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Abstract—To cope with the fault detection in dynamic conditions of inertial 
components in the mobile robots, an improved principal component analysis 
(PCA) method was proposed. This work took a five gyroscopes redundancy al-
location model to realize the measurement of the attitude. It is hard to distin-
guish the fault message from dynamic message in dynamic system that results 
in false alarm and missing inspection, so we firstly used the parity vector to 
preprocess the measurement data from the sensors. A fault was detected when 
the preprocessed data was dealt with PCA method. The effectiveness of the im-
proved PCA method introduced in this paper was verified by comparing fault 
detection capabilities of conventional PCA method under the dynamic condi-
tions of the step fault. The results of the simulation and experimental verifica-
tion of the method was expected to contribute to the fault detection and improve 
the accuracy and reliability of the multi-sensors system in dynamic conditions. 

Keywords—Measurement Data Processing, Mobile Robot, Sensor Redundan-
cy, PCA, Parity Vector, Fault Detection. 

1 Introduction 

The mobile robot plays a more and more important role in industries and our daily 
life. The reliability of the mobile robots is regarded as one of the critical issues that 
needs to be addressed for the widely acceptance in different environments [1-3]. To 
achieve this, both the system reliability and faults detection need to be considered 
during the design and manufacture processes.  

To maximize reliability of system, the redundancy allocation problem has been 
well developed [4]. In mobile robot attitude control system, the inertial sensors are the 
core components which can influence the accuracy and reliability of the system [5]. 
Hardware redundancy for inertial sensors has been studied since 1970s and has been 
widely used in mobile robots these years to enhance the fault-tolerant capability [6]. 
When the sensors configuration matrix is determined, faults can be detected through 
the corresponding integrity detection algorithm, e.g. parity vector and principal com-
ponent analysis. 

In fault detection, the parity vector method has been developed well and is applied 
in real-time system by deriving the parity vector through the relationship between the 
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state variables and output of the system [7]. This approach can also be used in the 
designated sensor’s fault detection whose main idea is to design a performance crite-
rion sensitive to specified sensor’s fault and insensitive to other sensor’s fault and 
noise [8]. Thus, the parity vector shows effective in separating the fault data from 
dynamic data in dynamic system. 

Principal component analysis has found extensively application in fault detection 
based on the correlation between the process variables. PCA is able to decompose the 
original data space into two orthogonal subspaces called principal component sub-
space (PCS) and residual subspace (RS) by its dimensionality reduction capability so 
as to construct a new set of data. The change information of process variables can be 
mainly described in PCS when there is strong correlation between variables [9-10]. 

A major limitation of the traditional PCA method is that the model built from the 
data is time-invariant [11]. In other words, it is a static model which performs poorly 
in dynamic system since the normal changes may result in false alarm that would 
compromise the reliability of the system. To overcome this, various methods have 
been proposed by authors and research institutions. Li & Henry put forward two re-
cursive PCA algorithms to reduce the false alarms in process monitoring [12]. On this 
basis, a recursive kernel PCA (RKPCA) algorithm has been studied due to its good 
response to dynamic nonlinear monitoring by capturing the time-varying and nonline-
ar relationship between the process variables [13]. But we still lack a method that 
combine the virtue of parity vector and PCA. 

In this paper, we constructed a redundant system consisting of five inertial sensors 
to enhance the system reliability. The data collected from the sensors were prepro-
cessed using parity vector to isolate the dynamic measurement one. Then the PCA 
model was constructed based on the standardized parity vector. Finally we calculated 
the squared prediction error SPE and Hotelling T2 statistic and compared them with 
the preset threshold value. After the simulation in MATLAB, the method was tested 
on an experimental platform to evaluate the consistency. In order to obtain the real-
time state of the robot, the data collected by sensors were transmitted to the monitor 
center by a wireless module. 

2 The design of five gyroscopes redundant system 

This paper constructed a cone geometry configuration system with five inertial 
sensors (gyroscopes) for the measurement of mobile robot’s attitude. The configura-
tion of five sensors is based on the idea of fault tolerant system, if there are only 3 
sensors of the system, the system can easily loss its function once one sensor broke 
down. Besides, for 4 sensors system although lower detection failure rate is achieved 
with, the fault sensor can’t be isolated. Considering the process and cost, the system 
consisting of 5 sensors is able to realize the attitude measurement as well as fault 
detection and isolation with minimum number. 

The geometry configuration of five sensors case is shown in Figure 1. The input 
axes of sensors are placed perpendicular to the five side faces of the hexahedron. The 
alpha angle between p axis and input axis is 54.7356! [14]. When a fault is included 
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in the redundant inertial system, the measurement equation can be described as fol-
lows:  

         m Hx f!= + +                                                (1) 

where m is a 1n!  measurement vector of the n  sensors, H  is a 3n!  meas-
urement matrix of the state space to the sensor space, x  is a 3 1! state vector of 
, ,p q r , ! is a 1n!  measurement noise vector with a normal distribution (white 

noise), and f is a 1n! fault vector. 
 

 
Fig. 1. Five inertial sensors redundant configuration scheme 

Based on Figure 1 the measurement matrix H  of redundant configuration with 
five gyros can be obtained as follows: 
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The columns of the matrix represent the five gyros’ coordinate in the p axis, q axis 
and r axis respectively. 

In order to evaluate the measurement precision affected by the configuration of the 
sensors, the concept of geometric dilution of precision (GDOP), which is often used 
in evaluating the positional accuracy in GPS, is introduced [15-16]. Similar to the 
GDOP application in GPS, the measurement accuracy depends on the error covari-
ance. The formula of GDOP can be expressed as: 

84 http://www.i-joe.org



Paper—An Improved Principal Component Analysis in the Fault Detection of Multi-sensor System of… 

          1( )TGDOP TRACE H H !" #= $ %                              (3) 

Here, ( ) 1TH H
!

is the covariance matrix. According to [14], the optimal configu-

ration for the measurement performance in redundant inertial sensor systems is de-
fined as the configuration which minimizes the GDOP. The necessary and sufficient 

condition for the configuration to be optimal is ( ) 3
T nH H I= . The computing re-

sult of  ( )TH H  is as follows:  

                 ( )
1.6667 0 0
0 1.6667 0
0 0 1.6667

TH H
! "
# $= # $
# $% &

                                (4)  

The computing result of  ( )TH H  meets the condition of ( ) 3
T nH H I= , where 

5n = . It shows that the attitude measurement and control system consisting of five 
sensors with the configuration introduced provides the optimal measurement perfor-
mance. 

3 Improved PCA  

3.1 PCA modeling based on parity vector 

When the fault occurs in the dynamic environment, it is difficult to distinguish the 
dynamic data and the fault data of sensors by using the traditional PCA method. To 
solve this problem, the paper put forward an improved PCA method based on a parity 
vector which has a linear relationship in redundant measurement. It is only a function 
of measurement noise in fault-free occasion, while in the presence of faults, it is a 
function of noise and fault. In virtue of this feature, faults can be detected [7]. 

A decoupling matrix V satisfies the condition: 

       3
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                                 (5) 

The parity vector is constructed as follows: 

    ( )p Vm V Hx f!= = + +                                     (6) 

where m  is the measurements of the sensors, !  is the measurement noise and error 
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of the sensors and f  is the fault of sensors. According to (5), the parity vector for 
failure-free and failure occasions respectively hold: 

               p V!=                                                           (7) 

and: 

     p V Vf!= +                                                      (8) 

Therefore, the parity vector can be applied in online data pretreatment when the 
sensors are exposed to a dynamic environment. The dynamic data is isolated through 
the decoupling matrix V so that we don’t mistake dynamic data for fault data. The 
decoupling matrix V can be obtained based on the potter algorithm [17]: 

0.6324 0.5117 0.1955 0.1955 0.5117
0 0.3717 0.6015 0.6015 0.3717

V
! !" #

= $ %! !& '
           (9) 

After the data preprocessing by using parity vector, the PCA model was built based 
on (7) in normal operation. In other word, it’s effective to build PCA model by parity 
vector of measurement noise due to the characteristic that noise frees to the movement 
of system. 

For convenience, we process the parity vector of measurement noise into 
n kX R !"  which is a normalized matrix with  n  samples and  k  variables. The 

correlation coefficient matrix R is calculated based on a standardized data matrix X , 
the matrix R is defined as follows: 

              
1
1

TR X X
n

=
!

                                           (10) 

And then we compute eigenvalues i!  of matrix R and orthonormal eigenvectors

ip . Among them, 1,2, ,i k= ! , 1 2 0k! ! !> > >! . The measured data matrix 
is decomposed as:  

                                 X =TPT + !T !PT = X! + E                                    (11) 

where 1 2[ , , ] k l
lP p p p R != "! and  

~
( )

1 2[ , , ] k k l
l l kP p p p R ! "
+ += #!  refer to 

the primary load matrix and residual load matrix respectively. n lT R !" and 
( )n k lT R ! "#

!
 are the primary score matrix and the residual score matrix, respectively. 

The original set of variables is reduced to l principal components through the princi-

pal component projection. The matrix is decomposed into modeled part 
^
X and un-

modeled part E .The composed matrix [  ]P P
!

is orthonormal and  [  ]T T
!

 is orthog-
onal [18]. 
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After the PCA model has been built based on measurement noise, the new collec-
tion variable x  (after normalized) is decomposed into two parts: 

                           Tx PP x e Pt e= + = +                                            (12) 

where Tt P x=  is primary score vector projected on the PCS and e  is the error vec-
tor projected on RS. The fault detection is conducted on the two subspaces. The re-
sults corresponding to the traditional PCA model and the improved one are compared 
in Figure 2 and Figure 3. The fault data and normal data processed by the traditional 
PCA are mixed as shown in Figure 2which results in false-alarm and false dismissal. 
In Figure 3, there is no overlapping portion between normal data and fault data, be-
cause the parity vector has been used in PCA modeling processes. 

 
Fig. 2. Data processed by traditional PCA method 
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Fig. 3. Data processed by improved PCA method  

3.2 Strategy of fault detection 

After the establishment of PCA model, the new real-time collected data is project-
ed onto the PCS and RS. If the data mostly falls in the main space but little falls in the 
residual subspace, it can be judged that the system is under a normal situation. On the 
contrary, if the most data falls in the residual subspace, it shows that the faults exist. 
In this section, we discuss the strategy of fault detection using  2T  and  SPE  statis-
tics. 

The  2T  statistic used in PCS reflects the distance between the sampling data and 
principal component, which reads: 

                

2 1 1

2 2

1

( 1) ( , )
( )

T T T

l
i

i i

T X P P X t t
t l n F n n l

n n l!

" "

=

= # = #

"
= "

"$ !
                                  (13) 

where Tt P X= ,  !  is the variance matrix of l  principal components, which can be 
expressed as 1( , , )i ldiag! ! != ! . And  ( , )F n n l!  is the distribution of F
which has n  and n l!  degrees of freedom. Giving the confidence level ! , the con-
trol threshold of  2T follows: 
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2
iT  is compared with the threshold value  2T!  to judge the system state with  
2 2
iT T!< referring to a transient normal state and  2 2

iT T!>  referring to a failure 
one.  

The  SPE  statistic reflects the extent to which each sampling data conforms to the 
PCA model. It is a measurement of the variation amount which is not captured by the 
principal component model. It can be calculated as: 

                      ( )2 T T TSPE e e e x I PP x= = = !                           (15) 

here x  is a new observation vector to be collected. SPE  is compared with the 
threshold value Q! when confidence coefficient is given. If the statistic value is un-
der threshold, the system is identified as normal. Otherwise, there are some faults 
within the system. The upper limit Q! for  SPE  statistic is given by: 
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where 
1
, 1,2,3

k
i

i j
j i

i! "
= +

= =# , 0 1 3 21 2 / 3h ! ! != " . and  C!  is the critical value 

when the test level is ! . j!  is the  j  characteristic value of the covariance matrix. 

We should not only detect the fault, but also isolate the fault sensor. It is effective 
to isolate the fault sensor in redundant system through generalized likelihood ratio test 
(GLRT). This method can’t be influenced by the sensors’ errors by using parity vector 
calibration [19]. 

4 Simulation results and analysis  

By giving the five sensors’ dynamic data, the measurement matrix and the decou-
pling matrix, the feasibility on fault detection and isolation using the improved PCA 
method was verified on MATLAB.  

Assume that the measurement noise of the five gyros are identical, two principal 
components can be selected. The yaw angle in simulation simplified to be zero since 
the yaw angle data was collected by other auxiliary sensors, e.g. an additional com-
pass sensor. The five gyros sampling period was 0.01s and the total time was 1min. 
Giving a confidence coefficient of 0.05, the upper limit of 2T  can be calculated refer 
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to (14) to be 6.01. Accordingly, the test level of the given normal distribution was 
0.8505, C! was 1.65, and the control limit Q! was 12.49. 

In order to validate the effectiveness of the scheme and algorithm, the fault forms 
were injected into the gyro at different locations in the system operation process. As 
shown in Table 1 and Figure 4 we inject the step fault signal  2 / s!  into 2th gyro at 
the 6th seconds, and the step fault signal 2 / s!  into 4th gyro at the 35th seconds, 
respectively and each fault signal lasts 10 seconds.  

Table 1.  Injection fault information 

Fault form Gyro number Fault injection time Fault size 
1 
2 

#2 
#4 

6~16s 
35~45s 

2°/s 
2°/s 

 
In Figure 5 and Figure 6, the vertical axis express the value of  2T  and SPE , the 

horizontal axis express the simulation time. Figure 5 shows the traditional PCA meth-
od has a low detection rate that can only detect the fault at 35s. In Figure 6, it is obvi-
ous that both 2T  and  SPE  plots generated by improved PCA model can detect the 
faults appeared at 6th and 35th seconds. It is a normal phenomenon that the value 
exceeds the threshold but soon disappears at certain moments due to the interference 
of experimental. In Figure 7, we can see GLRT of fault isolation decision curve, it can 
accurately determine the fault sensor for 2th and 4th. The simulation results show that 
the improved one significantly reduces missing detection rate. 

 
Fig. 4. Gyro output with fault under the dynamic condition 
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Fig. 5. The traditional PCA method for fault detection 

 
Fig. 6. The improved PCA method for fault detection 
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(a)                                                                          (b) 

Fig. 7. Improved PCA method for fault isolation decision curve 

1  Experiment verification  

As shown in Figure 8, the experimental platform includes a measuring module 
consisting of five digital MEMS single axis gyroscopes (ENC03), a collection module 
and a computer. The measuring range of gyroscope is 250 / s± ! . The angular ve-
locity rate is obtained via the experimental platform. The gyroscope original data 
collected by the embedded processor (STM32) was processed on the MATLAB to 
verify the performance of the improved algorithm. On the practical operation, in order 
to obtain the real-time running state of the robot, the data collected by the embedded 
processor was connected to the computer by using the wireless module whose trans-
mission distance is 100 meters. Thus, it’s convenient to monitor the robot’s operation 
state in the distance. 

 
(a)                                     (b) 

Fig. 8. The experimental platform 

The measuring module installed on the experimental platform was able to simulate 
the actual operation of the two wheeled self-balancing robot. The angular velocity rate 
data of five gyroscopes is shown in Figure 9 and Figure 10. The horizontal axis of 
Figure 9 and 10 represents the time and the vertical axis represents the angular veloci-
ty rate of five gyroscopes. Notice that in Figure 10 the 4th gyro is injected failure after 
a period of time on operation. 
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Fig. 9. the output of five gyroscopes 

 
Fig. 10. The 4th Gyro output with fault 
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Fig. 11. The traditional PCA method for fault detection 

 
Fig. 12. The improved PCA method for fault detection 
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The experimental result of the traditional PCA is shown in Figure 11. When the 
system is in the dynamic condition, both 2T  and  SPE  values calculated by the 
traditional one are always exceed the threshold. It means that the system is in a state 
of fault all the time, which is inconsistent with the actual operation situation. Figure 
12 presents the result of improved method. When the fault appears, the values of 2T  
and SPE  go beyond the control limit. At other times, the values are lower than the 
detection threshold. The experimental results meet the consistent with the simulation 
results. 

5 Conclusion  

In this paper, the improved PCA method was proposed to adapt for the dynamic 
system. Compared with the traditional one, the model based on the parity vector was 
able to isolate the dynamic data from the original data. The difference between two 
methods was as follows: 

According to Eq.1, the measurement data with fault consists of dynamic data, 
measurement noise and fault signal in a dynamic system. The traditional PCA can’t 
draw a clear distinction between fault data and dynamic data which result in false-
alarm and false dismissal. The method proposed in this paper preprocessed the data 
by parity vector to obtain new data structure with measurement noise and fault signal. 
We used noise data to build PCA model due to the characteristic that measurement 
noise frees to the movement of system. 

The improved method was applied to a redundant system with five gyroscopes. 
The simulation and experiment demonstrated that the improved method performs 
better than the traditional one in dynamic condition which enhanced the accuracy and 
reliability of multi-sensors system. 
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