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Abstract—Operating systems interface between hardware 
and the user, random numbers are useful for security and 
simulation, and file systems form the program access to 
them in a modern operating system. Blending these items 
into a remotely accessed infrastructure forms the basis for 
supporting operating systems projects. This work describes 
the hardware, software, and communication infrastructure 
to support student projects by sharing remote hardware to 
acquire background radiations events with a Geiger coun-
ter, transforming those events into random numbers, and 
providing those numbers through a custom file system. 
Collectively, the hardware and software provide an inex-
pensive remote laboratory experience for computing stu-
dents. 

Index Terms—operating systems; random numbers; file 
systems; pedagogy; remote laboratory; Geiger Counter; 
Raspberry Pi  

I. INTRODUCTION 
Remote access to scarce or potentially dangerous labor-

atory experiences is an emerging trend in engineering 
education. This has the effect of multiplying the equip-
ment investment, and in the case of education, providing 
laboratory access to a larger contingent of students. This, 
in turn, can be crucial when attempting to bootstrap criti-
cal engineering education infrastructure with limited re-
sources [1,2]. In addition to the obvious advantage of 
enhanced investment, remote resource access also brings a 
level of convenience to the user, laboratories may be 
available at a place and time of the student’s choosing, for 
example.  

While remote engineering laboratories are emerging 
due, in part, to the rich internet communication infrastruc-
ture, the remote model was adopted in the earliest days of 
modern computing. Exploiting the time-sharing paradigm 
at the operating system level many computers allowed 
“modem-access” to share resource. The UNIX time-
sharing system may be the most recognizable [3] example 
of such a system. That having been said, it is not as com-
mon for computer science students to have shared, low-
level, access to hardware components as is becoming 
prevalent in other areas of engineering. Since an operating 
system must interface with hardware we wished to pro-
vide a moderately low-level hardware experience for our 
students in the Operating Systems class. To that end we 
developed a shared laboratory experience using a consum-
er-grade Geiger counter to form the basis for students to 
develop software to synthesize random numbers from 

background radiation events and to make those numbers 
available by developing a custom file system in user 
space.  

The balance of this report will provide a background for 
remote laboratories, describe the operating systems class, 
the Geiger counter hardware, random numbers acquired, 
and the file system project.  

II. BACKGROUND 
When designing remote laboratory experiences it is im-

portant to consider local objectives in the context of those 
articulated in the broader intellectual community. For 
example, Restivo, et. al, summarize a variety of important 
objectives in the context of tactile experiences in virtual 
laboratories. These objectives include learner-centered 
items such as meeting the needs for diverse learning 
styles, provide experimental results to the students for 
subsequent analysis, to correlate laboratory results with 
theoretical concepts, and to provide a basis for lifelong 
learning [4].  

Two additional, important, considerations emerge when 
considering design and deployment of both the remote 
laboratory and the student projects designed around it. 
Those are the combination of so-called “soft skills” and 
the elusive student motivation. While not directly address-
ing pedagogy, Edwards, Tovar, and Soto make the obser-
vation that employers expect students to have skills be-
yond the technical, including teamwork, leadership, and 
the ability to communicate in written and oral form [5].  

In a similar vein, Settle and Sedlak report the results of 
a survey designed to ascertain faculty attitudes toward 
computing student motivation quantitatively. Their analy-
sis indicated that the majority of computing educators 
perceive motivation “to be important in all learning situa-
tions, but particularly…in courses with significant obsta-
cles, and in particular areas of computing, including theo-
retical courses [6].  

To meet these objectives engineers and educators have 
pursued a variety of approaches including team projects, 
flipped classrooms, virtual and remote laboratories, and 
other implementations of active learning. For example, 
Mason, Shurman, and Cook did a careful comparison of a 
senior engineering course in traditional and inverted, or 
flipped, formats. They report that while it took students up 
to four weeks to adapt to the inverted classroom, the ulti-
mate outcomes were similar or better than that for the 
traditional classroom [7].  
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Likewise, Kyle, et al., show the design of a project-
based bioinstrumentation course [8]. Students were to 
design, test, and implement biomedical signal measure-
ment apparatus. They report that this approach generates 
“highly exciting instructional platforms for both teachers 
and students.” 

There are examples in the computing domain as well 
[9-12]. For example, Arbelaitz, Martin, and Muguerza 
report good results for an active learning approach to 
computer architecture [12]. Using a problem-based learn-
ing format requiring approximately sixty hours to com-
plete, they reported that student learning was positively 
impacted. They also observe that “the students prefer to 
learn through carrying out a real project because they feel 
it provides them with more motivation to learn.” Similar-
ly, Uhsadel, et al., use teams of two to develop a public-
key cryptography application using a combination of 
hardware and software. The students define the tradeoff 
between the hardware and software components, thus 
providing a platform for using both hard- and soft-skills in 
their implementation [13].  

Consistent with these efforts to enhance motivation and 
learning, we approached the Operating Systems class at 
our institution with a series of sustained mini-projects, 
culminating in the system described in this report. The 
hardware and software infrastructure described here was 
first demonstrated at the REV 2016 conference, and was 
developed to support the final project as an active-
learning, team oriented, exercise for the Computer Science 
Operating Systems class [14]. 

III. OPERATING SYSTEMS 
Like others [15], the Operating Systems course as 

taught at our institution combines the study of operational 
principles with significant hands-on implementation. It is 
considered a capstone course, and is offered near the end 
of their undergraduate program, typically the end of their 
senior year. Classroom topics include both operating sys-
tems principles and hands-on implementation. Topics 
include general system architecture, interrupt and clock 
structures, system calls, inter-process communication, 
process scheduling and management, memory organiza-
tion and management, file systems, device interfaces and 
drivers, and contemporary security issues. 

In addition to the topical lectures described above, the 
course includes a series of mini-projects to be developed 
and implemented. Examples include probing the operating 
system kernel for debugging information, modifying the 
process scheduling algorithms, and developing file sys-
tems and/or device drivers. These are accomplished using 
a combination of operating systems such as MINIX and 
Linux. 

As a capstone class it is assumed that, in addition to the 
technical content, the class will consolidate their analytical 
abilities with appropriate soft-skills. To facilitate the soft-
skill integration into the final project students are divided 
into teams of four or five. Each team is self-organizing, 
dividing the work assignments as they see fit, and report-
ing progress weekly to the instructor. In addition, some 
class time is allocated to team meetings where the instruc-
tor can observe and interact with the team to both assess 
progress and advise where necessary. 

IV. PROJECT DESCRIPTION 
One important aspect of this class is giving students ex-

perience with both device interfaces and file system level 
access to device information. Typically a file system pro-
vides programs, through the common read and write sys-
tem calls for example, access to bytes of data stored on an 
external medium. For example, reading from a disk drive. 
That concept is abstracted in UNIX-based systems to 
include reading from devices acting as files. For example, 
reading from stdin, the standard input device (keyboard), 
or writing to /dev/null as a data sink. For this project stu-
dents develop a system that, when read, provides random 
numbers synthesized from Geiger counter events. This 
requires them to interact with two ends of the acquisition 
subsystem; background data acquisition (synthesizing 
random numbers from Geiger counter events) and the file 
system interface.  

The choice of physically-based random number genera-
tion is based on the concept that real-life projects are mo-
tivating for most students. Random numbers are vital for 
both security and simulation. Our modern cryptographic 
systems depend on them. That having been said, many 
random number libraries provide algorithmically pro-
duced, pseudorandom, numbers. These can be sensitive to 
initial condition, and even risky in situations requiring 
security [16]. Likewise, many simulations rely on random 
numbers and can be affected by the quality of those num-
bers [17]. 

There are a variety of physically-based random number 
generators available, ranging from electrical and thermal 
noise to radiation events. A survey of these, as well as 
pseudo-random number generators, can be found in [18]. 
We chose to use a Geiger counter since it is visual (an 
LED glows for each event) so students could visually 
correlate what was happening in their programs with the 
hardware output. 

V. HARDWARE 

A. Cluster Overview 
Once the students acquire Geiger counter event 

timestamps and synthesize random numbers from them, 
they then develop a file system in user space (FUSE) to 
allow program access to those numbers  

The hardware supporting this effort has been developed 
across two generations of Raspberry Pi computers. Initial-
ly we augmented a previously designed cluster developed 
to illustrate supercomputing principles [19-21] with a 
Geiger counter interface, networking software, and addi-
tional compute capability. This cluster is shown in Fig. 1. 
Designed primarily to support pedagogy in the high-
performance computing class, the cluster consisted of four 
Raspberry Pi computers [22] and an Nvidia Jetson TK1 
[23] which includes a quad-core cpu coupled to 192 core 
CUDA card. The TK1 was not deployed for this project, 
but the cluster was augmented with two additional Rasp-
berry Pi computers, for a total of six units. That configura-
tion supported the initial deployment for the Operating 
Systems class, supporting a total of thirty-one students.  

Since this system was originally deployed, upgraded 
Raspberry Pi computers have become available. Conse-
quently, the system has been reduced in size, but upgraded 
with new capabilities as described below. The originally 
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deployed system with Geiger counter interface is shown in 
Fig. 1, the enhanced system is shown in Fig. 2. 

B. Raspberry Pi 
The Raspberry Pi (Fig. 3) has become a popular, credit-

card, sized computer system capable of supporting a varie-
ty of operating systems. The original model used for this 
project was the “B+” model, featuring:  
• Broadcom BCM2835 ARM CPU, 700 Mhz. 
• 512 MB RAM 
• 10/100 Mbps Ethernet 
• 16 MB micro SD card acting as a disk drive 
• 4 USB 2 ports, audio in/out, composite video, and 

HDMI outputs. 
 

In addition, the Raspberry Pi shares capabilities found 
in other embedded systems. Specifically, the modules 
expose a variety of General Purpose IO (GPIO) pins ena-
bling interfacing to the physical world, including to the 
Geiger counter used here. 

The upgraded Raspberry Pi, while identical in form-
factor, quadruples the number of enhanced CPU’s and 
increases the baseline clock speed and memory. Specifi-
cally, each model 2 includes 
• A 900MHz quad-core ARM Cortex-A7 CPU 
• 1GB RAM 

 

C. Geiger Counter and Interface 
The Geiger Counter module forming the basis for ran-

dom numbers in this project is the Sparkfun SEN-11345 
[24] is shown in Fig. 4. While this unit is capable of 
providing data through a USB port, we elected to provide 
an interface directly from the buffered output from the 
GM tube to GPIO inputs on the Raspberry Pis. This sup-
ports the students by providing an environment for low-
level interface handling. Note that the Raspberry Pis use 
3.3v logic while the Geiger counter is 5v, so appropriate 
level translation is required. The output of the Geiger 
counter was buffered through Schmitt triggers and con-
nected to appropriate GPIO pins of each Raspberry Pi, 
giving each system the same input data. 

VI. NETWORKING SUPPORT 
One critical component for system deployment is to be 

able to integrate into the university network infrastructure. 
This involves meeting security requirements and export-
ing student accounts and file systems to the Raspberry Pi 
computers. This allows students to remotely login to the 
Pis in the same manner, and having the same available 
resources, as any of their accounts on a “larger” computer.  

To accomplish this the Raspberry Pis had the Raspbian 
Linux distribution installed, patched, and updated with 
security and kernel packages. The operating system was 
then configured to work with the departmental NFS server 
which provides student files. Login credentials are authen-
ticated through a combination of LDAP and Kerberos 
configured to require initial login into an existing universi-
ty computer followed by a second login to a specific 
Raspberry Pi identified by it’s IP address. This two-level 
security allowed for easy remote access with enhanced 
security. 

 
Figure 1.  Original Cluster 

 
Figure 2.  Enhanced Cluster 

 
Figure 3.  Raspberry Pi 

 
Figure 4.  SparkFun Geiger Counter 
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VII. RANDOM NUMBER ACQUISITION 
As indicated earlier, random numbers are important for 

security, encryption, and simulation. Software-only ap-
proaches attempt to seed a generator from entropy in the 
system, such as time, and form an algorithmic series of 
pseudo-random numbers. Certain physical phenomena, 
such as radiation events and thermal noise, are believed to 
be truly random [25]. Comparing the time difference be-
tween successive pairs of radiation events generates a 
single bit. These timestamps are harvested to create ran-
dom bits, bytes, and words as necessary.  

To support the acquisition of the timestamps, along 
with other aspects of this project, a variety of open-source 
software was deployed. This includes the GNU compiler 
suite (C, C++), Python, including SciPy, Numpy. This 
was supplemented by the pigpio [26] library to help man-
age GPIO access to the Geiger counter, and the FUSE and 
Python FUSE libraries to support file system develop-
ment. 

The pigpio library formed an essential part of this work. 
An open-source software, it allows for managing signals 
on the general-purpose IO pins of the Raspberry Pi com-
puters and makes these signals available to multiple users 
simultaneously through a variety of software interfaces, 
including a callback API. 

Fig. 6 shows sample code for Geiger counter event col-
lection. When the Geiger counter indicates an event on 
GPIO pin 23 of the Raspberry Pi the pigpio library inter-
cepts the signal on the falling-edge, which triggers a 
callback to the function registered, in this case “mycb”. 
The “mycb” function, in this case, gets the timestamp for 
the event from the operating system and saves that 
timestamp to a file for future use. It should be noted that 
there is some time ambiguity in this approach since these 
are multi-user, multi-process, operating systems so there 
could be some bias introduced for the random numbers.  

A visual inspection can be used as a quick check of the 
plausibility of the random numbers being generated [27] 
as shown in Fig. 5. In this image each bit in a number is 
mapped to a single pixel which is set to either dark or light 
corresponding to the bit value. Notice the lack of obvious-
ly apparent pattern in the image. 

While the visual test is a reasonable first look at the 
random numbers, there are other available test suites. One 
commonly used test suite in the public domain is the ENT 
pseudorandom number sequence test program [28]. This 
program implements a variety of tests such as measuring 
the entropy, compressibility, mean, Chi square, Monte 
Carlo estimate for Pi, and a serial correlation coefficient. 
Table 1, under Pre-Bias Removal, shows the results of 
running this program on 1.2 million timestamps. Notice 
that, while very good, there is some residual bias in the 
sequence. Table 1, Post-Bias Removal, shows the data 
after removing the bias [29].  

Finally, Fig. 7 shows an application using the bits to 
generate an image live on the web [30]. In this image 
twelve random bits are used to form three 4-bit random 
numbers, the first of which selects one of sixteen rows, the 
second selects one of sixteen columns, and the third des-
ignates one of sixteen colors to display at location im-
age[row,column]. 

Students are given wide latitude to design and create 
the specific mechanism for using/creating the random 
numbers  in  their individual  systems.  For example, since  

 
Figure 5.  Random Bit Image 

#!/usr/bin/python

import time,pigpio

fo=open("randtimegeiger.txt","a")
def mycb(x,y,z):
        t=time.time()

        print t
        fo.write(str(t)+’\n’)
        fo.flush()

pin=pigpio.pi()

cb=pin.callback(23,pigpio.FALLING_EDGE,mycb) 
Figure 6.  Pigpio Program Fragment 

 
Figure 7.  Snapshot Live Random Number Web Demonstration 

TABLE I.  ENT RANDOM TEST 

 Pre-Bias Removal Post-Bias Removal 
Entropy 1 1 
Chi-square 0.671601 0.328496 
Mean 0.499635 0.50008 
Monte-Carlo-Pi 3.458389 3.137899 
Serial-Correlation -0.333256 -0.000454 
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background radiation provides relatively infrequent 
events, on the order of thirteen to twenty counts/minute at 
our location, it is not unusual for a data request to exhaust 
the supply of truly random bits. At that point the student 
can, for example, use the last remaining truly random bits 
to seed a conventional pseudo-random number generator 
until sufficient random data is reacquired. Others would 
continually acquire bits in the background and save the 
data over days and weeks, creating a larger pool of num-
bers. 

VIII. FUSE FILE SYSTEM 
Once random numbers are acquired, students are ex-

pected to develop their own File system in User Space 
(FUSE) to provide user access to the random numbers. 
The use of FUSE files systems within an operating sys-
tems class has been discussed in [31]. As a secondary 
function, the student file system could also record the 
background radiation rate into a log file. 

FUSE [32] is a cooperative, call-back based interface to 
the Linux file system infrastructure. The FUSE layer has 
been used to implement a variety of useful file systems 
ranging from NTFS [33] to encrypted file systems [34]. In 
operation the user requests service through the normal 
system call interface, trapping to the kernel. The Linux 
Virtual File system layer validates the request and acti-
vates the FUSE specific API, which then relays the vali-
dated request to the user file system via callbacks defined 
in the API. Since the actual reading and writing is imple-
mented in user space, all of the normal development tools 
are available and API bindings to a variety of computer 
languages can be easily provided. Thus students can work 
in a language familiar to them, or can exploit development 
efficiencies in high level scripting languages such as Py-
thon. 

While the development occurs in user-space, and the 
kernel does a great deal of the detailed communication 
and validation work, the user is still responsible for im-
plementing all the traditional aspects of a typical file sys-
tem including directory structure, path management, file 
creation, deletion, modification, as well as any associated 
metadata.  

Given the FUSE libraries and Geiger Counter access, 
the students proceed with the task of creating a file system 
that a) provides random numbers to the user program 
when the file is read and b) logs the current estimate of 
counts per minute when a file within the files system is 
written to. 

IX. DEPLOYMENT AND FUTURE WORK 
Between the deployment of the original cluster and the 

enhanced cluster this system has served approximately 
sixty students divided into ten implementation teams. 
Although the system is capable of serving the Geiger 
counter data directly over the network, the file systems 
were developed remotely on the Raspberry Pi. The system 
was deployed and ran continuously, 24/7, for a total of 
over sixty consecutive days without failure.  

Building on the successful deployment, we would like 
to extend this work in at least two directions. The first is 
to do a systematic assessment of student attitudes and 
outcomes now that we have a demonstrated, stable plat-
form to work with. The other is to integrate additional 

hardware-based approaches to random number generation 
into the system for comparison. 

X. CONCLUSION 
We show the development, implementation, and de-

ployment of an end-to-end, hardware and software, remote 
platform supporting the development of file systems for 
the computer science Operating Systems class. We believe 
that this provides a rich experimental environment for 
student projects. 

REFERENCES 
[1] A. Naddami, A. Fahli, M. Gourmaj, A. Pester, and R. Oros, “Im-

portance of a Network of Online Labs in Magrebian Countries”, 
REV 2014 International Conference on Remote Engineering and 
Virtual Instrumentation, pp. 77-78, 2014. 

[2] R. Salah, G. R. Alves, and P. Guerreiro, “Reshaping Higher 
Education Systems in the MENA Region: The Contribution of 
Remote and Virtual Labs”, International Conference on Remote 
Engineering and Virtual Instrumentation (REV), pp. 240-245, 
2014. http://dx.doi.org/10.1109/rev.2014.6784265 

[3] D. Ritchie and K. Thompson, “The UNIX Time-Sharing System”, 
Communications of the ACM, vol. 17 number 7, pp. 365-375, July, 
1974. http://dx.doi.org/10.1145/361011.361061 

[4] M. T. Restivo, A. M. Lopes, L. D. Machado, and R. M. Moraes, 
“Adding Tactile Information to Remote & Virtual Labs”, IEEE 
Global Engineering Education Conference, 2011. 
http://dx.doi.org/10.1109/educon.2011.5773287 

[5] M. Edwards, E. Tovar, and O. Soto, “Embedding a Core Compe-
tence Curriculum in Computing Engineering”, ASEE/IEEE Fron-
tiers in Education Conference, 2008. 

[6] A. Settle and B. Sedlak, “Computing Educator Attitudes about 
Motivation”, unpublished Technical Report: arXiv:1603.08996v1, 
2016. 

[7] G. Mason, T. R. Shuman, and K. E. Cook, “Comparing the Effec-
tiveness of an Inverted Classroom to a Traditional Classroom in an 
Upper-Division Engineering Course”, IEEE Transactions on Edu-
cation, vol. 56 number 4, pp. 430-435, November, 2013. 
http://dx.doi.org/10.1109/TE.2013.2249066 

[8] A. M. Kyle, D. C. Jangraw, M. Bouchard, and M. E. Downs, 
“Bioinstrumentation: A Project-Based Engineering Course”, IEEE 
Transactions on Education, vol. 59, number 1, pp. 52-58, Febru-
ary, 2016. 

[9] V. Cardenas, L. Azucena, F. Bertacchini, L. Gabriele, A. 
Tavernise, D. Elizabeth, O. Vizueta, P. Pantano, and E. Bilotta, 
“Surfing Virtual Environment in the Galapagos Islands”, Interna-
tional Conference on Remote Engineering and Virtual Instrumen-
tation (REV), pp. 192-198, February, 2015. 

[10] K. Dickmann and A. A. Kist, “Remote Network Laboratory 
Development”, International Conference on Remote Engineering 
and Virtual Instrumentation (REV), pp. 370-374, February, 2014. 

[11] P. Abreu, M. R. Barbosa, A. M. Lopes, “Virtual Experiment for 
Teaching Robot Programming”, International Conference on Re-
mote Engineering and Virtual Instrumentation (REV), pp. 395-
396, February, 2014. http://dx.doi.org/10.1109/rev.2014.6784199 

[12] O. Arbelaitz, J. I. Martin, and J. Muguerza, “Analysis of Introduc-
ing Active Learning Methodolgies in a Basic Computer Architec-
ture Course”, IEEE Transactions on Education, vol. 58, no. 2, pp. 
110-116, May, 2015. http://dx.doi.org/10.1109/TE.2014.2332448 

[13] L. Uhsadel, M. Ullrich, A. Das, D. Karaklajic, J. Balasch, I. Ver-
bauwhede, and W. Dehaene, “Teaching HW/SW Co-Design with 
a Public Key Cryptography Application”, IEEE Transactions on 
Education, vol. 56, no. 4, pp. 478-483, November, 2013. 
http://dx.doi.org/10.1109/TE.2013.2257785 

[14] W. J. Keeler and J. Wolfer, “A Raspberry Pi Cluster and Geiger 
Counter Supporting Random Number Acquisition in the CS Oper-
ating Systems Class”, International Conference on Remote Engi-
neering and Virtual Instrumentation (REV), pp. 344-345, Febru-
ary, 2016. 

[15] Nieh, J. and Vaill, C., “Experiences Teaching Operating Systems 
Using Virtual Platforms and Linux”, ACM SIGCSE 2005, 2005. 

30 http://www.i-joe.org



PAPER 
FROM GEIGER-COUNTERS TO FILE SYSTEMS: REMOTE HARDWARE ACCESS FOR THE OPERATING SYSTEMS COURSE 

 

[16] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux 
Random Number Generator”, IEEE Symposium on Security and 
Privacy, 2006. http://dx.doi.org/10.1109/sp.2006.5 

[17] C. J. A. Bastos-Filho, J. D. Andrade, M. R. S. Pita, and A. D. 
Ramos, “Impact of the Quality of Random Numbers Generators 
on the Performance of Particle Swarm Optimization”, IEEE Inter-
national Conference on Systems, Man, and Cybernetics, pp. 4988-
4993, October, 2009. http://dx.doi.org/10.1109/icsmc.2009.53 
46366 

[18] A. A. Thomas and V. Paul, “Random Number Generation Meth-
ods a Survey”, International Journal of Advanced Research in 
Computer Science and Software Engineering, vol. 6, no. 1, pp. 
556-559, January, 2016. 

[19] J. Wolfer, “A Heterogeneous Supercomputer Model for High-
Performance Parallel Computing Pedagogy,” IEEE Global Engi-
neering Education Conference-ITEP, March, 2015. 
http://dx.doi.org/10.1109/educon.2015.7096063 

[20] J. Wolfer, “A Model Supercomputer for Instructional Support 
(demonstration),” exp.at’15, The Third International Conference 
for Online Experimentation, June, 2015. 

[21] J. Adams, J. Castwell, S. J. Matthews, C. Peck, E. Shoop, D. Toth, 
and J. Wolfer, “The Micro-Cluster Showcase: 7 Inexpensive Beo-
wulf Clusters for Teaching PDC”, Special Session: ACM Tech-
nical Symposium on Computing Science Education, March, 2016. 
http://dx.doi.org/10.1145/2839509.2844670 

[22] Raspberry Pi Foundataion, “Raspberry Pi”, https://www.rasp 
berrypi.org/ 

[23] Nvidia, “Jetson TK 1”, http://www.nvidia.com/object/jetson-tk1-
embedded-dev-kit.html 

[24] Sparkfun, “Geiger Counter Random Number Tutorial”, 
https://www.sparkfun.com/tutorials/132 

[25] J. Keisey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic 
Attacks on Pseudorandom Number Generators”, Fast Software 
Encryption, Fifth International Workshop Proceedings, March, 
1998. 

[26] Pigpio, “pigpio library”, http://abyz.co.uk/rpi/pigpio/ 
[27] D. Beznosko, T. Beremkulov, A. Duspayev, A. Iakovlev, A. 

Tailakov, and M. Yessenov, “Random Number Hardware Genera-
tor using Geiger-Mode Avalanche Photo Detector”, unpublished 
preprint: arXiv:1501.05521, 2015. 

[28] J. Walker, “ENT: A Pseudorandom Number Sequence Test Pro-
gram”, http://www.fourmilab.ch/random/, 2016. 

[29] J. Mather, http://www.ciphergoth.org/crypto/unbiasing/, 2016. 
[30] J. Wolfer, “Random Number Demonstration”, http://www.cs. 

iusb.edu/~jwolfer/ 
[31] J. Wolfer, “Linux Experience in the General Operating Systems 

Class”, International Conference on Engineering and Technology 
Education, March, 2014. http://dx.doi.org/10.14684/intertech. 
13.2014.42-44 

[32] FUSE, “File system in User Space”, https://github.com/ 
libfuse/libfuse 

[33] Ntfs3g,”NTFS FUSE File system”, http://www.tuxera.com/ 
community/open-source-ntfs-3g/#tab-1414502495464-2-9 

[34] V. Gough, “ENCFS Encrypted File System”, https://github.com/ 
vgough/encfs 

AUTHORS 
J. Wolfer is with the Department of Computer Science, 

Indiana University South Bend, South Bend, IN, 46634, 
USA. 

W. J. Keeler, is with the Department of Computer Sci-
ence, Indiana University South Bend, South Bend, IN, 
46634, USA. 
Submitted, 09 March 2015. Published as resubmitted by the authors on 
09 April 2015. 

 

iJOE ‒ Volume 12, Issue 9, 2016 31


