 
view, acceptable accuracy, resolution, sensitivity, stability 
and error rate [3, 4, 5]. A lot of developments aiming to 
improve some of the inadequate performance characteris-
tics of the Kinect have been reported, such as noise mod-
eling [6], temporal denoising [7] and hole filling [8]. The-
se efforts make the Kinect a more suitable scanner for use 
in educational laboratories. In addition, the processing of 
the Kinect data is flexible and can be controlled and re-
vised just by programming approaches without any hard-
ware modifications. A smart DAQ system composed of a 
Kinect and a personal computer has several advantages 
over traditional 3-D scanner systems, namely the setup for 
measurements is easier, calibration is performed automati-
cally, no hardware modifications are needed for different 
experiments and the time needed for users to learn how to 
operate the system is short [9,10]. 

In order to maximize the laboratory’s learning effec-
tiveness for the students, this Kinect-based universal range 
sensor can also be used to integrate physical experimental 
devices into a massively multiplayer online game envi-
ronment (e.g. Gary’s Mod), thus creating a mixed reality 
collaborative laboratory environment [11]. Such a game-
based laboratory environment enables distance learning, 
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which allows the sharing of limited educational resources 
with a larger audience and makes it easier for students to 
repeat experiments [12]. This laboratory environment also 
enables students to assemble and disassemble the experi-
mental devices, which gives the users a similar feeling of 
immersion as traditional hands-on laboratories. The inte-
gration of physical experiments into a virtual laboratory 
system enables student collaboration and provides a 
hands-on feeling at the same time [13]. 

II. BACKGROUND ON KINECT APPLICATIONS 

A. Overview of Common Applications 
Since its release in November 2010, the Kinect has not 

only become one of the most popular game consoles that 
has been widely accepted by consumers, but it also cap-
tured the attention of researchers and developers. A large 
number of Kinect-based applications have emerged since 
then and the Kinect has been proved to have great poten-
tial in various areas. Among these applications, the most 
common ones can be categorized into two groups based 
on the methods used to process the Kinect’s raw data. 

Applications of the first kind are known as human skel-
eton tracking, which are popular for two reasons. First, the 
Kinect was originally designed as a game interface that 
uses gestures of the human body as command inputs for 
controlling games. Second, Microsoft provided a Software 
Development Kit for the Kinect, in which the kinematic 
information on the major joints of the human skeleton is 
available to users, thus easing the difficulty of the devel-
opment work. These applications include human detection 
[14], physical rehabilitation [15], sign language recogni-
tion [16], etc. 

Based on the hardware components, the Kinect is es-
sentially a structured-light scanner. The second kind of 
applications deals with the point cloud generated by the 
Kinect directly. It is mostly motivated by the intention of 
using the Kinect as a substitute for commercial 3-D scan-
ners, due to their high price and unavailability to consum-
ers. Among these applications, there are still some that 
focus on problems related to the human body, such as 
hand gesture tracking [17] and face scans [18]. Others are 
similar to traditional 3-D scanner applications, such as 
indoor environment modeling [19,20], 3D surface recon-
struction [21,22,23], alternative sensor for educational 
experiments [24,25], etc. 

B. Kinect-based Motion Flow Tracking 
In order to use the Kinect in educational laboratories for 

objecting tracking, the most straightforward solution is to 
adopt motion tracking algorithms from computer vision. 
Methods that extract the optical flow for tracking the mo-
tions of objects’ in 2-D image sequences or videos have 
been studied extensively and a large number of algorithms 
have been developed, such as the Lucas-Kanade method 
[26] and the Horn-Schunck method [27]. Motivated by the 
goal of enabling the construction of 3-D images from 2-D 
ones through triangulation methods and also leveraging 
the emergence of powerful 3-D scanners, numerous algo-
rithms for tracking motions in general 3-D space have 
been developed. Some of these algorithms were adapted in 
Kinect applications for tracking 3-D motion flows from 
RGB-D data, for instance by generalization of two-frame 
variational 2-D flow algorithms to 3-D applications [28], 
based on the particle scene flow [29] and by using multi-

ple Kinects to handle large arbitrary motions and sub-
pixel displacements [30]. 

Many of the above-mentioned algorithms have been 
proved to be robust and suitable to be implemented in 
various applications. However, estimating all six degrees 
of freedom of the objects’ motions in 3-D space directly 
by motion flow tracking techniques is inefficient and 
inaccurate. Additional complications arise from the fact 
that complex scenes may potentially contain multiple 
moving objects as is common in laboratory applications, 
which renders it difficult to track only the motion of the 
objects of interest. In order to solve this problem, a system 
with the capability of distinguishing multiple moving 
objects from each other is desired. 

C. Kinect-based Object Recognition 
Object recognition is already a rather mature research 

topic in computer science, and many algorithms have been 
demonstrated to function adequately in various situations, 
such as Scale-invariant Feature Transform (SIFT) [31] and 
Speeded-up Robust Features (SURF) [32] which are used 
for 2-D object recognition, as well as Viewpoint Feature 
Histogram (VFH) [33] and spin images [34] for 3-D ob-
ject recognition. Many of these algorithms have been 
adapted for the development of Kinect-based applications, 
including obstacle and game element detection [35], ob-
ject recognition using a depth kernel descriptor and sparse 
distance learning [36], object detection based on multiple 
Kinects [37] as well as 3-D object recognition and 6 DOF 
pose estimation [38]. Most of these developments focus 
either on 3-D feature detection and extraction or on object 
recognition and classification. As will be discussed below, 
the 6 DOF pose estimation algorithm is a great candidate 
for being directly adapted into part of the motion tracking 
system presented here. 

III. METHODOLOGY FOR KINECT-BASED DATA 
ACQUISITION 

A. System Overview 
In order to serve as a substitute for a traditional data ac-

quisition system in educational experiments, the proposed 
Kinect-based system should provide certain functions, the 
most important once being that it should be able to distin-
guish multiple moving objects both from the background 
and from each other, recognize among these moving ob-
jects those that are of interest, and track these objects of 
interest by computing the changes in their six degrees of 
freedoms over time. The raw data produced by the Kinect 
are sequences of point clouds where each frame contains a 
large number of points with associated color and location 
information. In order to achieve the above-mentioned 
functionality with appropriate efficiency and accuracy, the 
Kinect-based system consists of algorithms that can be 
divided into three stages as described in detail in the sec-
tions below. The first stage, namely pre-processing, in-
cludes functions such as scene segmentation to improve 
the computational speed and noise removal to enhance the 
accuracy of the computed results if needed. Depending on 
the complexity of the geometry and texture of the objects 
of interest, different algorithms are chosen for object 
recognition in the second stage. The post-processing is the 
last stage, in which the changes in objects’ six degrees of 
freedom are computed. 
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B. Data Pre-processing 
1) Noise Removal 
Compared to other 3-D scanners, the Kinect has some 

significant disadvantages. For instance, it exhibits a slight-
ly higher noise level and the accuracy of its measurements 
decreases with increasing distance or view angle. This 
noise is illustrated for example by the image of a flat wall 
that is located far away from the Kinect and thus is dis-
torted into numerous flat subparts with different depth 
values (see Figure 1 left). These subparts, which actually 
belong to the same wall, are treated by traditional motion 
detection algorithms as potentially moving objects since 
their depth values change randomly in different frames, 
thus increasing the required computation time and induc-
ing unnecessary errors. 

One of the commonly used noise removal algorithms is 
called statistical outlier removal, which is also available in 
the open-source Point Cloud Library (PCL) [39]. In the 
prototype implementation presented here, a statistical 
analysis of the mean µ  and standard deviation !  of the 
distances of all points to their K  (here 100=K ) nearest 
neighbors is performed, and those points with a mean 
distance larger than a certain preset threshold (here 

!=thresholdD ) are marked as noise and therefore trimmed 
from the point cloud. This technique works well for re-
moving low level measurement noise, but it is not suitable 
for eliminating significant measurement errors such as the 
wall distortion mentioned above. The result of the noise 
removal using this approach is illustrated in the middle 
image of Figure 1. However, holes are inevitably induced 
by the filtering of outliers, in particular along the bounda-
ries between the subparts of the distorted wall. In addition, 
this algorithm has to traverse twice through the chosen 
neighboring points for all points of the entire point cloud, 
which is too computationally expensive. 

A feasible and popular approach to address the wall dis-
tortion problem and remediate low level noise or random 
measurement errors is to smoothen and interpolate 3-D 
points, using methods such as Moving Least Squares 
(MLS) [40]. In this method, for each point, a certain 
weighted MLS function g is minimized over a predefined 
2-D domain according to: 

 ( )2 , min g!"x x  (1) 

 ( ) ( )( ) ( )( )2i
i

g d f f!= "# ix x x . (2) 

Here, ( )d = ! ix x x  is the Euclidian distance of the 
point under consideration from the remaining points of the 
point cloud. Then, ( )d!  is a scalar weight function of d 

according to ( ) 2 2

1d
d

!
"

=
+

, wherein the parameter !  is 

set to a small nonzero value to prevent a possible singular-
ity. Also, the value of !  determines the rate of the de-
crease in the scalar weight function ( )d!  and thus affects 
the interpolating characteristic of the MLS function 
( )g x . Furthermore, if  refers to the original depth value 

at point i, and ( )f x  is its interpolated value, which is 
defined as: 

 ( ) ( )f =x b x c  (3) 

Here, ( ) ( ) ( )1 ,..., kb b! "= # $b x x x  is a polynomial basis 

vector and [ ]1,...,
T

kc c=c  is a vector of unknown coeffi-
cients, which is used to minimize the weighted MLS func-
tion g. For instance, for quadratic interpolation in 3-D 
space, ( )b x is defined as 

( ) 2 21 x y xy x y! "= # $b x  and c is computed by: 

( ) ( ) ( ) ( ) ( ) ( )
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The result of the quadratic MLS interpolation for the 
wall example is shown in the right image of Figure 1. This 
example demonstrates that when interpolation of a high 
enough order is used over a sufficiently large search radi-
us, the individual subparts from the original scan data are 
eliminated and thus no longer identified as potentially 
moving objects. However, this method is computationally 
expensive, even when using only linear interpolation. 

 
Figure 1.   Top view of scene; left: original as acquired by Kinect; middle: filtered using outlier noise removal; right: resampled using quadratic 

interpolation 
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Also, the MLS method has limited effect in restoring 
the wall distortion when the errors are large. Unfortunate-
ly, no efficient algorithm has been developed yet to solve 
this particular problem. In the prototype development of 
the educational laboratory presented here, the Kinect is 
stationary with respect to and relatively far away from the 
background scene. Therefore, one feasible solution to 
address the distorted wall problem is to build a pass 
through filter in the depth direction to remove all the 
points belonging to the wall. Referring to Figure 2 as 
illustration, a histogram evaluation is used to analyze the 
distribution of depth values of the entire point cloud. A 
large number of points are located on or near the distant 
wall and thus have higher measurement errors due to their 
large distances. A threshold is determined using the result 
from histogram analysis and only those points with depth 
values smaller than the preset threshold are kept for fur-
ther usage. Conveniently, the spurious NaN errors gener-
ated by the Kinect at points where the infrared projector 
cannot calculate the depth value are also trimmed. In addi-
tion, the low level measurement noise problem is also 
addressed in the next stage of processing, namely the 
change detection. 

2) Selective Segmentation 
The Kinect generates point clouds with a pixel resolu-

tion of 640!480, resulting in a total of 307,200 points. The 
implementation of any object recognition or motion track-
ing algorithms that use point clouds of this size as input is 
computationally expensive. Thus, applications that require 
close to real-time processing speed are rendered too diffi-
cult to develop. In object recognition applications, seg-
mentation algorithms are usually used as pre-processing 
methods that segment scenes (i.e. image, depth map, point 
cloud, etc.) into several subparts. Subsequently, the cho-
sen object recognition and motion tracking algorithms 
need to be applied only within those subparts that contain 
the objects of interest. During the first step of implementa-
tion, the entire scene is searched in order to detect signifi-
cant changes between point clouds, and only neighbor-
hoods where motion is detected are segmented out as 
input for further computation. 

3) Octree Change Detection 
Change detection in 3-D point clouds can be a difficult 

task due to various reasons. Specifically, the topology 
cannot be assumed to be the same for point clouds that 
originate from different sources, often occlusions (e.g. 
holes in point clouds) occur during data collection, and 
large datasets require efficient data handling routines. In 
light of these considerations, the octree data structure (a 3-
D data structure that may reduce the amount of time and 
memory needed for data pre-processing) shows its suita-
bility as a point cloud data representation. Its advantages 
include that it can be used in point clouds stemming from 
any sources (i.e. different formats generated by different 
scanners), the process is almost automatic and requires 
very limited user interaction, and the computation speed 
can be optimized by adjusting the search radius and time 
[41]. A sample implementation is shown in Figure 3, 
where one of the recorded motion scenes is randomly 
chosen as reference. By comparing the remaining motion 
scenes with the reference, only the neighborhoods that 
may potentially contain a moving object are segmented 
out for further analysis. However, if some of the motion 
scenes coincidentally have the moving objects at the same  

 
Figure 2.  left: original laboratory scene; right: depth value histogram 

of point cloud 

 
Figure 3.  Laboratory environment; left: reference scene; middle: 

regular scene; right: result of octree change detection 

location as the reference one, no change is detected. Thus, 
the resulting data are missing at this particular frame. This 
problem can be mediated by interpolating the resulting 
data. This approach dramatically reduces the required 
computation time in the subsequent processing steps, such 
as object recognition and motion tracking. 

C. Tracking Methods and Data Post-processing!
1) Description of Suitable Tracking Methods 
Traditional tracking methods focus on either the optical 

flow in 2-D images or the motion flow in 3-D space. In 
these methods, the flow can be interpreted as the location 
changes of different groups of 2-D pixels or 3-D points, 
which gives the observer a general understanding of the 
motions. In order to distinguish the differences between 
various motions in the scene and to track only the objects 
of interest, algorithms that were originally designed for 
object recognition can be adapted and integrated into the 
applications discussed here. Based on the complexity of 
the potential objects’ texture and geometry, recognition-
based tracking methods can be divided into three groups: 
color/texture-based tracking (suitable for simple scene 
scenarios but limited reliability of results in other condi-
tions), simple geometry tracking (suitable when objects 
have simple geometry regardless of texture conditions), 
and complex geometry tracking (preferred for intricate 
objects or scenes, work better if integrated with texture-
based tracking methods). 

2) Color/Texture-based Tracking 
One of the most important criteria for evaluating algo-

rithms that track moving objects is the computation speed. 
Among all the available methods that have been devel-
oped, recognition methods using the objects’ color and 
texture are the fastest. Their implementation can be as 
simple as building a pass through filter that only keeps the 
points with color values within a certain preset range. In 
the pass-through filter approach, there is no need to con-
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struct a multi-dimensional data structure for storing the 
points’ values (e.g. coordinates and color) and their com-
plicated connections with each other. Furthermore, the 
original data structure of the point clouds generated by the 
Kinect is kept and the recognition process can be imple-
mented using a simple comparison. The limitation of this 
method is that the color of the objects of interest must be 
unique. Thus, this method can only be applied for certain 
simple applications and yields poor results otherwise. 

Similar to the color-based approaches, texture-based 
tracking methods can be implemented in point cloud ap-
plications by compressing the 3-D data into 2-D images 
(i.e. omitting the depth values). By doing so, most of the 
geometric relations between points are lost. Also, this 
approach simplifies the object recognition problem in 3-D 
space to its counterpart in 2-D images. All 2-D object 
recognition algorithms (such as the SIFT and the SURF 
mentioned above) can be employed to detect certain key-
points on the objects of interest in the compressed 2-D 
images. Then, these keypoints are traced back to the origi-
nal 3-D point cloud and used to compute the changes in 
the positions and orientations of the objects of interest. 
One problem of these methods is that significant distor-
tions may occur during the transformation between 3-D 
point clouds and 2-D images. In certain situations, these 
distortions may hamper the robustness of the 2-D object 
recognition algorithms and the accuracy of motion estima-
tion. 

Common approaches for object recognition consist of 
two main stages, namely extracting and subsequently 
comparing keypoint descriptors. The problems caused by 
the above mentioned distorted transformations originate in 
the first stage. One feasible approach that can lead to more 
reliable results is to use higher dimensional keypoint de-
scriptors such as multi-dimensional SIFT descriptors (in 
the case of recognition-based motion tracking, SIFT de-
scriptors in 3-D space are sufficient). In contrast to the 
well known 3-D SIFT developed by Scovanner et al. [42], 
which added the time as an extra dimension to the original 
2-D descriptors for classifying actions in video sequences 
(i.e. 3-D here refers to x , y  and t ), the method proposed 
by Allaire et al. [43] extended the descriptors from 2-D 
images (i.e. x  and y ) to 3-D spaces (i.e. x , y  and z ). 
This technique starts by extending the scale space using 
the 3-D Gaussian blur operator G, followed by finding the 
keypoints at the maxima/minima of the Difference of 

Gaussian (DoG). The DoG image ( ), , ,D x y z !  is defined 
as: 
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Here, ( ), , ,G x y z !  is the Gaussian blur operator and 
!  is the standard deviation of the Gaussian distribution of 
the points’ grayscale value, ( ), ,I x y z  is the grayscale 
value of the original input image, ik  and jk  are scalar 
numbers used to define the scale of the Gaussian blur. 

The next few steps include finding keypoints, eliminat-
ing bad keypoints (i.e., false keypoints induced by image 
noise or computational errors) and calculating the gradient 
direction and magnitude around the keypoints. In the final 
step, the descriptors are created, which typically consist of 
64 histograms aligned in a 4!4!4 grid, each with 8 azi-
muth directions and 4 elevation directions, thus resulting 
in a feature vector containing 2,048 elements. These re-
sulting vectors are known as SIFT keys and are used for a 
nearest-neighbors search aimed at identifying possible 
matches within images. 

3) Tracking of Simple Objects 
In many educational laboratories, especially those that 

conduct physics experiments, most of the targeted moving 
objects tend to have simple geometries. Among the algo-
rithms that focus specifically on extracting primitive 
shapes, two are widely known, namely the Hough trans-
form [44] and the RANSAC paradigm [45]. In the proto-
type application presented here, the RANSAC approach is 
used for shape detection. This method has been proven to 
work effectively in 2-D as well as 3-D applications. Its 
advantages included that its conceptual simplicity make it 
straightforward to be implemented and easily to be ex-
tended, it requires very limited modification for being 
used in a wide range of applications and it works robustly 
even with the presence of high outlier proportion (i.e. high 
noise level). The main disadvantage of the traditional 
RANSAC method is that it has low computational effi-
ciency and high memory demands, which are both less 
severe in this application because the size of the input 
point cloud is dramatically reduced by the above men-
tioned motion segmentation process. Also, a more effi-
cient RANSAC method is adopted and implemented here 
[46]. 

The RANSAC paradigm can be used for detecting sev-
eral different shapes, include plane, sphere, cylinder, cone, 
etc. Table 1 lists the important parameters for implement-
ing the RANSAC paradigm for some simple shapes, 
namely the input parameters, the output parameters and 
their computation methods, and acceptance criteria. Here, 
the sphere detection is used as a prototype implementa-
tion. The RANSAC paradigm works by randomly drawing 
minimal point sets from the input point cloud and compu-
ting the corresponding shape primitives. Two points 
( )21, pp  and their corresponding normal vectors ( )21,nn  
can be used to fully define a sphere. The center c  of this 
computed sphere is defined as the midpoint of the shortest 
line segment between the two lines that are given by the 
above mentioned two points and their normals, and the 
sphere radius is calculated as described in Table 1. The 
computed sphere is treated as an acceptable candidate if 
all points are within a certain distance !  from the 
sphere’s surface and their normal vectors deviate by less 
than a certain angle !  from that of the sphere. The result 
of detecting a sphere is shown in Figure 4 The motion 
changes of this sphere can be tracked through implement-
ing the RANSAC detection in all consecutive point cloud 
frames. 

4) Tracking of Complex Objects 
Tracking methods that are limited to simple texture or 

primitive shape objects are not always sufficient for edu-
cational applications. For instance, in robotic experiments, 
the target objects tend to have complicated geometries and  
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TABLE I.   
RANSAC PARAMETERS AND CRITERIA FOR SHAPE DETECTION 

Shape Input parameters (position vectors pi 
of minimal point set, corresponding 

normal vectors ni) 

Output parameters Acceptance Criteria 

Plane ( )321 ,, ppp , ( )321 ,, nnn  ( )dcba ,,,  

Result vectors defining plane as: dczbyax =++  

Differences between normal vectors 

321 ,, nnn  of 3 points are less than a preset 
angle !  

Sphere ( )21, pp , ( )21,nn  c , r  
Position vector c  of sphere centroid and radius of 

sphere 
2

21 cpcp
r

!+!
=  

All points are within a certain distance !  of 
sphere’s surface and their normals deviate by 
less than a certain angle !  from normal of 
sphere 

Cylinder ( )21, pp , ( )21,nn  a, c , r  

Direction of cylinder axis 21 nna != , c is intersec-

tion when projecting lines 11 tnp + and 22 tnp +  

onto plane 0=! xa , radius r  is distance between 

c  and 1p  in this plane 

All points are within a certain distance !  of 
cylinder’s surface and their normals deviate by 
less than a certain angle !  from normal of 
cylinder 

Cone ( )321 ,, ppp , ( )321 ,, nnn , c , a , !  
Apex c  is intersection of 3 planes defined by those 3 
points and their normals, direction of cone axis 

1 2 3

1 2 3
, ,p c p c p ca c c c

p c p c p c
! "# # #

= + + +$ %
# # #$ %& '

, 

opening angle 
( )( )arccos

3
ii
p c a

!
"
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#

 

All points are within a certain distance !  of 
cone’s surface and their normals deviate by 
less than a certain angle !  from normal of 
cone 

 
Figure 4.  Scene with a spherical object; left: input point cloud after 
octree motion segmentation; lower right: result of RANSAC sphere 

detection; upper right: estimated sphere parameters 

textures, such as wheeled robots and helicopters. One of 
the most difficult tasks involved in recognizing arbitrarily 
shaped objects is to find an efficient way to represent their 
surfaces. In early approaches for 3-D object recognition, 
curved surfaces are segmented into planar surfaces and 
treated as polyhedral objects. Subsequently, various repre-
sentation methods for arbitrarily shaped surfaces were 
explored. These approaches all struggle with two main 
problems, namely how to represent the surfaces and how 
to match them efficiently. In the application presented 
here, an efficient method that uses local surface patches to 
recognize free-form objects [47] is adopted and imple-
mented. Like many other recognition methods, it starts 

with finding keypoints by using the least square method to 
fit a quadratic interpolation surface to the neighboring 
points and trimming those points that fall outside of a 
certain distance t  from their respective interpolation sur-
faces. Then, the shape index S at point p  is computed as: 

 
( ) ( ) ( )

( ) ( )
1 21

1 2

1 1 tan
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k p k p
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k p k p!
" +
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Here, 1k  and 2k  are the maximum and minimum prin-
cipal curvatures of the quadratic interpolation surface, 
respectively. Then, a point is selected as a keypoint if its 
shape index satisfies either one of the following criteria: 
(i) ( )pS  is the local maximum and it is larger than 

S
n

!2
1

"  or (ii) ( )pS  is the local minimum and it is less 

than S
n
!2

11
"

. Here, !  and !  are preset scalar pa-

rameters. 
For each keypoint, its N  nearest neighboring points are 

set as a local patch and the following parameters are com-
puted and stored in a hash table: the surface type, the 
centroid of this local patch and a histogram. The surface 
type of a local patch is obtained based on the Gaussian 
and mean curvatures of the feature point [48]. For each 
point belonging to this local patch, its shape index and the 
angle between its normal and the normal at the keypoint is 
computed. Those shape indexes and angles form the 
above-mentioned histogram. The hash tables are used to 
find matches between the target object models and the 
input point clouds. Then, the centroids of the matched 
local patches of the keypoints are used to calculate the 
rigid transformation of the object of interest. The result of 
this method is shown in Figure 5. 
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Figure 5.  Complex object recognition; left: input point cloud; lower 

right: reference robot model; upper right: estimated motion 

IV. GAME-BASED PROTOTYPE SYSTEM 

A. Game-based Education Systems 
Video games attract consumers by many elements, such 

as exciting adventures playing out in fascinating scenarios, 
high-fidelity audio effects, near-real 3-D graphics, realistic 
real-world physics simulations as well as the strong en-
gagement of the players. Along with these advantages, 
multiplayer online games also include communication 
modules to enable the remote interactivity between users 
[49]. Although most games are designed for entertainment 
purposes, the basic function included in game engines 
such as graphics support, physics simulation and story 
plots make the games suitable for educational usage [50]. 

A game-based multi-user virtual laboratory environ-
ment that integrates a remote pendulum devices was de-
veloped as a pilot application. This experiment was de-
signed to use the Kinect to capture the motion of a Fou-
cault pendulum and uses the algorithm package discussed 
above to compute the parameters of the pendulum’s mo-
tion and to animate the experiment inside of the virtual 
environment in real time. 

B. Data Analysis and Preparation for Game 
Environment 

Some of the results from the above mentioned motion 
tracking and object recognition cannot be used directly as 
input data for the game-based educational environment 
presented here. For instance, the result of motion tracking 
is a series of point clouds that contain the moving objects 
of interest. In a DAQ system for educational purposes, the 
characteristic parameters of the objects’ motions need to 

be extracted from these point clouds. These data can then 
either directly represent the results of the experiment or 
they can serve as input data for the virtual laboratory envi-
ronment. Even after being extracted, the characteristic 
parameters of the motions still need to be analyzed and 
prepared in a presentable format. Consider as an illustra-
tion the case where the motion of a robot is to be tracked. 
As the final output of each point cloud, a location coordi-
nate and a direction vector of the tracked robot could be 
computed. By drawing these coordinates and directions 
into the same map, the motion of the robot can be visual-
ized. Furthermore, from the position data found at discrete 
time intervals, additional kinematic parameters (e.g. linear 
and angular velocity, acceleration, etc.) can be computed. 

As an illustrative example of the approach described 
above, a Foucault pendulum experiment involving a 
spherical bob was chosen as a prototype implementation 
(see Figure 6). Only the points that represent the spherical 
part are extracted from a series of point clouds and the bob 
positions (x, y, and z coordinate of the sphere’s centroid) 
are computed and recorded. The result is shown in Figure 
7 Based on the small pendulum amplitudes, the bob stays 
in almost the same latitude (i.e. small changes in y coordi-
nate). The noisiest part is the change in the z coordinate, 
which is reasonable because the Kinect has the lowest 
accuracy in the depth direction. 

From the position data, the gravitational acceleration g  
can then be calculated to be 2/77.9 sm , which is accepta-
bly accurate in light of the measurement errors caused by 
the Kinect and the small angle approximation used in the 
calculations. 

 
Figure 6.  Experimental setup of Foucault pendulum 

 
Figure 7.  Pendulum tracking result; left: result plot of x, y, z coordinates, right: result plot in x-z plane 

32 http://www.i-joe.org



PAPER 
KINECT-BASED UNIVERSAL RANGE SENSOR AND ITS APPLICATION IN EDUCATIONAL LABORATORIES 

 

C. Communication between Kinect Device and Game 
Environment 

The massively multiplayer online game used in this ap-
plication is Garry’s Mod [51] (also known as GMod), 
which is based on Half-Life 2’s ‘Source’ game engine and 
written in a revised Lua language [52] called GMod Lua. 
To enable the game environment to communicate with the 
Kinect-based DAQ software package, a Dynamic Link 
Library (DLL) and shared memory were implemented as 
middleware. The DLL is an application of shared libraries 
in the Microsoft Windows operating system, which con-
sists of code, data, and binary files for the operating sys-
tem, custom resources or any combination thereof. This 
technique is preferable for the application presented here 
because the C++ is used as programming language in the 
software package, and *.dll files compiled in C++ can be 
directly loaded by the GMod game server. GMod’s C 
Application Program Interface is also capable of embed-
ding functions or variables into the *.dll files. A simple 
flow chart demonstrating the communication between the 
DAQ software package and the GMod game sever is de-
picted in Figure 8. 

 
Figure 8.  Communication between DAQ package and GMod game 

server 

The communication scheme mentioned above can only 
realize simple callback functions for the variables packed 
in the *.dll files, but it cannot exchange data between 
different software platforms and different processes. In 
order to overcome this limitation, a shared memory was 
allocated, which enables the access of different processes 
to the DAQ software package and the GMod game sever. 
This approach improves the efficiency in exchanging data 
between different platforms by avoiding unnecessary 
copies of the static libraries’ instances [11]. A conceptual 
illustration of the structure of the shared memory between 
the DAQ software package and the GMod game server is 
shown in Figure 9 (refer to [11] for technical details of the 
implementation). 

 
Figure 9.  Communication structure of shared memory 

There are two methods for realizing the communication 
between the Kinect-based experimental setup at the server 
site and the virtual laboratory, which could be located 
remotely at the user site. For some time-insensitive exper-
iments, an off-line batch mode processing method can be 
used, taking advantage of its simplicity in the implementa-
tion. The Kinect DAQ package analyzes the experiment 
and stores the results in data files, sends them to the game 
server at the user site. The data are then used to animate 
the experimental setup within the virtual environment. 
Commands from the users are sent using the same meth-
od. For real-time applications, all variable (including ex-
perimental results and user commands) are stored in the 

shared memory, which can be read/written from both the 
server and user sites in real-time. 

D. Game Environment Setup 
In the game environment, users (i.e. students, instructor, 

and teaching assistant) are represented as avatars. The 
users can send commands to the actuators in the physical 
experimental setup through the game interface (e.g. to 
initialize or change the input parameters for the experi-
ment), conduct the experimental procedure, collect the 
feedback from the sensors (i.e. the Kinect) and observe the 
real-time animation of the experiments [13]. This ap-
proach mimics a hands-on laboratory and gives the users a 
feel of immersion, allows them to observe the physical 
phenomenon in action and benefit from collaborative 
learning. The implementation of this concept is shown in 
Figure 10 The users can see a real-time animation of the 
pendulum experiment and are presented with a summary 
of the computed results in the form of a pop-up window. 

 
Figure 10.  Foucault pendulum experiment implementation in a game 

environment 

V. CONCLUSION AND FUTURE WORK 
In this paper, the recent progress made in developing 

object recognition algorithms, motion tracking algorithms 
and Kinect related applications was reviewed. Three cate-
gories of algorithms for pre-processing, recognition-based 
motion tracking and post-processing were implemented. 
Point cloud data pre-possessing was used to achieve better 
tracking results and higher computational efficiency. In-
spired by algorithm developments in both the object 
recognition and motion tracking areas, recognition-based 
motion tracking methods for robust tracking that can be 
used in different application scenarios were designed. 
Post-processing for motion analysis and data preparation 
for animation in a game environment was implemented. A 
pilot implementation of a virtual laboratory with an inte-
grated experiment was developed and tested. The Kinect 
was proven to be a suitable and powerful sensor substitute 
for universal range data acquisition. This game-based 
educational laboratory environment has shown great po-
tential as a new education tool. 

In the near future, more object recognition and motion 
tracking algorithms will be tested and integrated into this 
DAQ software package in an attempt to find the best solu-
tions for different applications. More experiments will be 
designed and integrated into this game-based virtual la-
boratory environment. Furthermore, a primitive machine 
learning based decision making system will be integrated 
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into the software package, which will enable the system to 
assess the complexity of a particular experiment and to 
automatically choose the best combination of algorithms 
for this experiment. 
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