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Abstract—During interaction with learning robots the students are often 
faced with the challenge of understanding the robot intent and its practical real-
ization. To answer this challenge, we propose a connected environment which 
integrates the robot, its digital twin and virtual sensors. We implemented a rein-
forcement learning scenario in which a humanoid robot learns to lift a weight of 
unknown mass through autonomous trial-and-error search. To expedite the pro-
cess, trials of the physical robot are substituted by simulations with its digital 
twin. The optimal parameters of the robot posture for executing the weightlift-
ing task, found by analysis of the virtual trials, are transmitted to the robot 
through internet communication. The approach exposes students to the concepts 
and technologies of machine learning, parametric design, digital prototyping 
and simulation, connectivity and internet of things. Pilot implementation of the 
approach indicates its potential for teaching freshman and HS students, and for 
teacher education. 
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1 Introduction 

One of the main objectives of introducing the capability of learning in robot (espe-
cially in industrial applications) is to reduce the need for human guidance when per-
forming robot tasks. Driven by training and experience, the learning robot can adapt 
to the environment and improve its performance. However, there are domains where 
intensive human interaction with learning robots is an important requirement. During 
robot programming and debugging there is a need for real-time monitoring and con-
trol of robot learning procedure including inputs, outputs and state information [1]. 
Another example of human guidance is robot learning by demonstration – direct or 
indirect [2, 3]. The interaction can be especially intensive in human-guided training of 
robot reinforcement learning [4]. In educational robotics the ultimate objective of 
robot learning implementations is to educate students. Therefore, active participation 
of students in robot training is essential. 
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The two machine learning approaches, mainly applied to teach new skills to robots, 
are imitation learning and reinforcement learning [5, 6]. In imitation learning, the 
robot records and imitates the target movement demonstrated by the instructor. In 
reinforcement learning (RL), the robot is not directly instructed, but through autono-
mous trial-and-error search, it determines and records the action which optimizes the 
performance criterion. The opportunities to teach robots new skills or adapt existing 
skills to new situations by using the RL approach have been intensively investigated, 
while one of the main challenges is to reduce the experimentation time and the wear 
and tear on the robot. A recommended method to cope with this challenge is by 
means of an empirical predictive model which is autonomously generated and used to 
guide robot actions [7]. 

Simulation in robotics is a software tool for design and testing robot behaviors on a 
virtual robot before implementing them on a real robot. Some of the benefits of using 
robotics simulations, listed in [8], directly relate to reinforcement learning. In particu-
lar, performing robot trials in a virtual environment allows experimental data to be 
generated faster, more easily, and in any desired quantity, thus significantly speed-up 
the learning process. Modern computer aided design systems provide means for creat-
ing virtual models which accurately resemble the geometric and mechanical charac-
teristics of the real robots. 

Cloud robotics is a method to enhance functionality of a robot by using remote 
computing resources of memory, computational power, and connectivity [9]. In robot 
learning, connection to the intended cloud platform enables the accumulation, storage, 
and processing of data of robot trials and other relevant information on the Web serv-
er, and transmit the data to the robot. The platform can serve a hub of the Internet of 
Things (IoT) network, through which robots can share between them the learned skills 
and communicate with other systems. 

The goal of our research project is to propose and explore an approach in which the 
challenge of implementation of robot learning is used as a thread for teaching the 
discussed robot intelligence technologies to high school and first-year engineering 
students. In this approach, the student is assigned to implement a robot task in which 
the desired behavior cannot be pre-programmed, but has to be learned by the robot. In 
such a project the student teaches the robot to acquire the skill by implementing a 
reinforcement learning process supported by simulation modeling and cloud commu-
nication. 

Our research is an ongoing multi-case study conducted at the Technion Center for 
Robotics and Digital Technology Education through collaboration with the PTC Israel 
Office. Participants are 1st and 2nd year students from MIT doing summer internship 
projects in our lab, high school (HS) students participating in our outreach activities, 
and Technion students studying technology education. We utilize robots constructed 
by students using the ROBOTIS Bioloid Premium kit (http://en.robotis.com) and 
software tools by PTC, namely, the 3D modeling system Creo Parametric, and the IoT 
platform ThingWorx. 

Our project so far has passed three research phases. In the first phase, university 
students implemented a RL scenario in which a humanoid robot, through a series of 
trials, learns to adapt its body tilt angle for lifting different weights [10]. In the second 
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phase, a group of high school students, mentored by a faculty staff member and our 
university students, constructed animal-like robots and implemented different RL 
scenarios, utilizing the approach tested in the first phase. The focus of this paper is the 
third phase, in which university students apply reinforcement learning, 3D modeling, 
and cloud communication in order to implement a scenario in which a humanoid 
robot learns to manipulate multiple joints to maintain its stability when lifting differ-
ent weights.  

2 Robot weightlifting task 

Pick-and-place manipulations by fixed-base robots are widely explored and studied 
in industrial robotics. On the other hand, planning basic handling tasks such as 
weightlifting, to be executed by humanoid robots, is yet an evolving research topic 
[11, 12]. In the weightlifting task, if the mass and size of the weight are known to the 
robot, then its posture can be controlled in the open loop. The control policy is to 
prevent the robot from falling down by maintaining its static and dynamic stability 
[9]. If the weight's mass and size are unknown, the close loop control is needed. Here, 
the control policy can be determined analytically, based on the dynamic model of the 
robot and data from force and torque sensors [11]. Rosenstein et al. [13] noted that 
analytic solutions for humanoid robot weightlifting can be complex. They proposed 
an alternative approach based on reinforcement learning through trial-and error.  

Recently, performing weightlifting tasks by humanoid robots has become a chal-
lenge in educational robotics addressed to university and even high school students 
[14]. Michieletto et al. [15] used a weightlifting task as a challenge of their "Autono-
mous Robotics" course for MSc students majoring in computer science. The task was 
implemented trough robot learning from a human demonstrator with the aid of Mi-
crosoft Kinect. Weightlifting by a humanoid robot was also posed as a benchmark 
assignment of the robot competition FIRA HuroCup for university and school stu-
dents [15, 16]. The assignment was posed without reference to robot learning.    

Our motivation to explore the educational challenge of humanoid robot weightlift-
ing came from developing a fetch-and-carry robot for the RoboWaiter contest [17] in 
which we introduced the humanoid league [18, 19]. In the contest assignment, the 
mass, size, and location of the weight were predetermined. Following the contest 
project, we turned to the new challenge of lifting a weight when its mass is unknown 
to the humanoid robot. As mentioned in the introduction, in the first phase of our 
project, undergraduate students constructed and programmed a humanoid robot that 
coped with the new challenge and learned to lift an unknown weight by a series of 
trials and errors [10]. The robot was built from the ROBOTIS Bioloid Premium kit 
and had 18 degrees of freedom, an accelerometer, a Bluetooth communication mod-
ule, an IR sensor, and a sound sensor. The robot was programmed using RoboPlus 
software. 

The reinforcement learning scenario was as follows: The robot is given an un-
known weight while sitting down.  The mass of the weight is estimated by measuring 
the angular velocity of the robot shoulder joints in the way described in [10]. Then, 
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the robot performs weightlifting trials for different values of body tilt angles, each 
time attempting to stand up from the sitting position. The robot evaluates whether it 
succeeded or failed the task by determining if it remains standing or has toppled over, 
based on data provided by its accelerometer [10]. 

Because of the memory limitation of the robot controller, the robot can store results 
of a limited number of trials and only until the robot is powered off. Therefore, the 
empirical data acquired from the robot trials were stored on a local computer. The 
computer communicated with the robot via a Bluetooth interface supported by a Py-
thon script. Based on these data, the computer provided the robot with the tilt angle 
value suitable for successfully lifting the specific weight. 

In the following section we will discuss the way in which the robot weightlifting 
task has been implemented in our current study. 

3 Development of robot learning mechanisms 

The developed robot learning environment is presented in Figure 1. It consists of 
three components: the robot, the simulator (digital twin) and the cloud (ThingWorx). 
The constructed robot is essentially the same as in the first stage of our project, but 
was upgraded by adding grippers to suit barbell lifting. The digital twin is a virtual 
counterpart of the robot created to test robot functioning in the simulation mode in-
stead of testing the physical robot. The ThingWorx server is connected with the robot 
through the local computer used as a routing point. ThingWorx also receives and 
analyzes data from the simulator and sends recommendations for weightlifting pos-
ture to the robot upon request. 

3.1 Construction and calibration of digital twin 

The virtual robot was created using the Creo modeling software. We took the com-
puter designed models of parts of the Bioloid premium kit from the ROBOTIS web-
site and imported them to Creo. Using these parts, we assembled the virtual robot in 
the same order as the construction of the physical robot. Because the models of the 
robot parts on the website do not have assigned weights, we weighed the parts and 
added the mass properties to each of the parts in Creo. We also assigned to each joint 
of the virtual robot the same range of motion as of the corresponding joint of the 
physical robot. 

After assembling the virtual robot, we calibrated the model to have the same bal-
ance characteristics as the physical robot. During this step, we modified several parts 
of the model, such as its motors, where we took into account its uneven distribution of 
mass. Then, we compared the balance characteristics of the physical robot and its 
digital twin. We tested the balance of the physical and virtual robots in the same pos-
ture shown in Figure 1, for different values of mass of the weight. For the virtual 
robot, the calculation was made using the "center of gravity analysis" and "sensitivity 
analysis" features of Creo. The maximal mass that each robot can hold in this posture 
without losing stability was determined. We calculated that the discrepancy between 
the physical robot and its digital twin was less than 3%. 
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Fig. 1. The implemented robot ML 

3.2 Simulation analysis 

The objective of the simulation analysis was to optimize reinforced learning of the 
physical robot. Two possible approaches to such analysis were considered: real-time 
on-line simulation and batch offline simulation. The latter approach was chosen as 
more simple and applicable to cloud-based learning. The approach implements mas-
sive multi-parametric analysis (virtual testing) of weightlifting by the digital twin to 
create a "space" of possible solutions and refine it into a "sub-space" of optimal solu-
tions. Then the optimal solutions are stored on the IoT platform and used in on-line 
communication with the physical robot. 

The problem for the simulation analysis was defined as follows: for the weight of a 
given mass, test the balance of the virtual robot in its various postures over the range 
of possible bending angles at the hip, knee, and ankle joints. The concept of a "virtual 
sensor" was utilized – using capabilities of Creo, we have attached a "sensor" to the 
center of gravity of the digital twin, to analyze the balance of the robot for different 
combinations of possible angles of the joints. The angles ranged within 100° for the 
hip and knee joints and within 90° for the ankle joint. We divided the ranges into 
intervals of 10°. This resulted in 10 angles for the hip joint, 10 angles for the knee 
joint, and 9 angles for the ankle joint, which means that there were a total of 900 robot 
postures to analyze for each value of mass of the weight. 

The two parameters calculated for each posture of the digital twin were: !, the dis-
tance  between the center of gravity and the center of the foot, and !, the robot's 
height. The distance ! is used to evaluate the robot stability, and the height ! is a 
parameter which characterizes the robot's posture when completing the task. Using 
“Design Study” capability of Creo, the simulator determined various combinations of 
angles that allow the robot to lift the given weight. By further analysis, the optimal 
combination (in which the robot is in balance, ! is maximal and ! is minimal for this 
!) was found. We note that the number of virtual trials can be reduced by using the 
Dynamic Analysis capability of Creo. 
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3.3 Cloud management of robot learning data 

Each optimal solution, generated through simulation analysis for each mass value, 
contained three parameters (hip, knee and ankle angles). Database of these optimal 
solutions has been uploaded to a data table in IoT platform ThingWorx.  

 We defined a function in ThingWorx which, upon getting the weight value as in-
put, utilizes the data table, and returns the corresponding angle values of the optimal 
solution. When the physical robot has to lift a weight, it first measures the weight 
mass, and sends its value to the ThingWorx server. In response, the robot receives the 
values of the three angles suggested based on the simulation analysis. Then the robot 
executes the lifting using those values. 

To visualize the online communication between the robot and ThingWorx, we cre-
ated a mashup web page which serves as a dashboard for displaying parameters of the 
robot weightlifting trial (the weight's mass and the three angles). The mashup is 
shown in Figure 2. 

 
Fig. 2. The mashup displaying the data table in ThingWorx 

4 Educational implementation 

As noted in the introduction, our research project explores an approach to teaching 
robot intelligence technologies to high school and first-year engineering students by 
engaging them in teaching robots to learn. The instructional design in the project is 
implemented by the authors of this paper. A faculty staff member develops instruction 
in robot construction and programming and conducts courses for school and freshman 
students. 

Two more instructional designers are Technion mechanical engineering graduates 
working at PTC and pursuing an additional degree in science and technology educa-
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tion in our faculty. In the research project, which is part of their studies, they develop 
instructional units on 3D modeling and internet communication in robotics and men-
tor school and freshman students in these topics. The strategic planning, project coor-
dination and supervision of the instructional designers are made by a faculty member 
who also guides school and freshman students in pedagogical concepts relevant to 
robot learning. Consultancy regarding the modeling and communication technologies 
and software systems was given by PTC. 

Three first-year students majoring in mechanical engineering at MIT have per-
formed robot learning projects in our lab, two students in 2015 and one in 2016. The 
learning activities in the 2015 project are discussed in [11]. In the 2016 project the 
student constructed and programmed the robot; created and calibrated the digital twin; 
programmed the balance analysis procedure for weightlifting; implemented virtual 
trials and transmitted the results to the cloud data table; presented her work at PTC 
and faculty seminars; and wrote a project report. 

We implement the proposed approach by teaching intelligent technologies through 
outreach courses to students of a high school in Haifa that has recently established an 
engineering systems program. In the second stage of our research project, during the 
2015-2016 academic year, we conducted pilot courses in 3D modeling and robotics to 
11th graders. In the modeling course, the students learned to design and analyze com-
puter models of robots using Creo. 

 In the robotics course, they constructed various robots using the Bioloid kit and 
implemented different scenarios of reinforcement learning. The students applied the 
knowledge acquired in our courses in the project developed for participation in the 
FIRST Robotics Competition. The school team participated in the 2016 international 
competition in St. Louis and won the Rookie All Star Award for “implementing the 
mission of FIRST to inspire students to learn more about science and technology.” 

5 Conclusion 

The approach proposed in our research extends the scope of educational robotics, 
which traditionally focuses on practices with preprogramed robots. Results of our 
research indicate that the challenge of developing learning robots can engage novice 
engineering students in experiential learning of innovative concepts and technologies, 
such as machine learning, parametric design, digital prototyping and simulation, con-
nectivity and internet of things. We found that those concepts and technologies are 
within the grasp of understanding of freshman and HS students. 

The current stage of our research focuses on enriching student interaction with the 
learning robot using means of augmented reality (AR). We are developing a connect-
ed AR application (using ThingWorx Studio) which will allow to visually observe 
real-time data measured by physical and virtual sensors – directly overlaid over the 
physical robot. The student will interact with the robot through the AR application to 
take the control of robot motion. In this case the student will get an opportunity to 
view the motion as performed by the digital twin – before it is executed by the physi-
cal robot. At this stage we will practically implement our approach in an outreach 
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course and we anticipate that the evaluation of this experience will lead to the devel-
opment of strategies for learning with learning robots. 
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