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Abstract—The high-order multiple-input multiple-output (MIMO) system 
can remarkably increase the data rate or enhance the reliability. However, it is 
difficult to perform channel estimation because of the massive number of an-
tennas. The Narrow Band Estimation Antenna Processing (NBEAP) scheme is 
used to deal with this issue. Nevertheless, the accuracy of the channel estima-
tion needs to be improved. In this paper, a compressive sensing based scheme 
named Narrow Band Estimation Fixed Antenna Processing (NBEFAP) is pro-
posed to estimate the channel state information (CSI) for high-order MIMO sys-
tems. A simple pilot structure is designed to decrease the computation complex-
ity. In addition, the pilot length is adjusted according to the time-varying sparsi-
ty level of the CSI. Compared with NBEAP scheme, NBEFAP scheme can im-
prove the estimation error performance. Simulation results verify the effective-
ness of the NBEFAP scheme.  
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1 Introduction 

High-order multiple-input multiple-output (MIMO) system can bring great im-
provements on channel capacity and spectral efficiency [1-3]. However, the estima-
tion of channel state information (CSI) becomes a challenging problem due to the 
massive number of antennas. In the conventional channel estimation scheme, the 
receiver estimates the channel depending on the received pilot sequences sent from 
different transmitting antennas. Generally, any two pilot sequences from different 
antennas should be mutually orthogonal to enable the identification of the target 
transmitting antennas. In order to guarantee the orthogonality, the length of pilot se-
quences should be greater than the number of transmitting antennas. As a result, the 
length of the pilot sequence is very large in high-order MIMO system. Nevertheless, 
the total length of the pilot data and information data is limited by the coherence time 
of the channel. Therefore, a long pilot sequence would result in low information 
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transmission efficiency. These observations motivate us to design a scheme which can 
estimate the CSI with shorter pilot sequences. 

Recently, the compressive sensing (CS) [4-7] technique has been applied to recon-
struct the sparse signal. In the CS theory, the high dimension sparse signal can be 
reconstructed by the low dimension measurement signal with high accuracy. On the 
other hand, recent experiments have shown that many wireless channels are either 
sparse or approximate sparse [8-10]. For some wireless channels which are not sparse, 
they can be represented as sparse virtual channels [11][12]. Therefore, the CS tech-
nique exhibits great potentials in the field of channel estimation. 

A channel feedback reduction techniques based on CS was proposed in [13]. How-
ever, the attention was only paid to the CSI feedback from the receivers to the trans-
mitters, rather than the estimation of the CSI. A low-rank matrix approximation based 
on CS was proposed to estimate the channel and solved via a quadratic semi-define 
programming in [14]. However, the estimation error performance of this scheme was 
not considered when the pilot sequence length is shorter than the number of the 
transmitting antennas. An adaptive one-bit compressed sensing scheme for channel 
estimation was proposed in [15], where the precoding and combining vectors are 
designed to increase the accuracy of the channel estimation depending on one-bit 
feedback from the receiver. Although the estimation accuracy is improved, the feed-
back mechanism would result in reductions of the information transmission efficien-
cy. A CS based channel estimation scheme was proposed in [16], where the CSI at the 
desired angle of arrival (AoA) and angle of departure (AoD) is obtained by selecting 
appropriate precoding and combining vectors. However, neither of the schemes in 
[15] and [16] has a detailed analysis of the measurement matrix which has a great 
influence on the channel estimation accuracy. 

Bajwa, Sayeed and Nowak proposed another CS based scheme named narrow band 
estimation-antenna processing (NBEAP) [17]. In NBEAP scheme, a portion of trans-
mitting antennas were chosen randomly to transmit the pilot signal , while the others 
keep silent. The estimation for the virtual sparse channel is performed by processing 
the pilot signals received on the randomly selected receiving antennas. However, the 
received signals are not fully exploited by this scheme. Besides, it is inconsistent with 
the actual situation to assume the channel sparsity level is priori known and time-
invariant. 

In this paper, a modified scheme named Narrow Band Estimation Fixed Antenna 
Processing (NBEFAP) is proposed. In the NBEFAP scheme, a simple pilot structure 
is designed to reduce the computational complexity. Moreover, the length of pilot 
sequence is adjusted flexibly according to the sparsity level of the channel. Simulation 
results verify that the NBEFAP scheme could guarantee the stability of the estimation 
error performance at different channel sparsity levels. 

Notations: We use lower-case (upper-case) bold characters to denote vectors (ma-
trixes). !!!!!!! denotes a Gaussian distribution with mean 0 and variance !!. !! 
denotes an !!! identity matrix. In addition, !!!! , !!!!  and !,  denote transpose, 
Hermitian transpose and Kronecker product respectively. The Frobenius norm,!!!  
and !! vector norm are denoted as ! !, ! !! and ! !!, respectively. We also denote 
by vec(.) the column vector obtained by concatenating the columns of a matrix, [.]i, j 
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the (i, j)th entry of the matrix, [.]L the first L columns of a matrix and [.]Lth the Lth 
column of a matrix. 

2 Channel models 

Consider a high-order MIMO wireless communication system equipped with P 
transmitting antennas and Q receiving antennas, where P !!1 and Q !!1. There are  
!!"#! propagation paths in the physical channel. The gain of the nth path is denoted 
by n. The normalized angle of arrival and departure at the nth path are  !!!! and  !!!! 
, respectively. They are given by  

 !!!! !
! !"# !!!!

!
!!! (1) 

 !!!! !
! !"#!!!!!!

!
 (2) 

where  is the wavelength of propagation, d is the antenna spacing, !!!!  and !!!! are 
physical AoA and AoD of the nth path , respectively. The corresponding response and 
steering vectors are !!!!!!!! and  !!!!!!!! , respectively. They are given by 

 !! !!!! ! !
!
!! !!!!!!!!! !! ! !!!!! !!! !!!! !

 (3) 

 !! !!!! ! !
!
!!! !!!!!!!!! !! ! !!!!! !!! !!!!!!. (4) 

As a result, the physical MIMO channel is modeled as  

 ! ! !!!!!!!!!!
!!"#!
!!! !!!!!!!!!. (5) 

Generally, we uniformly quantify the physical propagation path into P virtual AoD 
and Q virtual AoA. The pth virtual AoD and qth virtual AoA correspond to a virtual 
direction matrix and a virtual path. The virtual direction matrix is given by 

 !!!! ! !! !!!! !!! !!!! . (6) 

The gain of the virtual path is the superposition of the physical path gain around it. 
It is given by 

 !!!!!!! ! !!!!!!!!!!!!! . (7) 

!!!!!!! is the virtual path gain related to the qth virtual AoA and pth virtual AoD. 
!!!! (resp. !!!!) denotes the set of paths whose physical AoA (resp. AoD) lies within 
the resolution bin centered around the qth (resp. pth) normalized virtual receive (resp. 
departure) angle !!"

!"
  (resp. !!"

!"
). They are given by 

 !!!! ! !!! !!!! ! !
!!"
!"

! !
!"
! !!"
!"

! !
!"
!} (8) 
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 !!!! ! !!! !!!! ! !
!!"
!"

! !
!"
! !!"
!"

! !
!"
!}. (9) 

Then, the physical channel matrix in (5) is calculated by summing all virtual direc-
tion matrices multiplied by corresponding virtual path gain. It is written by 

 ! ! !
!"

!!!!!!!!
!!!!

!
!!!! !!!!  (10) 

where  ! ! !! ! !!!! and ! ! !! ! !!!!. Here, we set P and Q are odd. The repre-
sentation of channel in (10) is decoupled as 

 ! ! !!!!!!!
!

  (11) 

where  !!  and  !!! are discrete Fourier transform matrices which are written as 

 !! ! !! ! !
!

!! !!!
!
!

 (12) 

 !! ! !! ! !
!

!! !!!
!
!

. (13) 

Each entry in !!  represents the gain of the channel corresponding to a virtual 
path. The value of zero means that there is no propagation path between a pair of 
virtual AoA and AoD. When the number of nonzero entries in the matrix !! is very 
small compared to the total number of entries in !!, we call  !! is sparse. The num-
ber of the nonzero entries in !! is defined as the sparsity level of the channel which is 
denoted by k. 

Based on the sparse virtual channel model, the task of channel estimation is per-
formed by estimating the sparse matrix !!. In next section, we will introduce an 
NBEFAP scheme to estimate !!. 

3 NBEFAP scheme 

Our scheme mainly focuses on how to make channel estimation of high-order 
MIMO systems more efficient. The scheme is described below. 

3.1 Pilot structure 

The first !! transmitting antennas are selected to transmit the pilot signal in turn. 
When one transmitting antenna transmits the pilot signal, the remaining transmitting 
antennas remain silent. All the pilot signals are the same. For convenience, “1” is used 
to represent the transmit antenna transmits the pilot and “0” for silent. Then, the pilot 
matrix ! of size !!!! is represented as 
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 ! !

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

. (14) 

Thus, the received pilot matrix Y is obtained as 

! ! !" !! ! !!!!!!!
!! !! ! !!!!! !!!

!

!!
!!. (15) 

Due to the special pilot structure, the result of multiplication !!!
!! is directly ob-

tained by taking the first !! !columns of !!!
!

. Therefore, the computational complexity 
is decreased. 

3.2 Processing of the received pilot signal 

Depend on the received pilot signals on all receiving antennas, the virtual channel 
!! is recovered. Since !! is a unitary matrix,  !!!!!

! ! !!. Multiplying both sides of 
equation (15) by matrix  !!!

!
, we obtain  

 !!!
!! ! !!!!!!

!!!! ! !!!
!!. (16) 

Then the channel estimation problem is written as 

!! ! !"#$%&!!! ! !"#!!!! !" !!!!!!!!!! !!!!!!!!
!! ! !!!!!!

!!!!. (17) 

When the nth transmitting antenna sends the pilot signal while the others keep si-
lent, the received signal is  

 ! !"! ! !!!"! !!!"! ! !!!!!!!!
!!!"! ! !!!!"!. (18) 

Picking out the mth entry from  ! !"!, we have 

 ! !!! ! !!!
!"!

!
!! !!!

!

!"!
! !!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!"!!!! !!!
!"!

!
!"#!!!! ! !!!!!!. (19) 

It is obvious that !!!!!! is related with all the entries of  !!. Therefore, each entry 
of Y should be exploited to reconstruct !! . 

When the pilot sequence length L satisfies the restricted condition ! ! !
!
!"# !"

!
 

[18], the virtual channel !! is reconstructed as 

!! ! !"#$%&!!! ! !"#!!!! !" !!!!!!!!!! !!!!!!"# !!!! ! !!"# !!  (20) 

where ! ! ! !!
!

!!"

!
!!!!! ! !!

!
!"!

!
!!!!. 
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When the channel sparsity level k satisfies the restricted condition  !
!
!"# !"

!
! !, 

we reconstruct !! by one column of Y, i.e., the required pilot sequence length can be 
as small as 1. In this case, the received pilot signal is expressed as  

 !!!!"! ! !!"#!!!! ! !!!!"!  (21) 

where ! ! !!!!!!!!"!!!!!!. According to equations (17) and (21), the channel es-
timation problem is simplified as 

!! ! !"#$%&!!! ! !"#!!!! !" !!!!!!!!!! !!!!!!!!!"! ! !!"#!!!!. (22) 

3.3 Adjustment of the pilot sequence length 

The sparsity level k is varied with time in practice. Hence, the transmitter adjusts 
the length of the pilot sequences according to the sparsity level of the channel to im-
prove the transmission efficiency. 

The channel estimation is performed once in a certain amount of information and 
pilot data which is called a data block. The pilot length is P in the first block. After 
obtaining the estimated virtual channel, the sparsity level and the required pilot length 
are computed at the receiver. Then, the required pilot length is fed back to the trans-
mitter. In the second and subsequent blocks, the receiver performs the channel estima-
tion and makes comparison between the current channel sparsity level and the previ-
ous one. “0” is fed back to the transmitters if the sparsity level decreases. Otherwise, 
“1” is fed back. Accordingly, the transmitters would increase or reduce the pilot 
length by !! with feedback information “1” or “0”. 

The Euclidean distance between the ideal constellation points and the received 
points increases with sparsity level. So the average Euclidean distance (AED) is used 
in practice instead of the sparsity level. The AED is written as 

 !!"# !
! !!! !!

! !
!

!!!! !!
! !

 (23) 

where ! denotes the computed constellation vector and ! denotes the ideal constella-
tion vector, Y denotes the received pilot signal and ! denotes the estimated channel 
matrix. Since ! and ! have been calculated during the decoding of the information 
data. Therefore, the calculation of the AED is easy to perform. 

If the AED increases, the pilot sequence length should be increased. Thus, the re-
ceiver feeds “1” back to the transmitter. Similarly, it would result in feedback “0” 
when the AED is decreased. The transmitter increases or reduces the pilot length by 
!! when feedback “1” or “0”. The adjustment interval !! depends on the variation 
rate of the channel sparsity level, i.e., faster varying channel requires larger  !!. 
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4 Discussion of the NBEFAP scheme 

In this section, we discuss the advantages of the proposed NBEFAP scheme. The 
computational complexities of different schemes are compared. The mutual coherence 
of the measurement matrix is also discussed since it has a great influence on the esti-
mation accuracy. 

4.1  Features of NBEFAP scheme  

There are three features of our proposed NBEFAP scheme which is described be-
low. 

1. The fixed first !! antennas are chosen to transmit the pilot signal sequentially in 
the proposed NBEFAP scheme. This design generates a simple pilot structure 
which decreases the calculation complexity in equation (15).  

2. The received pilot signals on each receiving antenna have been fully utilized in the 
proposed NBEFAP scheme. This results in an accurate estimated channel.  

3. The pilot sequence length is adjusted according to the sparsity level of !! to save 
pilot resource. Compared with traditional schemes with fixed pilot sequence 
length, the proposed NBEFAP scheme improves the transmission efficiency. 

4.2 Complexity analysis 

For a high-order MIMO system equipped with P transmitting antennas and Q re-
ceiving antennas, we use a L-length pilot sequence to estimate the channel with dif-
ferent schemes.  

The computational complexity of the proposed NBEFAP and conventional 
NBEAP scheme all mainly concentrate on the reconstruction of sparse channel. 
Sparse channel reconstruction can be implemented by Matching Pursuit (MP) or 
Orthogonal Matching Pursuit (OMP) algorithm. The iterations is set to T when MP 
or OMP algorithm is employed. The computational complexity of the least squares 
(LS) and linear minimum mean square error (LMMSE) algorithm are also given. 
The complexity comparison with different schemes is given in table 1. It shows that 
the proposed scheme has a larger complexity. This is a tradeoff between complexity 
and accuracy. 

Table 1.  Complexity comparison  

scheme complexity 
LS     !(PQL) 
LMMSE ! (L3) 
MP ! (LPQ2T) 
OMP ! ( LPQ2T+ LQT3) 
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4.3 Mutual coherence 

The mutual coherence of a matrix M is defined as the maximum absolute 
value of the cross-correlations between columns of M. It is represented as 

 !!!! ! !"#!!!!!!!
!!!!!"!!!!!!!"!

!!!!"! !! !!!!"! !!
. (24) 

     The mutual coherence will take the minimum value of 0 when the columns in 
M are mutually orthogonal. When there are two columns that are linearly related, 
the mutual coherence will take the maximum value of 1. According to [19], a 
smaller !!!! of the measurement matrix will bring a more accurate recovery of 
vec(!!). Usually it is required that the measurement matrix satisfies the mutual 
coherence property (MCP), i.e.,!! ! !!

!! !
! ! , here k is the sparsity level. Therefore, 

we need to analyze how to reduce the mutual coherence of the measurement ma-
trix. 

The domain of values of physical AoA is !! !
!
! !
!
!. It is symmetric with respect to 

origin. As a result, the domain of values of virtual AoA is !! !!!
!"

! !!!
!"
!. It is also 

symmetric with respect to origin. For  !! ! !! ! !
!

!! !!!
!
!

, the column vector 

!! !  is the conjugation of another column !! !! . Besides, the !!!
!

 th column in 
!! is  !! ! . All the elements of !! !  are the same. Therefore, the measurement 

matrix ! ! !!! !!"

!
!!!!! ! !!! !"!

!
!!!  has two columns that are line-

arly related. The mutual coherence will take the maximum value, i.e., !!!!=1. As a 
conclusion, the domain of AoA cannot be set to symmetry. 

When the first column of ! is used alone as a pilot, the measurement matrix is 

written as ! ! !!
!

!!"

!
!!! . Since all the elements in !!!

!!!!"  are the same, 

M will contain Q identical columns. As a result, !!!! = 1. So the first column of ! 
must not be used alone as a pilot.  

Regardless of the pilot sequence length, the number of columns in M is QP. In-
creasing the pilot length would only lead to a larger number of rows in M as well as a 
smaller cross-correlation between columns of M. Therefore, a long pilot sequence 
brings a small mutual coherence. 

5 Simulation results 

In this section, we give some simulation results. All the simulations are carried 
out on Matlab platform. Firstly, a virtual sparse channel model is set up on Matlab 
platform. Then, a measurement matrix is obtained by setting appropriate channel 
model parameters. Finally, the OMP reconstruction algorithm is used to estimate the 
virtual sparse channel. Through the simulation experiment, the influence of channel 
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model parameters such as pilot sequence length, channel sparse levels and the number 
of antennas on channel estimation performance is given. 

The accuracy of channel estimation is evaluated by the normalized mean squared 
error (MSE). It is calculated by 

 !!"# ! !" !"
!!! !

!

!"
  (25) 

where ! and ! are the estimated and actual channel matrix, Q and P represent the 
number of receiver and transmitter antennas, respectively. If no special statement, the 
model parameters used in this paper are listed as follows: transmitter antenna P=41, 
receiver antenna Q=61, AoA!! !! !

!
! !"!
!"
!, AoD! !! !

!
! !
!
!, sparsity level k=20 and 

antenna spacing d=0.5!.  
The MSE performance of the channel estimation with different columns of iden-

tity matrix as pilot is given in Fig. 1. We can see that using the first column of identity 
matrix as pilot leads to worse MSE performance than other columns at high Signal 
Noise Ratio (SNR). This is due to the fact that using the first column of identity ma-
trix alone as pilot decreases the probability of measurement matrix satisfying the 
MCP.  

  
Fig. 1. MSE performance of estimation with different pilot, k = 20, L = 1 

The estimation MSE performance of NBEFAP scheme with different pilot se-
quence lengths is shown in Fig. 2. It is shown that the channel estimation MSE per-
formance is improved with the increase of the pilot sequence length. The reason is 
that a long pilot sequence provides a small mutual coherence, which improves the 
accuracy of the channel estimation. 
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The estimation MSE performance of NBEFAP scheme with different channel 
sparsity levels is given in Fig. 3. The simulation result shows that the estimation MSE 
performance is better when the sparsity level is small. When SNR = 10 dB, the MSE 
is about -52 dB in case of k = 5. Compared with the cases of k = 10 and 20, there are 
MSE performance gains of 15 dB and 25 dB, respectively. 

 
Fig. 2. MSE performance versus SNR with different pilot length, k=20 

 
Fig. 3. MSE performance with different sparsity level, L=20 
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The estimation MSE performance comparison between the conventional NBEAP 
and the proposed NBEFAP scheme is given in Fig. 4. In NBEAP, 60 percent of the 
receiving antennas are randomly chosen. From the simulation result we get the fol-
lowing conclusion. Using the same pilot length L=30, the NBEFAP scheme gets bet-
ter MSE performance than the NBEAP scheme. The NBEFAP scheme still has better 
estimation MSE performance even when its pilot length (L=30) is shorter than that of 
the NBEAP scheme (L=41). This is because that the whole received pilot data on each 
antenna is exploited to estimate the CSI in NBEFAP. The estimation MSE perfor-
mance of LS and LMMSE algorithm are also given in Fig. 4. It shows that the 
NBEFAP scheme obtains better estimation MSE performance compared with the LS 
and LMMSE. Assuming that the user moves at the speed of 100km/h and the carrier 
frequency is 900MHz, the corresponding channel coherence time is about 5 ms. The 
periods of pilot and information data symbol are set as 0.07 ms. The transmission 
efficiency is 42.6% when the length of pilot sequence is 41. In contrast, if the length 
of pilot sequence is 30, the transmission efficiency can be increased to 58%. 

 
Fig. 4. Comparison of the MSE performance between NBEFAP and NBEAP 

In Fig. 5, the MSE performance comparison with different numbers of antennas 
is given. It is observed that the MSE performance of the channel estimation is im-
proved with the increase of the antennas. This is due to the fact that a large number of 
antennas provide great diversity gain. 

For the case that the sparsity level of the channel changes slowly, the length of 
pilot sequence is adjusted adaptively according to the sparsity level. The channel 
estimation MSE performance is given in Fig. 6. We set the initial pilot length L=10, 
!! =5 and SNR=5 dB. From the simulation result we find that the estimation MSE 
using fixed pilot length increases with the sparsity level. In contrast, the estimation 
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MSE using adaptive varying pilot length is almost constant, regardless of the sparsity 
level. It is important to maintain the stability of channel estimation accuracy in high-
order MIMO system. Since there is no need to frequently adjust parameters such as 
transmission power according to the channel estimation accuracy, the complexity of 
the transmission is reduced. 

 
Fig. 5. Comparison of the MSE performance with different numbers of antennas 

 
Fig. 6.  Comparison of the MSE performance between fixed and varying pilot length 
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6 Conclusions 

In this paper, we propose a CS based scheme for channel estimation in high-order 
MIMO system. An accurate channel estimation is obtained with short pilot sequence. 
The key idea of the scheme is using a partition of an identity matrix as pilot matrix 
and estimating the CSI with CS theory. Since the pilot matrix has simple structure, the 
complexity of channel estimation is reduced. The received pilot signals on each re-
ceiving antenna have been fully utilized which results in an accurate estimated chan-
nel. When the sparsity level of the channel varies with time, the length of pilot se-
quence is adjusted dynamically to save pilot resources. Another benefit of the varying 
pilot length is that the channel estimation MSE performance keeps almost constant as 
the sparsity level increases. The simulation results validate the effectiveness of the 
NBEFAP scheme. 
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