
Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

Applying a Model Driven Architecture Approach:
Transforming CIM to PIM Using UML

https://doi.org/10.3991/ijoe.v14i09.9137

Oualid Betari!"!#, Saida Filali, Amine Azzaoui, Mohamed Amine Boubnad
Mohammed First University, Oujda, Morocco

beta.oualid@gmail.com

Abstract—Over the last few years, as they evolve with business needs and
technology, enterprises are faced with the need to adapt their business processes
to work in open settings. In such settings, the automation and the interoperabil-
ity of business process and applications become a key concern. The Model
Driven Architecture (MDA) is introduced as an approach to cope with this chal-
lenge. MDA specifies four levels of abstraction, most of the existing studies fo-
cus on modeling and transforming the Platform-Independent Model (PIM) to
Platform-Specific Model (PSM) levels, while the more conceptual level, the
Computation-Independent Model (CIM) is often presumed as present and is not
further studied. In this paper, we propose an approach for transforming a CIM
into a PIM using the core modeling concepts of the Unified Modeling Language
(UML). One important characteristic of this approach is that it provides a meth-
od to capture and describe the requirements of the business process using a use
cases model. The other important characteristic is proposing an architecture of
the PIM based on the classes model. The execution of the transformation is
programmed by the Query View Transformation (QVT) language.

Keywords—model driven architecture, computation independent model, plat-
form independent model, unified modeling language, use cases, classes

1 Introduction

Computing infrastructures are expanding their reach in every dimension. New plat-
forms and applications must interoperate with legacy systems. The Internet, where
business relationships exhibit a high degree of dynamism, is imposing new integration
challenges as it extends into every corner of every organization [1-2]. These challeng-
es have given rise to the situation of enterprises not only expanding their businesses
but also increasing their vulnerability.

In order to handle these changes, enterprises must adapt their business process, one
approach to do that is by using the Model driven architecture (MDA). This approach,
proposed by the Object Management Group (OMG), supports evolving standards in
application domains. MDA provides an open, vendor-neutral approach to the chal-
lenge of interoperability, building upon and leveraging the value of OMG's estab-

170 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

lished modeling standards: Unified Modeling Language (UML); Meta-Object Facility
(MOF) [1].

MDA is an approach to software development that highlights modeling. MDA
provides ways to use models at the different phases of application development. MDA
separates the specification of system functionality in a Platform Independent Model
(PIM) from the specification of the implementation of that functionality on a specific
technology in a Platform Specific Model (PSM). Furthermore, the system require-
ments are specified in a Computation Independent Model (CIM) [3-4].

Computation independent model (CIM) does not show details of the system struc-
ture. CIM plays an important role in bridging the gap between those that are experts
about the domain and its requirements on one hand, and those that are experts of the
design and construction of the artifacts that together satisfy the domain requirement
on the other. CIM always uses a vocabulary that is familiar to the practitioners of the
domain in question [5].

Platform independent model (PIM) represents the business model to be implement-
ed by an information system. PIM describes processes and structure of the system
without reference to the delivery platforms. PIM ignores operating system, program-
ming languages, hardware and networking.

A platform specific model (PSM) combines specifications in the PIM with details
that specify how a system uses a particular type of platform.

As these different types of models represent different levels of abstraction of the
same system, MDA recommends the use of transformation mechanisms allowing to
move from one level to another. It forms a key part of MDA. The OMG proposal for a
transformation language is QVT [1].

Considering these aspects, the present paper describes some important cases of
transformation from CIM to PIM and propose a new approach by modeling to realize
the transformation. In this paper, we discuss some important cases of transformation
from CIM to PIM and propose a new approach which transform a set of UML Use
Cases, considered to be a CIM, to a set of UML Classes, considered as a PIM.

The rest of this paper is structured as follows. Section 2 presents the most relevant
related works. Section 3 presents the background knowledge of the paper, we outline
the MDA principles and the concepts of the Unified Modeling Language. In section 4
we shall summarize our MDA approach for transforming CIM to PIM. The transfor-
mation rules will be presented in section 5. Finally, section 6 concludes the paper and
offers further perspectives.

2 Related works

In this section, we present a brief overview of some approaches, proposed for the
transformation from computation independent model to platform independent model.

Cao in [5] addressed this problem and proposed an approach for the transformation
with pattern. In this approach, they take advantage of “reuse” from various stand-
points. Feature model is used to describe the requirement of the application. Moreover
they use pattern to transform CIM to PIM.

iJOE ‒ Vol. 14, No. 9, 2018 171

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

An analytical CIM to PIM transformation in [6] provides one way to transform
business requirements to UML models using Data Flow Diagrams which represent
business processes as models for CIM level description. For the PIM level they con-
sider UML diagrams.

Kherraf in his proposition [7] describes a disciplined approach to transform a CIM
into a PIM. It first uses UML2 activity diagrams to model the business processes up
to the users’ tasks. The activity diagrams are then detailed to specify the system re-
quirements. The system components are directly deduced from the requirement model
elements.

Zhang [8] presented a feature-oriented component-based approach to the CIM-to-
PIM transformation. In his approach, features and components were adopted as the
key elements of CIM and PIM, respectively. His approach provided a method to de-
compose the n -to-n relations between features and components into two groups of 1-
to-n relations.

In [9-10-11], they propose an approach where an SBP description corresponds with
a CIM model and can be used as a complement to the Business Modeling discipline of
the UP. In addition, the Use Cases, which form a part of a PIM model, will comple-
ment the Requirement and Analysis & Design disciplines.

The method in [12] aims at providing a solution to the problem of constructing
CIM and its automatic transformation at the PIM using the QVT transformation rules.
The approach proposes to represent CIM by two models: The business process model
and the functional requirement model.

So we present a new approach in which we focus on using UML in the different
levels of the transformation process. We capture and describe the requirements of the
business process using an use cases model, which represents the CIM, and we use the
classes diagram to represent the PIM. Then we provide the transformation rules from
CIM to PIM by using the QVT language, to improve the efficiency and the degree of
automation.

3 Background knowledge

3.1 Model driven engineering

In late 2000, OMG, a consortium of over 1,000 companies, first reviewed the doc-
ument entitled "Model Driven Architecture" and decided to form an architecture team
to produce a more formal statement of the MDA [1]. This approach focuses on devel-
oping the highest level of abstraction models and promotes the transformation ap-
proach from one model to another.

MDA addresses the challenges of today's highly networked, constantly changing
systems, providing an architecture that assures portability, cross-platform Interopera-
bility, platform independence, domain specificity and productivity [1]. The key to the
MDA approach is the importance of models in the software development process. In
the MDA, the software development process is driven by the modeling activity of the
software system.

172 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

In the field of software engineering, the OMG with its MDA approach classifies
four types of models that it advocates for the construction of software: Computation
Independent Model (CIM), Platform Independent Model (PIM), Platform Specific
Model (PSM) and Code; defined as follow:

• CIM: The goal is to create a requirements model for the future application. Such a
model must represent the application in its environment in order to define the ser-
vices offered by the application and which other entities with which it interacts.

• PIM: This model represents the system-specific business logic or the design model.
It represents the functioning of entities and services. It must be durable and lasting
over time. It describes the system, but does not show the details of its use on the
platform.

• PSM: MDA considers that the code of an application can be easily obtained from
these models. The main difference between a code model and an analysis or design
model is that the code model is linked to an execution platform.

The reason for the above model organization is to develop models of the systems’
business logic independently from the platforms of execution, then to transform these
models automatically to models dependent of the platforms. The complexity of the
platforms does no longer appear in the business logic models but it’ is found in the
transformation [3].

The required steps during the model-driven development with the UML approach
can basically be divided into the following steps [4], at first building the CIM that
acquires user requirements. Then, according to this CIM, a PIM is built. Next is, the
transformation of the proposed PIM into one or more PSMs. This type of transition
from CIM to PIM and PIM to PSM is called Model To Model (M2M) transformation.
The final step is to transform the generated model respecting the PSM into the code of
the chosen platform. This transition is called Model To Text (M2T) transformation.
Figure 1, shows how the transformations are done.

Fig. 1. Model Driven Architecture levels

iJOE ‒ Vol. 14, No. 9, 2018 173

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

The OMG, in the context of MDA, gives the following definition to the transfor-
mation of models "the process of converting a model into another model of the same
system". In general, it can be said that a transformation definition consists of a collec-
tion of transformation rules, which are unambiguous specifications of how a model
can be used to create another model. Using the modeling approach is designed to have
a sustainable and productive models’ transformation, independently of any execution
platform. This is why the OMG has developed a standard for this transformation lan-
guage which is the MOF 2.0 QVT [13], standing for Query View Transformation.

3.2 UML models

The use of models in the design of complex engineering systems is a long-standing
tradition that is almost as old as engineering. Yet, its applicability to software has
often been questioned. Modeling and model-based techniques are, in fact, the only
viable way of coping with the kind of complexity that is encountered in modern soft-
ware systems [14].

Our approach is a fully automatic way of transformation from CIM to PIM and it
provides one way to transform business requirements to software models. At first we
had to determine which models represent CIM level and which models represent PIM
level of MDA. For this models, we used UML, which is a way of visualizing a soft-
ware program using a collection of diagrams. In the next chapter, we’ll be introducing
those models.

Models representing our CIM level (use case diagram) : The use case is a popu-
lar representation of requirements that describes a set of scenarios. It was originally
created as part of the Objectory process for object-oriented software development.

A use case is defined as "the specification of a set of actions performed by a sys-
tem, which yields an observable result that is, typically, of value for one or more
actors or other stakeholders of the system" [15-16].

Models representing our PIM level (classes diagram) : A class diagram models
the static structure of a system. It shows relationships between classes, objects, attrib-
utes, and operations. Classes represent an abstraction of entities with common charac-
teristics. Associations represent the relationships between classes [17].

4 CIM to PIM transformation

In this paper we proposed an use cases diagram as a CIM. This model will be
transformed into a UML classes diagram, representing our PIM, with an approach by
modeling using QVT. This type of transformation will allow us to automatically gen-
erate the classes from the systems’ requirements. We used UML in our approach,
because it takes into account the structural and dynamic properties of the information
system at a conceptual level.

174 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

4.1 CIM source meta model

The first thing to do when building a new application is of course to specify the re-
quirements of the client. Although very upstream, this step should benefit greatly
from the models. The goal is to create a requirements model for the future application.
Such a model must represent the application in its environment in order to define the
services offered by the application and other entities with which it interacts.

Use cases are a means for specifying required usages of a system. Typically, they
are used to capture the requirements of a system, that is why we opted for a UML use
cases, represented as an MOF class diagram, as our CIM. In Figure 2, we showcase
the metamodel and the meta-classes representing the key concepts of use cases [15].

Fig. 2. Simplified Metamodel of use cases diagram

• Actor : An actor is behaviored classifier which specifies a role played by a user or
any other system that interacts with the subject. An Actor models a type of role
played by an entity that interacts with the subject, but which is external to the sub-
ject. Since an actor is external to the subject, it is typically defined in the same
classifier or package that incorporates the subject classifier.

• Extend : This relationship specifies that the behavior of a use case may be extended
by the behavior of another.

• Include : Include is a directed relationship between two use cases, implying that the
behavior of the included use case is inserted into the behavior of the including use
case.

• UseCase : represents a use case, enabling more than one of them to be specified in
a single model in conformance to this metamodel. A UseCase is a kind of behav-
iored classifier that represents a declaration of an offered behavior. Each use case
specifies some behavior, possibly including variants, that the subject can perform
in collaboration with one or more actors. Each use case is divided into two terms.
The first one describes the action part performed by the user, while the second
characterizes the class representing a category of objects.

iJOE ‒ Vol. 14, No. 9, 2018 175

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

4.2 PIM source Metamodel

The PIM represents the system-specific business logic or the design model. It rep-
resents the functioning of entities and services. It must be durable and lasting over
time. It describes the system, but does not show the details of its use on the platform.
At this level, the formalism used to express a PIM is a class diagram in UML, repre-
sented in Figure 3.

The Classes package contains sub packages that deal with the basic modeling con-
cepts of UML, and in particular classes and their relationships. The Kernel package
represents the core modeling concepts of the UML, including classes, associations,
and packages. Our source Metamodel structures a simplified UML model based on a
package containing the data types and classes. The classes contain structural features
represented by attributes, and behavioral features represented by operations.

Fig. 3. Simplified Metamodel of classes diagram

• Association : An association specifies a semantic relationship that can occur be-
tween typed instances. It has at least two ends represented by properties, each of
which is connected to the type of the end. More than one end of the association
may have the same type.

• Package : A package is used to group elements, and provides a namespace for the
grouped elements.

• Classifier : A classifier is a namespace whose members can include features. Clas-
sifier is an abstract metaclass which describes set of instances having common fea-

176 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

tures. This meta-class represents both the concept of class and the concept of data
type.

• Class : Class is a kind of classifier whose features are attributes and operations.
Attributes of a class are represented by instances of Property that are owned by the
class.

• DataType : A data type is a type whose instances are identified only by their value.
A DataType may contain attributes to support the modeling of structured data
types.

• Parameter : A parameter is a specification of an argument used to pass information
into or out of an invocation of a behavioral feature.

5 The transformation process

Once the meta models developed, the next step is to specify the correspondences
between the two meta models by using transformation rules written in QVT Opera-
tional Mappings. In this section we’ll explain some of the programmed transformation
rules. In Table 1, rules expressed in textual QVT are described.

Table 1. Mapping between Use Case elements and Classes

Transformation rule Source Target Description

ActorsToClass Actor Class
This transformation will map the actor from
the use case diagram into a class the classes
diagram.

UseCaseToClass
Class Class The class part of a use case will be trans-

formed into a class.

Action Operation This will map the action part of a use case
into the class’ operation.

AssociationToAssocia-
tion Association Association Maps the association between use cases into

an association between classes.

IncludeToAssociation Include Association Transform the include relationship into an
association between classes.

ExtendToGeneralization Extend Generalization Map the extend relation between two use
cases into a relation of generalization.

BoundaryToPackage Boundary Package Transforms the use case boundary to a
package.

We first developed our models corresponding to our source and target metamodels,
and then we implemented the algorithm (see below) using the transformation
language QVT Operational Mappings.

iJOE ‒ Vol. 14, No. 9, 2018 177

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

Main Algorithm :

input srcModel:UCDBoudary
output destModel:CDPackage
begin
create UCDBoundary UCD
create CDPackage CD
for all a in srcModel
map UCDBoudaryToCDPackage (a)
end for
end
mapping UCDBoudaryToCDPackage (ucd:UCD.UCDBoudary):

CD.CDPackage
begin
create CDPackage cdp
cdp.name = ucd.name + ‘CD’
for all cdp.class
 map actorToClass()
 map usecaseToClass()
end for
for all cdp.association
 map associationToAssociation()
end for
end
mapping actorToClass (ac:Actor):Class
begin
create Class c
c.name = ac.name + ‘Class’
end
mapping usecaseToClass (uc:UseCase):Class
begin
create Class c
c.name = uc.class.name + ‘Class’
for all c.operation
 map actionToOperation()
end for
end
mapping actionToOperation (at: Action):Operation
begin
create Operation o
o.name = at.name + ‘Op’
end
mapping associationToAssociation

(a:Association):Association
begin

178 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

create Association ac
ac.name = a.name + ‘AC’
for all ac.generalization
 map extendToGeneralization ()
end for
end
mapping extendToGeneralization (et: Ex-

tend):Generalization
begin
create Generalization g
g.name = et.name + ‘Et’
end
end

QVT transformations : A QVT transformation is in the form of a function with
two parameters, the first corresponds to the source model, the second corresponds to
the target model. The main function of our transformations is as follow:

transformation ucdToCdTransfo(in src:UCD, out dest:CD);
main() {
 src.objectsOfType(UcdBoundary) -> map ucdBoundToCd-

Pack();
}

We consider that a simplified use case model consists of a Boundary called
UcdBoundary. It will be transformed into a class’ package called CDPackage, using
the transformation rule defined as follows:

mapping UCD::UcdBoundary:: ucdBoundToCdPack() :
CD::CDPackage {
 result.name := self.name + "Cd";
 result.association += self.actor[UCD::Association] ->

map associationToAssociation();
}

The following code shows the transformation rule of an association from a use case
diagram to an association between classes.

mapping Association::associationToAssociation () : As-
sociation {
 result.name := self.name + "Ac";
 generalization += self.extend -> map extendToGeneral-

ization();}

iJOE ‒ Vol. 14, No. 9, 2018 179

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

6 Conclusion

This paper presents a new approach of CIM-to-PIM transformation, in which, we
focus on the software development from the UML angle. In our approach, the UML
diagrams are used as CIM and PIM. This approach introduces the use cases diagram
as the model of the CIM level, which will be transformed into classes diagrams mod-
eling the PIM level.

The primary benefit of our approach is that it provides a disciplined way towards
automation of the CIM-to-PIM transformation.

Our future intentions include fortifying our MDA approach by the use of the UML
sequences and activities diagrams. Also, we aim to apply the UML approach for the
other levels transformations, such as PIM to PSM.

7 References

[1] Object Management Group. MDA GuideV2.0. (2014-06-01). http://www.omg.org/mda/.
[2] Klaus, F., Jörg, M., & Renato, L. (2012). Agent-Based Technologies and Applications for

Enterprise Interoperability. Springer-Verlag Berlin Heidelberg.
[3] Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: the Model Driven Ar-

chitecture: Practice and Promise. Addison-Wesley Professional.
[4] Mellor, S., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled: Principles of Model-

driven Architecture. Addison-Wesley.
[5] Cao, X. X., Miao, H. K., & Chen, Y. H. (2008). Transformation From Computation Inde-

pendent Model to Platform Independent Model with Pattern. Journal of Shanghai Universi-
ty, 12(6):515-523. https://doi.org/10.1007/s11741-008-0610-2

[6] Kardo!, M., & Drozdová, M. (2010). Analytical Method of CIM to PIM Transformation in
Model Driven Architecture (MDA). Journal of Information and Organizational Sciences,
34(1):89-99.

[7] Kherraf, S., Lefebvre, É., & Suryn, W. (2008). Transformation From CIM to PIM Using
Patterns and Archetypes. 19th Australian Conference on Software Engineering (ASWEC).
IEEE. https://doi.org/10.1109/ASWEC.2008.4483222

[8] Zhang, W., Mei, H., Zhao, H., & Yang, J. (2005). Transformation From CIM to PIM: A
Feature-Oriented Component-Based Approach. International Conference on Model Driven
Engineering Languages and Systems. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11557432_18

[9] Rodríguez, A., Fernández-Medina, E., & Piattini, M. (2007). Towards CIM to PIM Trans-
formation: From Secure Business Processes Defined in BPMN to Use-Cases. International
Conference on Business Process Management. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75183-0_30

[10] Rodríguez, A., Fernández-Medina, E., & Piattini, M. (2008). CIM to PIM Transformation:
A reality. Research and Practical Issues of Enterprise Information Systems II. Springer,
Boston, MA. https://doi.org/10.1007/978-0-387-76312-5_50

[11] Rodríguez, A., de Guzmán, I. G. R., Fernández-Medina, E., & Piattini, M. (2010). Semi-
Formal Transformation of Secure Business Processes into Analysis Class and Use Case
Models: An MDA Approach. Information and Software Technology, 52(9):945-971.
https://doi.org/10.1016/j.infsof.2010.03.015

180 http://www.i-joe.org

Paper—Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

[12] Kriouile, A., Addamssiri, N., & Gadi, T. (2015). An MDA Method for Automatic Trans-
formation of Models from CIM to PIM. American Journal of Software Engineering and
Applications, 4(1):1-14. https://doi.org/10.11648/j.ajsea.20150401.11

[13] Object Management Group (OMG), MOF 2.0 QVT. http://www.omg.org/spec/MOF/2.0/.
[14] Luciano, L., Grant, M., & Bran, S. (2003). UML for Real, Design of Embedded Real-Time

Systems. Springer Science + Business Media, Inc.
[15] OMG, UML 2.4.1 Superstructure Specification, 2011.
[16] Rosenberg, D., & Stephens, M. (2007). Use Case Driven Object Modeling with UML.

APress, Berkeley, USA.
[17] Arlow, J., & Neustadt, I. (2005). UML 2 and the Unified Process. Practical Object-

Oriented Analysis and Design, 2nd edn., Addison-Wesley, Reading.

8 Authors

Oualid Betari is a PhD student from Mohammed First University (Oujda, Moroc-
co). His research interests at the MATSI Laboratory (Applied Mathematics, Signal
Processing and Computer Science) include model driven engineering, conceptual
design of data warehouses, modeling PHP Frameworks, and modeling Leadership
tests. (e-mail: beta.oualid@gmail.com).

Saida Filali teaches the concepts of Management at Mohammed First University.
Her activities of research in the ERDILI (Research Team in Law and Information
Technology and Freedom of Information) focuses on Quality and Marketing. (e-mail:
sfilali6@gmail.com).

Amine Azzaoui is a PhD student from Mohammed First University. His research
interests at the MATSI Laboratory include Business Process Management (BPM) and
MDA models for the end-to-end design of strategic and operational dashboards. (e-
mail: a.azzaoui@enim.ac).

Mohamed Amine Boubnad is a PhD student at Mohammed First University, La-
boratory: Economics and Management of Organizations. His research interests in-
clude management control systems, interactions between management and infor-
mation systems. (e-mail: ma.boubnad@gmail.com).

Article submitted 03 July 2018. Final acceptance 15 July 2018. Final version published as submitted by
the authors.

iJOE ‒ Vol. 14, No. 9, 2018 181

	iJOE – Vol. 14, No. 9, 2018
	Applying a Model Driven Architecture Approach: Transforming CIM to PIM Using UML

