Probabilistical Robust Power Control for Cognitive Radio Networks under Interference Uncertainty Conditions

Lingling Chen, Zhiyi Fang, Xiaohui Zhao

Abstract


The focus of this paper is to find a robust power control strategy with uncertain noise plus interference (NI) in cognitive radio networks (CRNs)in an under orthogonal frequency-division multiplexing (OFDM) framework. The optimization problem is formulated to maximize the data rate of secondary users (SUs) under the constraints of transmission power of each SU, probabilistic the transmit rate of each SU at each subcarrier and robust interference constraint of primary user. In consideration of the feedback errors from the quantization due to uniform distribution, the probabilistic constraint is transformed into closed forms. By using Lagrange relaxation of the coupling constraints method and subgradient iterative algorithm in a distributed way, we solve this dual problem. Numerical simulation results show that our proposed algorithm is superior to the robust power control scheme based on interference gain worst case approach and non-robust algorithm without quantization error in perfect channels in the improvement of data rate of each SU, convergence speed and computational complexity.


Keywords


Cognitive radio networks; robust power control; probability constraints; orthogonal frequency-division multiplexing (OFDM)

Full Text:

PDF



International Journal of Online Engineering (iJOE).ISSN: 1861-2121
Creative Commons License
Indexing:
Web of Science ESCI logo Engineering Information logo INSPEC logo DBLP logo ELSEVIER Scopus logo EBSCO logo Ulrich's logoGoogle Scholar logo Microsoft® Academic Search