
SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

ELabMate: A Tool for Delivering Programming
Courses Effectively

http://dx.doi.org/10.3991/ijac.v5i3.2189

Rihab Eltayeb Ahmed
Sudan University of Science and Technology (SUST), Khartoum, Sudan

Abstract—In the Sudan, at the university level, mastering
one of the current programming languages is typically
required in order for a student to graduate from computer
science majors. In Sudan University of Science and
Technology (SUST), Traditional teaching methods of
introductory programming courses involve lectures and
practical sessions where students and teachers meet and
discuss. Other resources are devoted to the courses
including free lab sessions and tutorials with supporting
staff and teaching assistants. Learning management systems
and page-turning courses are available, complemented by a
mass of online information, little of which is structured or
written to help students learn successfully. To help students
in the learning process, more training and practice on lab
problems with a guided help is needed in addition to the
normal sessions. As a result finding the middle ground
between student’s needs and the limited staff and time
schedules is challenging. In this context we propose the
development of an e-learning tool (ELabMate) to provide
assistance to students and teachers. The two main potential
users of the tool would be students and teachers with a
dedicated interface for each, other administrative users can
be found with respect to the academic rules drawing
attention to the active role of every part involved in the
learning process. The goal is to help students learn
programming concepts based on assisting and engaging
them in their learning process in a way that improves their
performance. The tool real innovation is not being a text
editor, but the ability to monitor students while writing their
code and to provide hints the way the instructors do.

Index Terms—E-learning, Object-oriented programming,
Teaching programming, Technology-enhanced learning,
Workplace E-Learning.

I. INTRODUCTION

In the Sudan, at Computer Science/Information
Technology colleges and educational institutes, learning
and mastering one of the current programming languages
is required for a student to graduate. Since SUST believes
in the importance of such courses, rules were set to insure
this necessity and to enforce the importance of various
programming courses to the students in the College of
Computer Science and Information Technology. For
example the Fundamentals of Programming using Java
course which is taught in the first year. The course would
prevent a student from being transferred to the second
year if the student fails, although a carryover is permitted
for other subjects. An enhancement to the previous rule
was to allow the carryover but not to the fourth class,

again preventing the student from graduating unless all
programming courses were successfully passed.
Conducting similar rules raises importance of the courses,
and values more the student’s further studies and their
future careers.

In a contribution to the development of a quality
learning model, resources were devoted to the course
including library materials, labs and tutorials with
supporting staff and teaching assistants. Learning
management systems and page-turning courses were
available, complemented by a mass of online information,
little of which is structured or written to help students
learn successfully.

Researchers have been investigating the causes that lead
students to perform poorly in programming courses [1,2].
Finding solutions and alternative learning and teaching
methods could be implemented to aid in the learning
process. In a study [3], the undergraduate students who
were studying programming subjects agreed that among
their problems were designing a program to solve a task,
dividing the functionality, learning the syntax and finding
bugs in the program. In the other hand they have less
problems using development environments, and most of
them responded that they learn effectively in practical
sessions.

As such, these findings were considered a base for the
study [3] to further suggest game as another suitable
teaching method that allow for practice, examples,
feedback and hints. In general Feedback to students is an
important part that improves and accelerates the learning
process. It needs to be timely, intimate and individual,
empower learning and manageable [4].Electronic
feedback with its wide range of possibilities speeds up the
delivery and reception of feedback and assists with
generating quality feedback.

From our experience in teaching programming
languages for years, our students need more training and
practice on lab problems with a guided help. This should
be an addition to the normal sessions, but we can’t handle
that with the limited staff and time schedules. An e-
learning tool is needed to provide assistance to students
and teachers [5,6]. In this context we propose the
development of an e-learning tool (ELabMate) to provide
assistance to students and teachers. By integrating the tool
in the learning process we then can resolve some
programming languages courses problems.

6 http://www.i-jac.org

http://dx.doi.org/10.3991/ijac.v5i3.2189�

SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

Figure 1 Student Problem Screen / Student Interface.

Figure 2 Automatic Hints/Student Interface

Among the objectives of building such a tool are, to
help students learn programming concepts based on
assisting and engaging them in their learning process in a
way that improves their performance, to help students
prepare for tests and earn better grades in the introductory
programming course, and to create an intrinsically
motivating environment.

The main approach the ELabMate follows is to capture
the instructor knowledge, provide it to the student in a
way that guides their thinking and to provide help when
required, the way the thinking, the way training should.

The tool is based on the testing of skills and knowledge.
It uses techniques to share knowledge and improve
learning and performance. The learning methodology is a
mixture of methodologies. Tutorials, problem solving
strategies and a notion of coaching are represented in the
expert’s solutions part in the tool.

In the next section we provide the main concept, in
section III we describe the main interfaces in ELabMate
the instructor view and the student view. In Section IV we
conclude with providing some practical techniques for
implementing the tool.

II. TOOL CONCEPT

ELabMate will enable students to learn how to program.
They will be able to write their code inside the tool. It is
more than a normal text editor. When a student is writing
a code to solve a problem, the tool will monitor how
students express their idea of solving a programming
problem and gives hints at compilation and runtime.

Using the tool an instructor is going to create a problem

for the students to practice on. This involves linking each
step of the algorithm with every possible code statements
that the step can be translated to. These possible code
statements will serve as samples, patterns and guidelines
to look at. For example if the algorithm step is to read a
number from the console, a possible code statement in
Java can be:

Scanner sc=new Scanner (System.in);
int num=sc.nextInt();

The tool will guide the student code writing by the

ability to show the algorithm that solves the problem and
the possible solutions for a specific step in the algorithm
when required. Here the tool is not judging the student
code but helping the student to write the closest best
solution based on the guidelines provided. In other words
ELabMate innovation is to react to the student specific
educational needs in a specific point in time, not only
judging the code after completion. Such approach
simulates the job we have been doing as instructors and
teaching assistants during lab sessions.

It can also be shown how an expert would solve a

problem so the student can see how the problem is being
addressed from another point of view. This can include
looking at a different algorithm, less code statements that
produce the same results and a better approach of handling
the problem. The point is that the student will be able to
compare his code with another so that he can rethink the
problem in an efficient way.

Integrated Development Environments (IDE) and text

editors such as Eclipse [11] and TextPad [12] provide
features that make programming easier. In particular they
can provide syntax highlighting, code formatting,
editing/debugging, code completion/fixing and more.
However, the primary purpose is for the code writing
process

These nice features work as time savers and to increase
programmers productivity but they fail to notice how the
student is handling the programming problem itself, how
close to the right solution and specially how to help the
student solve the problem. Skills to use an editor or an
IDE for code writing is required, but the most required is
the effective learning process that leads to the generation
(writing) of the code.

iJAC – Volume 5, Issue 3, August 2012 7

SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

 Figure 3: See Also pressed in Student Interface Figure 4: Show Me How pressed in Student Interface

ELabMate is considered as a kind of an intelligent

instructor that judges, corrects and helps his students in
order to learn how to do programming in a creative way. It
would capture the instructor experience and tacit
knowledge and present it in a way that benefits the
students and eliminate the communication problems.

III. TOOL DESCRIPTION

A. Student Interface

Typically, students start up the tool and choose a
problem to work on as depicted in fig 1. The interface
provides the following functionality:
 Begin with the challenge of the day which is displayed

at the first screen.
 Select a specific problem level (simple, difficult etc,)

and a specific problem to start solving it.
 Navigate through the resources that the instructor had

setup for the problem. The file will be linked to, if it is a
link or displayed if it is a text, presentation or video.

 Check the general programming hints.
 View code snippets that might help student get the idea

of the code organization, declarations, … etc

ELabMate is going to monitor what the student is

writing and supply help when needed. When the student
is expected to be in a specific position in the code, the
equivalent part from the algorithm is displayed so that the
student will know what to do next as depicted in fig 2.
This is very important because it will derive the student
thinking towards the right directions. One problem the
students struggle from is the lack of alignment of their
thinking towards the solution. With the algorithm
available to them and with linking the algorithm step with
the code student is writing, a line will always exist
towards the right solution or otherwise student will be
able to see the defect. Revealing the misalignments as

soon as they appear will minimize the number of errors
and prevent them from propagating to the entire code.

 When the student doesn’t know how to write the
equivalent code of a step in the algorithm, ELabMate will
respond with displaying a hint that gives more feedback as
shown in fig 2. This kind of hints is related to the
programming language syntax. The tool will also monitor
the compilation and runtime errors and provide hints as
illustrated in fig 3. When the student has finished the task
successfully, the expert solutions can be shown, so as to
compare student work with the ideal solutions, giving the
student a chance to enhance the current and future code
writing skills.

Example Student Interaction

Let us assume that the student started with the bubble
sort problem that the instructor had set. The problem
description is displayed. An example description could
be:” The bubble sort routine works like this: You start at
the left end of the line and compare the two kids in
positions 0 and 1. If the one on the left (in 0) is taller, you
swap them. If the one on the right is taller, you don’t do
anything. Then you move over one position and compare
the kids in positions 1 and 2. Again, if the one on the left
is taller, you swap them.

The student can check the See Also, View Code
Snippets or navigate through the General Hint. The “See
Also” part in the tool links to the resources supplied with
the problem and in a form of a link to a file of any type.

Fig 3 shows an image related to the sorting problem in

which an example is given.

8 http://www.i-jac.org

SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

Figure 6: New Problem Creation/Instructor Interface. Note the other

tabs related to the problem.

Figure 5: Expert Solution in Student Interface

The algorithm steps are also visible to the student. The

algorithm tracking would start from step one as shown in
fig 3. Step one indicates that the student is going to
declare two integers named in and out respectively. As
depicted in fig 2 when the student presses the Enter key
in the code writing area, the hints related to the algorithm
is displayed accompanied with the Show Me How facility
that would display relevant help. In the case of declaring
the in and out variables, variable declaration is displayed
as shown in fig 4. More links are provided to access more
information where the student can learn how to declare
both variables in one declaration statement. The student
can move to the next algorithm step if finished writing
the code for the current one.

Compiling and executing the code are part of the tool

options. Compile and runtime messages are visible to the
student. A sample solution to the problem can be
dispalyed when the time for solving the problem elapsed.
Fig 5 represents this option.

B. Instructor Interface

The instructor interface is a management interface to
manage problems and their related objects such as
problem specific hints, files, resources and the general
hints objects. Management includes creating and inserting,
updating, deleting of those objects.

The interface as proposed in fig 6 will help the
instructor to achieve the following:

 Create, update, and delete problems. The problem text

description is to be provided along with other required
attributes such as the time needed to complete a
solution.

 Rank a problem to reflect its level of difficulty.
 Prepare the algorithm which is the steps needed to reach

a solution, explained in plain text.
 Link the algorithm steps with examples of code

statements. The instructor can select from predefined
statements or add new statements.

 Supply different code solutions to the problem.
 Prepare complete program examples (code snippets)

that enable the student to learn from.
 Provide hints to remind the students about specific

statement, coding practices and coding styles. Hints are
of two types. The first one is specific hints about the
problem itself that are derived from the steps to be done
in the algorithm such as a hint that a student would
receive to calculate the value of a variable in a specific

iJAC – Volume 5, Issue 3, August 2012 9

SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

step. Specific hints can be generated automatically by
monitoring the point where the student is in when
writing the code and the steps of the algorithm. The
other are general hints that can be applied to different
problem constructs such as a hint on naming
conventions, spacing and indentation, variable
declaration and the use of a specific key word.

 Provide a “see also “link that links to a file (text, html,
pdf, video and audio) such as the programming
language API as a resource to look at.

IV. DESIGN ISSUES

The here shown sample screens in the various figures
for the instructor and student interfaces are an elaboration
of what the system can look like. The most powerful
attribute of this system is the automatic monitoring and
responding to what is expected at that point of code. The
whole system should be intelligent enough to guess what
the situation is and respond to that effectively. All design
issues related to designing an ELearning product should
be carefully followed [7].

The management part should be simple and
straightforward interface that enables an instructor to do
the job efficiently. For example the wizard-like interface
is preferable when creating a new problem where save,
back and next buttons are shown. The course name,
instructor name, user name and password should be
considered in the application but not shown here.
Emphasizing the active role of every part involved in the
learning process, more interfaces can be added to the tool
to manage the problems with different roles and privileges
such as a teaching assistant role.

V. IMPLEMENTATION TECHNIQUES

ELabMate can be fairly represented as a desktop
application implemented using one of the programming
languages. Java is a good candidate for implementing the
tool for many reasons. Java is a platform independent
language that enables installing the tool in various
operating systems as long as the java virtual machine is
installed. Beside that Java has a light weight graphical
user interface capabilities for applications and applets.
Many database vendors provide Java enabled drivers for
manipulating databases from Java code.

A work in progress implementation of the tool is under

development at SUST-CCSIT as a graduation project
under the author supervision. The implementation is going
to produce a desktop application using Java for coding and
MySQL for database end. The produced tool would be
assessed by the graduation assessment committee that is
constructed from staff and industry members.

Another implementation of the tool can be as a web
based application. PHP Hypertext Preprocessor, Java
Server Pages, Active Server Pages in .NET framework or
any other suitable server side languages can be used in this
case. If JSP is considered then the only difference from
implementing it as a desktop application would be the web
pages versus swing tools in the GUI part of the tool. In

other words the core classes that provide the functionality
(implementation layer) can be separated from the
presentation layer.

Building the text editor part of the tool is not one of the

motivations. For example Eclipse provides a general
structure for building an editor [8] that can be extended to
provide the specific features of the ELabMate around it.

In implementations techniques, the database design and
the application’s UI and business logic should be carefully
addressed and the actual implementation can be mapped
to IEEE Learning Technology Systems Architecture
(LTSA) [5] that specifies a “high level architecture for
information technology-supported learning, education,
and training systems”.

VI. RECOMMENDATIONS

The tool can be integrated with a Learning Management

System LMS such as MOODLE [10], the open source e-
learning platform that helps in creating online courses and
provides collaboration and interaction. The main reasons
are to add more functionality to the LMS, to benefit from
the database and management facilities available in the
LMS and to provide an effective educational environment.

ACKNOWLEDGMENT

The author would like to thank Dr. David Guralnick who
encouraged and gave valuable comments on this work. He
also gave us the chance to actively participate and be
present on the group of the “Workplace E-Learning:
Creating an Effective E-learning User Experience” among
the professionals and researchers of several different
knowledge areas.

REFERENCES
[1] Steven D. Sheetz, Gretchen Irwin, David P. Tegarden, H. James

Nelson and David E. Monarchi Exploring the difficulties of
learning object-oriented techniques, Journal of Management
Information Systems JSTOR,Vol. 14, No. 2 (Fall, 1997), pp. 103-
131.

[2] Phit-Huan Tan, Choo-Yee Ting ; Siew-Woei Ling,” Learning
Difficulties in Programming Courses: Undergraduates' Perspective
and Perception”, International Conference on Computer
Technology and Development, 2009. ICCTD '09, 2009, p.42-46

[3]
[4] Lahtinen, E., K. Ala-Mutka, and J. Hannu-Matt,” A study of the

difficulties of novice programmers”, in Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in
computer science education, ACM Press: Caparica, Portugal,
2005, p. 14-18.

[5] Race, P., “Using feedback to help students learn”, The Higher
Education Academy, 2001, available from
http://www.reading.ac.uk/web/FILES/EngageinFeedback/Race_us
ing_feedback_to_help_students_learn.pdf.

[6] M. Ivanović , S. Xinogalos and Ž. Komlenov, “Usage of
Technology Enhanced Educational Tools for Delivering
Programming Courses,” ,in iJET – Vol. 6, Issue 4, December
2011.

[7] J.Peter Robinson, “MyPyTutor: an interactive tutorial system for
Python,” , In: John Hamer and Michael de Raadt, Proceedings
Australasian Computing Education Conference (ACE 2011).
Thirteenth Australasian Computing Education Conference, Perth,
Australia, pp.155-160,. 17-20 January 2011.

10 http://www.i-jac.org

http://www.jstor.org/stable/10.2307/40398268�
http://www.jstor.org/stable/10.2307/40398268�
http://www.reading.ac.uk/web/FILES/EngageinFeedback/Race_using_feedback_to_help_students_learn.pdf�
http://www.reading.ac.uk/web/FILES/EngageinFeedback/Race_using_feedback_to_help_students_learn.pdf�

SPECIAL FOCUS PAPER
ELABMATE: A TOOL FOR DELIVERING PROGRAMMING COURSES EFFECTIVELY

[8] J Ismail, “The design of an e-learning system: Beyond the hype,” ,
in Elsevier the internet and higher education, Vol.4, pp.329-336,
2001.

[9] http://sourceforge.net/projects/eclipseexeditor, last accessed
March 2012.

[10] IEEE Learning Technology Standards Committee, IEEE Standard
for Learning Technology-Learning Technology Systems
Architecture (LTSA), IEEE Computer Society, IEEE P1484.1-
2003.

[11] http://moodle.org/, last accessed March 2012.
[12] http://www.eclipse.org/jdt/overview.php, last accessed March

2012.
[13] http://www.textpad.com/products/textpad/features.html, last

accessed March 2012.

AUTHORS

Rihab Eltayeb Ahmed is a lecturer and a PhD student
at Sudan University of Science and Technology ,College
of Computer Science and Information Technology,
Khartoum, Box 407 Sudan (e-mail: rahbon@
hotmail.com, rihab.eltayeb@gmail.com). She had
completed the design and development of Asynchronous
collaborative eLearning System in her postgraduate
studies. Her research interests include LMS, Workplace
eLearning, Programming languages, Open Source
Software and Model Driven Architecture.
This article is an extended version of a paper presented at the conference
ICELW2012, held June 2012, at Columbia University, in New York,
NY, USA. Manuscript received 19st July 2012. Published as resubmitted
by the author 5 August 2012.

iJAC – Volume 5, Issue 3, August 2012 11

http://sourceforge.net/projects/eclipseexeditor�
http://moodle.org/�
http://www.eclipse.org/jdt/overview.php�
http://www.textpad.com/products/textpad/features.html�

