Real-Time Detection and Recognition of Road Traffic Signs using MSER and Random Forests

Xianyan Kuang, Wenbin Fu, Liu Yang

Abstract


Real-time detection and recognition of road traffic signs plays an important role in advanced driving assistance system. Typically, the region of interest (ROI) method is effective in feature extraction but inefficient because it is sensitive to illumination changes. In this paper, we propose a maximally stable extremal regions (MSER) method with image enhancement to greatly improve ROI. Firstly, we employ gray world algorithm to process original images. And then potential areas of traffic signs are obtained through increasing the image contrast ratio and extracting the image-enhanced MSER. According to the characteristic variable and the geometry moment invariants, the geometric characteristics of traffic signs are extracted to obtain the ROIs. Finally, HSV-HOG-LBP feature is constructed and the random forests algorithm is used to identify the traffic signs. The experimental results show that our proposed method show strong robustness on illumination condition and rotation scale, and achieves a good performance by experiments with actual images and German traffic sign detection benchmark (GTSDB) data set.

Keywords


traffic sign detection and recognition, maximally stable extremal regions (MSER), random forests, geometry moment invariants, image enhancement

Full Text:

PDF



International Journal of Online and Biomedical Engineering (iJOE).ISSN: 1861-2121
Creative Commons License
Indexing:
Web of Science ESCI logo Engineering Information logo INSPEC logo DBLP logo ELSEVIER Scopus logo EBSCO logo Ulrich's logoGoogle Scholar logo Microsoft® Academic Search