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Abstract—In Rechargeable Wireless Sensor Networks(R-WSNs), it is criti-
cal for data collection because a sensor has to operate in a very low and dynam-
ic duty cycle owing to sporadic availability of energy. In this work, we propose 
a distribute maximum rate allocation based on data aggregation to compute an 
upper data generation rate by maximizing it as a linear programming problem. 
Subsequently, a dual problem by introducing Lagrange multipliers is construct-
ed, and subgradient algorithms are used to solve it in a distributed manner. The 
resulting algorithms are guaranteed to converge to an optimal value with low 
computational complexity. Through extensive simulation and experiments, we 
demonstrate our algorithm is efficient to maximize data collection rate in re-
chargeable wireless sensor networks. 
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1 Introduction 

Energy Harvesting or Rechargeable Wireless Sensor Networks (EH-WSNs or R-
WSNs) have attracted more and more attention benefiting from the lifetime extending 
of sensor nodes by equipping them with rechargeable technologies [1], which convert 
sources, such as body heat, foot strike, finger strokes, and solar into electricity [2]. A 
sensor can operate perpetually by using supercapacitors (with virtually unlimited 
recharge cycles) to store the harvested energy [3]. Note, a harvesting node is said to 
achieve energy-neutral operation if the energy used is always to a lesser degree than 
the energy harvested [4]. Although their lifetime is less of an issue, due to the limited 
energy storage capacity, a node cannot be always beneficial to conserve energy when 
a network can harvest excessive energy from the environment [5]. Since more energy 
can be extracted from the ambient environment in R-WSNs, the harvested energy 
should be consumed as soon as possible [6]. Therefore, surplus energy of a node can 
be utilized for strengthening packet delivery efficiency and improving network data 
collection rate. 
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Consider the characteristics of R-WSNs, several protocols discuss several aspects 
of power management or MAC schemes to improve energy efficiency and maximize 
data collection rate [7]. A centralized algorithm with the line programming is pro-
posed to compute the lexicographically maximum data collection rate and routing 
paths for each node [8]. Sadlapur et al. [9] provide a distribute algorithm for jointly 
determining the routing structure and amount of flows on each link with flow adjust-
ment to achieve an optimal data collection rate. Peng S et al. [10] propose real time 
adaptive energy management policies based on observed information for throughput 
optimal. Prabhakar et al. [11] propose four throughput enhancement schemes from a 
simple naive scheme with low complexity to probabilistic probing scheme incorporat-
ing advanced methods to appropriately use the harvesting energy. However, ideal 
energy replenished precondition is used and data aggregation has't been considered in 
these protocols. 

In a nutshell, we propose a distribute optimal maximum rate allocation based on 
data aggregation for packets communications in r-WSNs. In summary, on observing 
the lack of data aggregation techniques consideration for improving data flow in ex-
isting routing protocols, we introduce the first generic routing protocol algorithm with 
the data aggregation scheme in R-WSNs. 

2 Design and Method 

2.1 Network Model 

Consider a static rechargeable wireless sensor network modeled as an undirected 
graph ! ! !!!!!, where ! is the set of ! rechargeable sensor nodes and sink nodes 
within the network. ! is the set of links, ! ! !!!!!! !! ! !! !! ! ! !!. ! consists of a 
finite nonempty vertex set ! and edge set ! of ordered pairs of distinct vertices of ! 
Each sensor ! ! ! is powered by a rechargeable battery with capacity ! and its energy 
is harvested from its surrounding environment (e.g. solar energy). Each sensor ! sens-
es its vicinity with sampling data generation rate !!. The set of nodes are connected to 
node ! by links is denoted as !!. We assume that the network graph is connected, i.e. It 
always exists a path between any pair of nodes ! and ! in !. The  current remained 
energy of node ! is !! and the maximum bandwidth is set to be ! 

2.2 Energy Model 

We assume the power consumption for sending and receiving one bit of data are 
!!, !!, respectively. When the data traffic from node ! to!! is !!!! per unit time. Hence, 
the energy consumption for node !  in receiving and transmitting are !! !! !  and 
!! !! ! , which are: 

!! !! ! ! !! ! !!!!
!!!!!!!!!!
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 !! !! ! ! !! ! !!!!!!!!!!!!!!     (1) 

Therefore, if we let !! denote the fraction of power consumption for node ! per 
unit time, which can be formulated as: 

 !! ! !! !! ! ! !! !! !   (2) 

2.3 Description of the data aggregation problem 

To incorporate data aggregation into the geometric routing model, we adopt the 
foreign-coding model [12] scheme. Specifically, we assume a node ! is able to com-
press the data originating at its adjacent neighbor!! using its local data. The compres-
sion ratio depends on the data correlation between node ! and !. In our work, assumes 
the data correlation is inversely proportional to the Euclidean distance between nodes, 
or!! !! ! ! !"#!!!! ! !!!!! !, where, ! is data correlation parameters. Where, the !!!!!  
can be formulated as: 

 !!!!! ! !! ! !!
!
! !! ! !!

!
!! (3) 

The data from a source node will be transmitted to anyone sink finally by one or 
multiple-hops. For each node, the outflow equals or lesser than the inflow and genera-
tion data from it due to some redundant information removed from data traffics. In the 
process of packet's transmission, data leak is not considered. Hence, the data flow for 
node ! is expressed as: 

 !!!! !!!! ! !!!! !!!!!!!! ! !! ! !!!! !!!!!!! !! (4) 

Where, ! !! ! ! !!!!!, higher ! means smaller data correlation, and vice versa. 
When a sensor only forward packets for its neighbor and does not generate any pack-
ets, data fusion does not occur and ! !! ! ! !. Let !! denotes the fraction of power 
consumption for node ! in each time unit. We have 

 !! ! !! ! !!!! !!!!!!! ! !! ! !!!! !!!!!!!   (5) 

2.4 Distribute algorithm for maximizing data collection rate 

The goal of the maximum rate allocation is to deliver all packets generated by sen-
sors to base stations as soon as possible subject to node available energy, node and 
link capacity constraints such that the data flow until the first (set of) sensor node with 
minimum data generation rate is maximized followed by data flow until the second 
(set of) sensor node with minimum value is maximized and so on. Now, we formulate 
this problem as a line programming, which is given by: 

!"#$%$&'!!! 

!"#$%&'!!"! 
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 !!!! !!!! ! !!!! !!!!!!!! ! !! ! !!!! !!!!!!!  

 !! ! ! !! !!!!!! ! !! ! ! !! !!!!!! ! !! !  

 ! !! ! ! !"# !! ! !!!!!  

 ! !! ! ! ! !! ! ! !!!!! ! ! !! ! ! !! 

 ! ! !! ! !! 

 !!!!!!!! ! ! !!! (6) 

The first set of constraints ensures that the inflow after aggregating with raw gen-
eration data equals the outflow. The second constraint ensures that nodes do not con-
sume more energy than they collect, which includes the energy consumption packet 
transmissions and packet receptions. The third constraint formulate the!!! !! !  of node 
i. Constraint state that the data flow and available energy do not go below zero and do 
not go beyond the link capacity or battery capacity. 

According to the Eq.6, the constraints' model of data flow conservation at each 
node. We change variable to !! !

!
!!

 which indicates the time for generating per unit 

of packet. We define decay !! as the inverse of data collection rate !! !
!
!!

 w,!!! > 0. 

Therefore, maximum data collection rate can be converted to a minimum the time for 
per unit of packet generation. We obtain an equivalent linear programming formula-
tion. 

!"#"$"%&!!!!! 

!"#$%&'!!"! 

 ! !! ! ! ! ! !! !!!!!! ! !
!!
! ! !! !!!!!! !! 

 !! ! ! !! !!!!!! ! !! ! ! !! !!!!!! ! !! !  

 ! !! ! ! !"# !! ! !!!!!  

 ! !! ! ! ! !! ! ! !!!!! ! ! !! ! ! !! 

 ! ! !! ! !! 

 !!! ! ! !!!! (7) 

Here again, the constraints are flow conservation and power conservation con-
straints. Again, we consider a quadratic objective function that is strictly convex in 
the !!. Also, to ensure that the dual function is differentiable, we restrict the domain 
to ! ! !! ! !, for some loose upper bound !. In addition, we use a simple approach 
similar to that utilized in [13]. We change the primal objective function to !!!, since 
minimizing !! is the same as minimizing !!!. This is the optimization problem that the 
maximum problem to maximize data collection rate is converted to the minimum 
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problem to minimize data generation time for per unit of byte information, which will 
be solved in a distributed manner. We can interpret the above problem as minimizing 
the maximum ratio of time elapsed to collect a packet at a node. The linear program-
ming problem for Eq.5 is NP-hard and considerable difficult solved directly. Hence, a 
dual model will be utilized for replacing the original problem. 

3 Simulations 

Simulation of our algorithm for r-WSNs was done by Matlab software, with up to 
100-200 nodes and 3-8 sinks are randomly deployed in a 1000m*1000m square field. 
The maximum communication range of each node is set to be 100m. All nodes' ener-
gy devices are rechargeable with 20!"! square size solar panel, and transmission 
powers are adjustable. Energy leakage and the case of signal loss of sensor are not 
considered in our work. Where, ! ![0.001,0.01]. Every data point in simulation fig-
ures is obtained by averaging 50 runs with different random seeds, node deployment 
and node working schedules. 

In order to further understand of the performance of our algorithm for Maximizing 
Rate Allocation (MRA) under network settings, in this section, we provide a scheme 
for performance comparison, an optimal Distributed Lexicographic rate assignment 
(DLEX) designed for R-WSNs [9]. In [9], the authors propose distributed algorithms 
for joint determining the routing structure and amount of flows on each link without 
considering data fusion. It involves update rate computation using optimal lexico-
graphic rate assignment. In this method, nodes first compute their maximum rate 
using initial rate procedure. Subsequently, they send a control packet containing the 
flow id and the maximum achievable rate to their next hop nodes. 

We first compare the rate allocation between our algorithm and DLEX under the 
distinct number of sensors with three sinks, where the average node's duty-cycles are 
10%, 30%, respectively, as shown in the Fig.1. From the Fig.1, we can observe the 
data collection rates increase for both algorithms and that of our algorithm is slightly 
higher than that of another algorithm with the sensor density improved for both dif-
ferent node's duty-cycle. Our algorithm is utilized for calculating the upper bound of 
data flow under ideal conditions and rather than establishing a detailed routing path. 
In actual application, the network throughput will be lower than the result value of our 
method. From the Fig.1, we can see the data generation rates of our algorithm are 
average about 6% and 9% higher than that of the Dlex scheme when duty cycles are 
10%, 30%, respectively. 

We next analyze the rate allocation under two data correlation settings (!=0.001 
and !=0.01), as shown in Fig.2. From the Fig.2, we can observe the data flow rate in 
two algorithms improved with the number of nodes increasing in different scenarios 
of our algorithm performing a little better than that of the Dlex. As the number of 
nodes increase in the area, it affects the node density and delivery ratio. The overall 
raw data rate is proportional to the number of nodes in the network. More packets 
generated in the network and data aggregation rate improved greatly. At the same 
time, the nodes' density increased also drives the network topology from sparse to 

176 http://www.i-joe.org



Short Paper—Distributed Optimal Maximum Rate Allocation based on Data Aggregation in Recharge… 

dense and the data correlation between neighboring nodes becomes higher, so more 
redundant information can be removed through data aggregation. 

 
Fig. 1. Data generation rate with number of nodes increasing when duty cycle is 10% and 30% 

 
Fig. 2. Data generation rate with number of nodes increasing when data correlation ! = 

0.01,0.001 
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4 Conclusion 

In this work, we first define the network system and energy model. In order to im-
prove data generation rate, we propose an algorithm to compute an upper data genera-
tion rate based on data fusion that maximizes it as an optimization problem for a net-
work. First and for most, we formulate it as a linear programming problem subject to 
the flow and energy conservation constraints. On top of that, a dual problem by intro-
ducing Lagrange multipliers is constructed. Last but not least, a subgradient algorithm 
is used to solve it in a distributed manner. Through extensive simulation and experi-
ments, we demonstrate our algorithm is efficient to maximize data collection rate in 
rechargeable wireless sensor networks. 
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