
PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

Implementation of Reusable Solutions for
Remote Laboratory Development

http://dx.doi.org/10.3991/ijoe.v12i07.5825

Anzhelika Parkhomenko, Olga Gladkova, Aleksandr Sokolyanskii,
Vladislav Shepelenko, Yaroslav Zalyubovskiy

Zaporizhzhya National Technical University, Zaporizhzhya, Ukraine

Abstract—Development of remote laboratory for embedded
systems complex hardware/software design is an actual task,
because the challenges existing in this area, require qualita-
tively new techniques, technologies and tools of design. By
using the possibilities of remote labs and reusable hard-
ware/software components, developer can more optimally
organize the project and realize it in a shorter time. Devel-
opment and usage of remote labs for designers can give new
opportunities and ways for accumulation and study of exist-
ing design experience and ready solutions. On the other side,
today, in the area of remote laboratories development are no
common standards and approaches. Different developers
offer different solutions for laboratory functionality, inter-
faces, a set of experiments, etc. At the same time, there are a
number of ready-made solutions that can be used repeatedly
for more optimal development and rapid integration with
existing projects. Therefore, investigation and implementa-
tion of re-use methodology and its practical realization is an
urgent task. The paper presents the structural components
and API of remote laboratory RELDES, proposed for reuse
in other projects for creation of mobile applications, new
clients or services. Open questions of RESTful API docu-
menting are also discussed.

Index Terms—embedded systems design; remote laborato-
ry; software/hardware components reuse; API; REST -
request.

I. INTRODUCTION
Nowadays reusable solutions are becoming more and

more necessary in various fields. Different reasons of
reuse are traced, but main goal - optimization. Reuse
brings a lot of benefits, from which time and cost savings
are the most important. A huge number of works demon-
strate, that the reuse is demanded in the engineering. Re-
usable solutions are of interest to engineering community
because they give possibility to replicate and to implement
the separate parts of system without spending time for
their development [1-5].

Embedded systems (ESs) design is one of the fields of
reusable solutions creation and application. Requirements
to the ESs functional complexity and design time are
enhanced. Under these conditions, the development of
systems based on ready solutions becomes more effective.
Thus, the accumulation of technical solutions and their
subsequent reuse are perspective directions of ESs design
efficiency improving.

As known, the ESs includes the hardware and software
components. Increasing reuse opportunities is a well-
known task for software as well as for hardware designers.
But current software and hardware engineering practices
have embraced different approaches to this problem [1].

The actual question is: at what stage of the life cycle of
the hardware/software systems should decide that certain
components (or modules entirely) worthy of reuse? Nor-
mally this decision makes on the fly somewhere between
analysis and design, sometimes it is taken at the design
stage, sometimes - during realization or generalization.

For a successful selection of software components for
reuse are important the following aspects [6]:
• Understand the architecture of the original code.
• Define potential reuse.
• Evaluation of expenses of time for reuse as compared

to reworking of components.
• Decide for each component: what and how to reuse.

Revolution of platform-based approach in the design
was the beginning of the new concepts of ESs quick de-
velopment and prototyping. Ready hardware/software
platforms give possibility of systems components reuse
for the design process efficiency improvement. The Basic
Concept for Remote-based Embedded Systems Design
was proposed in the authors’ previous works [7]. Devel-
opment and application of remote laboratories for ESs
rapid prototyping based on reusable hardware and soft-
ware components is an actual task today for professionals
[8-10].

There are many successful projects, moving faster by
reusing existing software (WebLab-Deusto, iLab, Sahara,
etc.) and hardware (VISIR, etc.) solutions. [11-13].
Knowledge about reuse can be useful for developers of
such remote laboratories (RLs) for ESs design.

That is why the aim of this work is investigation of re-
use experience in the field of remote lab development and
identification of remote labs reusable hardware/software
components.

II. INVESTIGATION OF RL INFRASTRUCTURE AS A
SERVICE

As shown last decade the number of remote laboratories
increased. Each developer finds his own way to develop
remote laboratory from scratch. This way is always diffi-
cult and includes the different kind of problems during the
development and testing RL.

Hence, in the recent years, the question about the new
approach to the development of the remote laboratory,
which consists of independent modules, becomes relevant.
The development of such an approach will contribute the
lab’s individual components reuse and simplify the crea-
tion of RLs.

One such approach is Laboratory as a Service (LaaS)
paradigm which is described in [14]. The main idea of this

24 http://www.i-joe.org

PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

paradigm is developing modular remote laboratory. All
functionalities of which are implemented using REST web
service (but not limited) and will be delivery in the “ser-
vice description file” as a set of abstraction service. As
authors underline the first interpretation of this approach is
called Anything as a Service (XaaS), but it was no clear
and had some undecided question. Moreover in the [15]
was said that LaaS is a not new idea and came from Soft-
ware to Service (SaaS) paradigm. Also in this work au-
thors proposed their own approach to delivering laborato-
ry server infrastructure as a service (LIaaS). In contrast to
the LaaS paradigm in the presented approach user don’t
have to deployed and implemented loosely coupled ser-
vices themselves. LIaaS have two way how to access to
the experiment will be delivered (at the lab owner’s dis-
cretion): using a Remote Laboratory Management System
(RLMS), or without RLMS directly with laboratory using
Experiment Dispatcher.

On a practice we implement of an experiment engine
(EE) using the Experiment Dispatcher for ELVIS lab
which was developed on iLab Sharing Architecture. The
Experiment Dispatcher is a software framework that al-
lows for the centralization of some typical functionality of
online laboratory servers. It shifts the core features of an
Online laboratory server to a central location and allows
for a seamless reuse of the lab server infrastructure by
heterogeneous online laboratories. In other words, it ab-
stracts the development of the software necessary to de-
liver remote experimentation.

PHP language was choosing like the programing lan-
guage for developing EE. For communication experiment
engine with server the Dispatcher has REST Web Services
API. API includes several HTTP methods such as
PUT/POST, GET and other. All requests are presented in
the JSON format. Requests should contain the Authoriza-
tion HTTP header (username and password) and the
HTTP header “X-apikey”. The value is a key that will
identify this particular experiment engine with a lab serv-
er. The values of both username and password (for the
Authorization header) and X-apikey were received after
registration on iLab Service Broker.

Example of the HTTP request //get experiment status
 $response = \Httpful\Request::get($url."status")
 -

>authenticateWith($user,$password)
 ->addHeader('X-

apikey',$apiKey)
 ->expectsJson()
 ->send();
 $result = json_decode($response);
 echo "Experiment status:";
 if($result->success) {echo "true";}
 else echo "false";

The result generated by the batched lab is a data in
JSON format, so we should decode it.

The one examples of the use of laboratory’s infrastruc-
ture and functionalities has been shown above. This ap-
proach allows the reuse remote lab infrastructure to crate
your own experiment, without spending the time to devel-
op whole RL.

Research has shown that in general exist several remote
laboratories which promote the reuse paradigm in the field

of remote labs development: iLab Shared Architecture,
WebLab-Deusto, Labshare Sahara. These laboratories
have been investigated by various authors in the works
[16, 15, 17]. All of these remote laboratories have their
own RLMS that help to organize a centralized manage-
ment of the laboratory’s functionalities (registration, au-
thorization, queue, management of experiment and other).
The functionality of which is available through the Web-
service API.

Based on this experience of using a Web-service API
for creation additional client for remote lab, it was decided
to merge all the functionality of the remote lab RELDES
into the RELDES management system and to create API
which was used REST technology for connection client
with service. This will allow easier to create a new serv-
er’s client.

III. IMPLEMENTATION OF REMOTE LABORATORY FOR
DESIGN OF EMBEDDED SYSTEMS

Remote Laboratory for Design of Embedded Systems
(RELDES) is user friendly application for testing and
rapid prototyping of the ESs based on reusable hardware
and software components [18]. Today 4 experiments
based on Arduino boards and control equipment - actua-
tors, ultrasonic distance sensor, traffic light and LCD
display are implemented [19].

All specifications, schemes of experiments and program
code (templates for the experiments usage) are available at
the RL web-page. Like other developers of Relle lab [20],
we also have chosen Arduino platform, as one of the most
popular and simple reusable solution. Nevertheless, the
proposed set of experiments can be expanded for other
hardware/software platforms, and tasks connected with
realization of various classes of ESs.

RELDES Management system includes next modules:
Registration; Administration; Execution of the experi-
ment; API (Fig. 1).

For Registration in the system a common procedure of
filling the standard fields is implemented: Username,
Password, Email, Name. If a login is successful, the user
receives an email with link to complete the registration
process. After confirmation, the user will be able to use
API RELDES with his individual API-KEY.

Administration of the system includes monitoring of
experiments current state, statistics of experiments execu-
tion, as well as feedback to users. Admin module is im-
plemented as panel which includes area for information
visualization and 3 points of menu: Notification of users;
Keeping statistics; Management of experiments (Fig. 2).

On the Notification of users is a list of all users regis-
tered in the system with the ability of mail to individual
user or to a group of users using simple check box.

On the Keeping statistics the system displays a table
with all successfully compiled source code. The chart of
each experiment activity is also presented.

On the Management of experiments the system displays
a table with the current state of each experiment and if
experiment is occupied - it shows the login of the user
who is working on the experiment now. Also for each of
experiments will be shown a Queue table and users will
receive access to experiments in accordance with this
queue.

iJOE ‒ Volume 12, Issue 7, 2016 25

PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

Figure 1. RELDES Management system scheme

Queue panel (Fig. 3) demonstrates the current state of
each experiment (free/busy), allows the view of all
users who are in the queue list. Start and finish time for
each user and experiment is also displayed as the basic
information.

When the experiment successfully occupied by the
user, he has the next opportunities for Execution of the
experiment:
• Create program code from scratch in the RL spe-

cial window with syntax highlighting.
• Upload own file with program code.
• Use ready software solutions (several scenarios are

proposed for each experiment).

After that, the source code can be sent to the server
for compilation and loading to Arduino board of the
current experiment.

RELDES API provides access to the lab server
infrastructure and allows a seamless reuse of the lab
functionality.

Figure 2. RELDES Admin panels

The API includes functions for the next HTTP requests
(id - experiments number from 1 to 4 and username – user
login):
• GET/…/expStatus/id - checks on the status of experi-

ment and returns result: busy(1) or free (0).
• POST/…/queueUp/id/username – checks on the status

of experiment and puts the user with the given
userName in the experiment queue. Returns the result
about adding to the queue.

• GET/…/getQueue/ id/username - gets the waiting time
specified user #UserName for a given experiment #id

• GET/…/getExpQueue/id - gets a list of all queues on
the experiment #id

• GET/…/getAllQueue - gets a list of all queues on ex-
periments

• POST/…/compile/id/ - checks the validity of the pro-
gram code for Arduino board.

• POST/.../upload/id/username/ - uploads the hex file af-
ter compiling if current user has taken the experiment.

For example, function compile receives and handles
REST- requests [21-22] that can be sent by the users. It does
the following: sends the code from request to controller;
compiles it on the server using Ino; generates result of
compiling as response.

Any registered developers can use the API for their own
purposes. It may be use for creation of mobile applications,
new clients or services.

IV. IDENTIFICATION OF REUSE POSSIBILITIES OF RELDES
COMPONENTS

A priori, we proceeded from the fact that the possibilities
of reuse should be laid from the beginning of development
and that is why we started with a clear and simple architec-
ture, which is well solves the task (Fig. 4).

As a template for application separation to the levels, we
have chosen a MVC (Model-View-Controller) pattern. The
MVC pattern describes a simple method for constructing the

26 http://www.i-joe.org

PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

structure of an application, the aim of which is to sepa-
rate the business logic from the user interface [23-24].

As a result, the application is easier developed,
scaled, tested and accompanied. The correct separation
of applications helps to maintain a strict separation of
functionality that provides the flexibility and conven-
ience and ease of maintenance. This makes the different
functionality of the application reusable.

MVC pattern helped functionally divided our system
to further the reusable components creation. Model,
View and Controller interfaces have been developed.

Interface Controller demonstrates the implementation
of system interaction with user, so all users main meth-
ods are located in classes that inherited from this inter-
face. We have created three classes and inherited from
Controller (front, experiment and admin) to divide the

system to structural components (Fig.6). All functions that
connected with all methods from main system page are lo-
cated in front class. Experiment class includes all methods
that provide performance of the experiment and experiment
page. Admin class contains all administrative functions for
keeping statistics, email notifications etc.

Model is developed to store data that retrieved to the
!ontroller and displayed in the View. So three models for
controllers: front_model, experiment_model, admin_model
have been developed. Objects of front_model, experi-
ment_model and admin_model respectively for access to
their functions in controllers have been created. In particular,
the Model deals with the registration and authorization of
users (for example, functions: addUser, getUser, getUserID).
Also, the Model provides information about the experiments:
occupied or free experiment (isBusy); to occupy experiment
(occupy); to free experiment (free).

Figure 3. RELDES interface with Queue panel

Figure 4. Overview of the RELDES architecture

iJOE ‒ Volume 12, Issue 7, 2016 27

PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

View is responsible for displaying information (visuali-
zation). Often it serves as a representation of the form
(window) with graphic elements. Consider the purpose of
each View: index – main page; header – header of main
page; footer – footer of main page; Arduino – review of
Arduino board; IDE – review of Arduino IDE; experi-
ments – shared part of all experiment; LED – specific part
for experiment with LED; servo – specific part for exper-
iment with servo; distance – specific part for experiment
with distance sensor; display – specific part for experi-
ment with display.

The Controller provides the connection between the us-
er and the system: It controls users input and uses Models
and Views for necessary response implementation. Also
the Controller implements site navigation (for example,
function: index, Arduino, IDE, experiments, etc.).

Broadcast video is implemented like individual module.
Specifically it is implemented as MPEG-broadcast
through a web sockets, and drawing in the tag <canvas>.
Video from the camera is encoded by ffmpeg. Launched
on nodejs JavaScript code sends images via a web sockets.
Upon receipt of the user frames are decoded in the client
using jsmpeg (MPEG1 Video decoder). After decoding
the frame is drawn in the tag <canvas> via WebGL.

So if our system will be expanded and requires more
components we can easy create more classes and inhere
from our interfaces.

We assume that our RELDES project contains a few
modules for reuse: Individual users’ module queuing to
experiments; Individual module implemented broadcast
video; Admin panel; API. Queue module has been already
successfully used and checked in another our project.

V. FEATURES AND APPROACHES TO API DOCUMENTATION
DEVELOPMENT

After the development of API, it is very important to
make a detailed and well-structured documentation of it,
because exactly this step will determinate how effectively
this API will be used. Today API RELDES documenta-
tion is presented in plain text descriptions on the labs web-
page and consists of General description, API routes and
methods, Input parameters, Output data, possible errors
(Fig. 5).

The issue of documenting is not so simple, as it looks.
Most companies, even large ones, still prefer to use a
simple text description. But the disadvantages of this ap-
proach lies in the fact that such documentation is hard to
maintain up to date and its functionality is quite limited.

To simplify the process of API documenting exist dif-
ferent specialized tools and services (API Blueprint,
Swagger, RESTUnited, MireDot, Kittn API, apiDOC,
apiGen and others). As a rule, they generate documents
based on the description in a standardized formats (JSON,
Markdown, YAML, RAML). For example, Swagger sup-
ported YAML format. YAML is much more convenient
than the JSON, but it does not allow easy describe the
repeating elements, which are often present in the API
descriptions. API BluePrint use format Markdawn wich
was intended primarily for text formatting and not for use
as a basis to generate. So, it is very difficult to adjust it
under API documenting. API Designer – is interactive
editor, based on RAML format for writing documents
online, and a platform for testing. Its undoubted ad-
vantages are simplicity and consistency, but the problem

Figure 5. Web-page with API RELDES description

Figure 6. Web-page with RELDES API description generated by

apiGen.

is the lack of tools developed by the community. Some
generators support limited number of programming lan-
guages, some are not for free and all have their own ad-
vantages and disadvantages.

So, after the all possibilities were considered, one of the
most suitable was found apiGen. ApiGen is the tool for
creating professional API documentation from PHP
source code. ApiGen has support for PHP 5.3 namespac-
es, packages, linking between documentation, cross refer-
encing to PHP standard classes and general documenta-
tion, creation of highlighted source code and experimental
support for PHP 5.4 traits [25]. Use of this tool speeds up
the project due to the fact that just in the process of devel-
oping you write the necessary comments for the code and
then simply pass this file to apiGen, and it generates a
ready-made page with search, links, etc., i.e. there is no
need for the additional development of the page with
description of API documentation. We think this tool
really allow us to create smart and readable documenta-
tion for our PHP project (Fig. 6).

However, in the future, when the RELDES API will
expand, its functionality will be appropriate to use another
standards and generators for developing and documenting.

VI. CONCLUSIONS
As in other high-technology fields, in remote lab devel-

opment there is great benefit in the reuse of different intel-
lectual property. Creation of reusable lab components is a
step towards the reduction of labor costs in the remote lab

28 http://www.i-joe.org

PAPER
IMPLEMENTATION OF REUSABLE SOLUTIONS FOR REMOTE LABORATORY DEVELOPMENT

development. However, the problem is that the costs of
design, implementation and maintenance of publicly
available code are much higher than the cost of custom
simple solutions. It begins with the fact that reusable code
requires more completed and detailed documentation,
better quality and test coverage, as well as examples of
use and extra time for all these tasks.

Creation of reusable components isn’t the key to im-
proving "reuse" code. The existence of high-quality code
available for reuse does not guarantee its use. Because,
developers should have reuse culture for normal reuse
process.

Standardization and unification of API descriptions, as
well as API documentation issues are important for both -
developers and users. In fact, no special solutions are
unlikely to be effective in addressing these problems in
the future if the API will be extended or modified.

REFERENCES
[1] D. Bornstein, “Model Reuse through Hardware Design Patterns

Recycling Unused Medicines to Save Money and Lives”, March,
2015. http://opinionator.blogs.nytimes.com/2015/03/20/recycling-
unused-medicines-to-save-money-and-lives/?_r=0

[2] F. Xiang, G. Ling, and Y. Jin, “User-driven GIS software reuse
solution based on SOA and Web2.0 concept”, IEEE Computer
Science and Information Technology, 8-11 August 2009, pp. 5-9
(ICCSIT 2009. 2nd IEEE International Conference on)

[3] T. Barbour, “Developing Reusable Components”, Proceedings
Embedded Systems Conference, San Francisco, CA, 2001.

[4] J. Fredriksson, and L. Rikard, “Reusable Component Analysis for
Component-Based Embedded Real-Time Systems”, Proceedings
of the ITI 2007 29th Int. Conf on Information Technology Inter-
faces, Cavtat, Croatia, pp. 615-620, June 25-28, 2007.
http://dx.doi.org/10.1109/iti.2007.4283842

[5] L. Baum, and M. Becker, “Generic Components to Foster Reuse,
Proceedings. 37th International Conference Technology of Object-
Oriented Languages and Systems, IEEE, Sydney, NSW, pp.266-
277, November 20-23, 2000.

[6] J. L. Scouler, and M.R. Bakal, “Successful code reuse with code-
centric development and modeling”, January 24, 2012.
http://www.ibm.com/developerworks/rational/library/reuse-code-
centric-development-modeling/index.html

[7] A. Parkhomenko, O. Gladkova, S. Kurson, A. Sokolyanskii, and
E. Ivanov, “Internet-Based Technologies for Design of Embedded
Systems”, Journal of Control Science and Engineering (Serial
Number 5), vol.3, no.2, pp.55-63, Mar.-Apr.2015

[8] A.Parkhomenko, A. Sokolyanskii,V. Shepelenko, Y. Zalyubov-
skiy, and O. Gladkova “Reusable Solutions for Embedded Sys-
tems Design”, International Conference on RemoteEngineering
and Virtual Instrumentation, REV2016, Madrid, Spain, February
25-27, 2016, pp. 313-317

[9] K. Henke, G. Tabunshchyk, H.-D. Wuttke, T. Vietzke, and St.
Ostendorff “Using Interactive Hybrid Online Labs for Rapid Pro-
totyping of Digital Systems”, International Journal of Online En-
gineering (iJOE), Vol 10 (2014), pp.57-62.
http://dx.doi.org/10.3991/ijoe.v10i5.3994

[10] G. Tabunshchyk, D. Van Merode, P. Arras, and K. Henke “Re-
mote Experiments For Reliability Studies Of Embedded Systems”,
International Conference on RemoteEngineering and Virtual In-

strumentation, REV2016, Madrid, Spain, February 25-27, 2016,
pp.68-71

[11] WebLab Deusto – Scalable, web-based and experiment-agnostic
remote laboratory management system. https://github.com/weblab
deusto/weblabdeusto

[12] The gateway4labs project/Go-Lab Smart Gateway.
https://github.com/gateway4labs/

[13] SAHARA Labs. http://sourceforge.net/projects/labshare-sahara/
[14] M. Taw!k, C. Salzmann, D. Gillet, D. Lowe, H. Saliah-Hassane,

E. Sancristobal, and M. Castro, “Laboratory as a Service (LaaS): a
Novel Paradigm for Developing and Implementing Modular Re-
mote Laboratories,” International Journal of Online Engineering
(iJOE), vol. 10, no. 4, pp. 13-21, Jun. 2014.
http://dx.doi.org/10.3991/ijoe.v10i4.3654

[15] D. G. Zutin, M. Auer, P. Ordu˜na, and Ch. Kreiter “Online Lab
Infrastructure as a Service: A new Paradigm to Simplify the De-
velopment and Deployment of Online Labs” International Confer-
ence on RemoteEngineering and Virtual Instrumentation,
REV2016, Madrid, Spain, February 25-27, 2016, pp.202-208

[16] P. Ordu˜na, L. Rodriguez-Gil, I. Angulo, and O. Dziabenko “To-
wards a microRLMS approach for shared development of remote
laboratories” International Conference on RemoteEngineering and
Virtual Instrumentation, REV14, Porto, Portugal, Feb. 26-28,
2014, pp.375-381

[17] M. Niederstaetter, Th. Klinger, and D.G. Zutin “An Image Pro-
cessing Online Laboratory within the iLab Shared Architecture”
International Journal of Online Engineering (iJOE), vol. 6, no. 2,
pp. 37-40, May. 2010.

[18] RELDES. http://swed.zntu.edu.ua, http://youtu.be/u2anq--UYFg
[19] A. Parkhomenko, O. Gladkova, E. Ivanov, A. Sokolyanskii, and

S. Kurson, “Development and Application of Remote Laboratory
for Embedded Systems Design”, International Journal of Online
Engineering (iJOE), vol.11, no. 3, pp.27-31, 2015.
http://dx.doi.org/10.3991/ijoe.v11i3.4519

[20] Remote Labs Learning Environment. Deployment Environment
for Arduino. http://relle.ufsc.br/

[21] REST-approach to building web applications client-server archi-
tecture. Mind Team, January 2015. http://mindteam.com.ua/ua/
feed/rest-approach

[22] A. Naiden, Types of HTTP requests and REST philosophy.
Habrahabr, January 24, 2009. http://habrahabr.ru/post/50147/

[23] Model-View-Controller. https://msdn.microsoft.com/en-us/library/
ff649643.aspx

[24] K. Waterson, “Model-View-Controller MVC”.
http://www.phpro.org/tutorials/Model-View-Controller-MVC.html

[25] Smart and Readable Documentation for your PHP project
http://www.apigen.org/

AUTHORS
Anzhelika Parkhomenko, Olga Gladkova, Ale-

ksandr Sokolyanskii, Vladislav Shepelenko, and Yaro-
slav Zalyubovskiy are with the Software Tools Depart-
ment, Zaporizhzhya National Technical University, 64,
Zhukovskogo str., Zaporizhzhya, Ukraine (E-mail: par-
hom@zntu.edu.ua).

This work is supported by the TEMPUS project DESIRE “Develop-
ment of Embedded System Courses with implementation of innovative
Virtual approaches for integration of Research, Education and Production
in UA, GE, AM” (544091- TEMPUS-1-2013-1-BE-TEMPUS-JPCR).
Submitted 06 May 2016. Published as resubmitted by the authors 15 June
2016.

iJOE ‒ Volume 12, Issue 7, 2016 29

