
PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

ColScript a New Scripting Language for
Collaborative Learning

http://dx.doi.org/10.3991/ijac.v8i4.4994

Aiman Turani
TAIBAH University, Medina, KSA

Abstract—The collaboration script is defined as a formal
way of describing the flow of activities within a collaborative
learning session. Using collaboration script would encour-
age the production of effective and productive interactions
between learners. Nevertheless, developing such script is not
a trivial task. Standardization has played a major role in the
expansion of instructional designs, but at the same time it
limited down the flexibility of describing collaboration ses-
sions that have complex structures. Representing a collabo-
ration script in XML-tags format works well when scripting
simple scenarios, but to describe extended scenarios it would
make this scripting style very challenging and complicated.
This approach causes users to avoid designing heavy weight
scenarios and limits down their creativity. Relying on tools
to implicitly generate such script would also limit down
designers’ creativity since designers can only choose from a
limited set of tools and design components.

In this research, we have defined the bases of a new collabo-
ration scripting language, CoScript, that is able to describe
collaboration learning sessions in a simple, flexible, and
formal way. This scripting language has been derived based
on a theoretical framework that was proposed in an earlier
research. The proposed scripting language notation is close
to the notation of traditional software scripting languages.
This makes it easier to be learnt by instructors with basic
programming skills. It has the ability to describe design’s
structure elements, such as sequencing, conditions, repeti-
tion, activities, activity’s input /output, group formation, etc.

ColScript is basically composed of a limited set of objects
and commands. The first part contains six objects (role
object, group object, feedback object, collaboration tools
object, time/date object and resources object), where the
second part contains five essential structuring commands
(input, output, loop, doactivity, groupformation).

Index Terms—Computer Support for Collaborative Learn-
ing, Collaboration Script, Collaboration Technique, Team
Collaboration.

 INTRODUCTION I.
A collaboration script has been introduced during the

last decade to describe the flow of activities within collab-
oration sessions that are conducted in the virtual environ-
ment in a structured and formal way [1]. It describes the
nature of activities, roles associated with these activities
and also the environment that is needed to support such
activities [2]. Careful planning of collaboration session is
essential to generate productive outcomes especially with-
in virtual environment [3]. What type of activities should
be included, which roles are needed, how to proceed from
one step to another are important issues when planning
any session’s [4]. Structuring collaborative sessions in a

formal way is necessary to achieve intended objectives
where in the other hand, informal collaboration does not
necessarily allow participants to reach these objectives.
Many reports indicate that participants suffer from various
deadlocks at the start, during the process, or even toward
the end of informal sessions, that for instance, include
only a stated objective and a chatting tool [5].

In the other hand, designing a scripting language that is
capable of describing all collaboration situations in a for-
mal format is very challenging [6]. Defining a scripting
language is not trivial and many questions need answers.
What type of rules, commands, objects, etc that should be
included in this language. The scripting language needs to
maintain several characteristics but the two most essential
ones are flexibility and simplicity. It should have the flex-
ibility to describe a wide range of items such as role,
group structures, timing, tools, resources, feedback nature,
sequencing, looping, conditions, activities, etc. Simplicity
is considered key issues in adopting such scripting lan-
guage since managers need to play an active role in using
that script.

 COLSCRIPT LANGUAGE II.
In late 1990s, the first serious attempt for scripting

learning designs was carried out by the Open University in
the Netherlands which was called EML (Educational
Modeling Language). EML was used to describe and
model a learning design using a structured XML-based
language. The main components of this language were:
roles, activities, and environments. This language de-
scribed the learning design as a flow of activities that were
undertaken by roles within specific learning environment.
The IMS Learning Design [7] specification was built on
the top of EML as an improvement of that language. IMS
LD became the fundamental standard of the current learn-
ing designs [8]. Nevertheless, following the same ap-
proach for describing heavy-weight types of collaborative
sessions are not trivial and difficult to implement. XML-
based languages are usually used to describe simple con-
tents or scenarios. Trying to cope with the natural com-
plexity within collaborative sessions’ designs (conditions,
iterations, notification, etc.) using XML tags would add
more complexity to this type of scripting. Not many learn-
ing management systems are compliant with IMS LD
versions B or C which deal with properties, conditions and
notifications. Tools, such as LAMS [9], COLLAGE [10],
that are used to enable instructors to implement their
learning designs, still limit down their creativity since they
allow instructors to select from only a limited set of tools
and design components.

ColScript is a new approach of scripting teams’ collab-
oration sessions. ColScript is built on a limited set of
rules and commands similar to the other scripting lan-

iJAC ‒ Volume 8, Issue 4, 2015 21

PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

guages’ notations in the programming field. It consists of
a limited set of programming’s elements that are divided
into groups, ColScript objects and ColScript commands.

 COLSCRIPT OBJECT III.
There are six objects (role object, group object, feed-

back object, collaboration tools object, time object and
resources object) that are used the ColScript scripting
language. They are explained in detail in the following
sections.

A. Role Object

The first step when starting a collaboration session is
specifying roles [11]. Specifying the correct roles is cru-
cial step. It indicates which participant has the right to
speak at each step. For instance, in a Debate session there
are usually four typical roles. They consist of two roles as
debaters, an audience role, and a chairperson role. The
declaration code for a debate session would look as fol-
lows:

Audience as role ;
Proposer as role;
Opposer as role;
Chairperson as role ;

B. Group Object

Proper group setting is also essential in conducting a
productive collaborative learning session [12]. Grouping
is a dynamic process where in many cases, more than one
group setting are needed during a single session. In
CoScript, the Group Object describes the group’s roles
and sizes. As in the previous Debate example, a group for
instance, is composed from 13 participants: 2 debaters, 10
audiences, and one chairperson.

DebateGroup as group = {1 Proposer,1 Opposer,10 Audi-
ence, 1 Chairperson };

According to this setting, the first element in the De-
bateGroup object would be the proposer then the opposer
and so on.

To allow flexibility in group formation, group structure
is based not only roles, but also could be based on other
groups or even on other groups’ roles. For example in a
Pyramid technique, at a specific stage, two small groups
are combined to form a larger group.

GroupL1 as group = {GroupS1, GroupS2 };

The second key issue that is related to ColScript Group
Object is how many times to apply the formation. The
formation could be applied to a single group or to multiple
groups. It is more common scenario that all groups in a
session keep the same settings until the end. For example
in the following code, multiple-groups (g[]) within the
Group Discussing technique will have 5 participants dur-
ing the entire session: 4 as participants and one as a chair-
person. In this case, the number of formed groups depends
on the number of joining participants.

g[] as group = {4 participants,1 chairperson };

The first group would be referenced as g[1] and second

would be g[2] and so on. Participant number 3 at group 4
would be referenced as g[4].3 .

The following line represents even more dynamic group
formation where new large groups would be formed from
combining existing two small groups (e.g. in the Pyramid
technique):

GroupL[] as group = { GroupS[]*2 };

On the other hand, when breaking down large groups to
the smaller ones(e.g. in All-Group-Pair technique), the
code would look like this:

SmallGroup[] as group = {LargeGroup[]/2 };

The following examples represent further flexibility. A
specific group could be formed based on other specific
groups. For instance a new group (GG1) would be formed
by only the two first large groups.

GG1 as group = { GroupL[1], GroupL[2] };

Another example, where a new roles and groups could
be formed from other group participants, is the formation
of the expert group within Jigsaw technique. The expert
group could be composed from the first participant of the
first group, first participant of the second group, and first
participant of the third group and assign them to a new
role (Expert1member):

ExpertGroup1 as group = {GroupS1.1 as Ex-
pert1member, GroupS2.1 as Expert1member, GroupS3.1
as Expert1member };

Or they could be assigned to three different roles, such
as

Expert1member1, Expert1member2, and Ex-
pert1member3:

ExpertGroup1 as group = {GroupS1.1 as Ex-
pert1member1, GroupS2.1 as Expert1member2,
GroupS3.1 as Expert1member3 };

C. Feedback Object

The feedback object allows users to deliver their inputs
responding to a specific task. To cover the wide range of
interaction types, the feedback object should be flexible
and represented in many formats. For instance, a feedback
could be close or open. In case of close it might contain
single, double or more feedback’s option. In addition, the
representation of multi-option type could have many
forms such as multiple choices, lists, etc.

op1 as feedback.option("yes", "no");
op2 as feedback.option("1"," 2","3","4");
li3 as feedback.list(1"," 2","3","4");

22 http://www.i-jac.org

PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

In case of the open type, the learner’s feedback could be
represented in the form of text, number (e.g. rating), or
even a file.

txt4 as feedback.inputtext;
txt5 as feedback.inputnumber;
file1 as feedback.inputfile;

Feedback could be a single feedback coming from a
specific learner during the session or multiple feedbacks
coming from many learners. The below line of code de-
clares f1 variable as a file type feedback. It will be as-
signed to an uploaded file, by the instructor for instance,
during the session’s runtime.

f1 as feedback.inputfile;

For feedbacks that are coming from multiple learners at
a same time, an array type could be used to hold their
inputs.

textAnswers[] as feedback.inputtext;
ideasRating[] as feedback.inputnumber;

D. CollaborationTools Object

This object represents a set of software tools that could
be used during mini-activities. Each tool facilitates a spe-
cific activity during the runtime. For instance, a text chat
tool could be used to facilitate a Group Discussion activi-
ty. The following code shows some examples of collabo-
ration tools that could be used during the online session:

txtcht1 as textchat;
audicht1 as audiochat;
vid1cht as videochat;
white1 as whiteboard;
desk1 as desktopShare;

E. Resources Object

Resources are an essential component of any collabora-
tive environment. Resources provide learners with the
appropriate knowledge that is needed to successfully con-
duct a collaboration session. Regarding the Resources
Object, there are four main types of resources which are:

doc1 as document;
img1 as image;
au1 as Audio;
vd1 as video;

The resources files could be assigned statically prior to
runtime (d1,d2) or dynamically during the session runtime
(d3).

d1 as document = “c:\hjh\g.x”;
d2 as document = http://www.libl\goc1.doc;
d3 as document;

F. Time/Date Object
The last object in this group is the Time/Date object.

The Time and Date object allows session designers to
specify dates and time for each activity within the collabo-
ration session. The time and date format could be repre-
sented as in the follow examples:

t1 as time = 5m;
t2 as time = 00:60:00;
d1 as date = 2016:06:11:13:00:00;

 COLSCRIPT COMMAND IV.
In this language, there are five structuring commands

that are used, groupformation, input, output, loop, and the
doactivity command.

A. The groupformation Command

Groups are usually created at the start of a session
where participants stay in the same group until the end of
the session. However, in some cases more than one type
of group formation is needed. The groupformation com-
mand allows groups to be formed according to a prede-
fined group setting. In the following example, a small
group of 4 participants and one chairperson would be
formed. Then later on, all participants would be dis-
patched and join another group setting that is formed
based on pairs;

Audience as role;
Chairperson as role;
Participant as role;

g[] as group = {5 Audience, 1 Chairperson};
gp[] as group = {2 Participant};

groupformation (g);
. . .
groupformation (gp);

B. The input Command

Simply, the input command allows participants to send
their feedbacks during a session. This command includes
an instruction element, which is an optional element,
which is used to guide the participant and to clarify his
task. The second element specifies the role/group who will
send his/their feedback/s. The third element is the feed-
back object, which represents the feedback’s type and its
representation. Finally the last element is the exit condi-
tion, which specifies how and when to move out of this
step. The exit condition could be based on a specific
duration, certain role permission, the submission comple-
tion, etc. The input command syntax looks as follows:

input(Instruction, Recipient, Feedback Object, Exit Con-
dition);

To clarify this statement more, a couple of examples are
listed below. In the first example, the members of g group
would be asked to input their responses in simple text
format within 5 minutes. The result of the input statement
type (text) should match the feedback object tv type. Note

iJAC ‒ Volume 8, Issue 4, 2015 23

PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

also that the result variable tv is declared as an array since
there would be multiple responses coming from group’s
participants;

tx[] as feedback.inputtext;
tx = input ("what is your opinion in ….", feed-
back.inputtext, g ,time = 5 min);

In another example, the group’s participants are asked
to vote on a certain issue;

ff [] as feedback.inputnumber;
ff = input ("enter scale from 1 to 100 for this .. “, feed-
back.inputnumber, g, time = 1 min)};

C. The output Command

The output command is used to direct or ask all learners
or certain participant to perform a certain task. The struc-
ture of this statement is similar to the input statement. The
output syntax looks as follows:

output (Message, Recipient, Exit Condition);

The following first line of code would ask only learners
with p1 role to read a certain document for specific time
duration. In the second line the message will appear for all
group members for an unlimited period of time. The +
sign indicates that this message will appear along with the
old massage and will not replace it. In the third line, all g
members would see the same instruction message that
would disappear after 1 minute or after the facilitator
decides to move to next step or after all participants had
hit the finish button;

output (" read this doc ….."+ doc , p1, time= t1);
output +(" the outcome of the dissuasion is ….." , g,);
output (" think about this idea by yourself ….." , g, time=
1 min or facilitator = “finish” or g = “finish”);

D. The loop commands

For allowing iterative tasks to be performed during a
session, a loop command is used. The loop command is
used to perform simple repetitions for a certain count or a
certain condition or when covering all array’s elements.
The general syntax looks like this:

loop (counter or condition or array as index)
{
tasks…
}

An example for simple count repetition of three times
would be:
loop (counter =3)

Another example is a repetition until the facilitator de-
cides to finish that process:
loop (facilitator =”finish”)

 The array as index statement allows for more flexible
repetition depending on the array size, such as, presenting

feedbacks that were sent by multiple participants, asking
participants in a group to sequentially present their
thoughts one by one, etc.

E. The doactivity Command

The doactivity command is a core command that is
used to assign collaborative tasks for roles and groups.

The general syntax of this command is as follows:

doactivity (Instruction, From, To, Collaboration Tool,
Exit Condition)

The Instruction element is used to explain the task. The
From element is used to specify the actor of this task. The
To element is used to indicate in front of whom this task
will be performed (Audience). The Collaboration Tool
element indicates what type of collaboration tool is need-
ed for this task. The Exit Condition element specifies the
exit condition of this task, such as a specific time.

doactivity (“do….”, proposer, g, aud1, time = t1 or pro-
poser = “finish”);

In the above statement, learners with the role of propos-
er would deliver their arguments in front of their group g
using an audio chat tool for a period of t1 time or when he
feels he has finished and hit the finish button.

doactivity (“discuss this topic ” , g, g, audio1 , time =
t1);

In the above statement, all group members within g
group would discuss a certain topic in front of each others
for a specific period of time.

doactivity (“your turn to discuss this idea “, g[].1 , g,
textchat1 , time = t1);

In the above statement, only the first participant in the
group g would be allowed to speak at that step.

 COLSCRIPT EXAMPLE V.
In this section, the ColScript notation is used to de-

scribe various flows of activities. Two common collabo-
rative techniques were chosen (Debate and Group Brain-
storming) due to their popularity and simplicity.

The Debate technique is used to clarify a controversial
issue. The main steps of this technique are listed as fol-
lows:

1. The chairperson provide a brief background
about the issue.

2. The proposer presents his argument for a speci-
fied time or when he finishes.

3. The opposer opposes that argument for a speci-
fied time or when he finishes.

4. The above two steps are repeated for another
two rounds.

5. Audience participate in the discussion floor for a
specific time or when the chairperson decide to
move to the next step.

6. The proposer summarizes his argument.

24 http://www.i-jac.org

PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

7. The opposer summarizes his argument.
8. All participants are asked for their vote.
9. The final count of the results is displayed for all.

ColScript for the debate technique:

Audience as role ;
Proposer as role;
Opposer as role;
Chairperson as role ;
DebateGroup[] as group = {1 Proposer,1 Opposer,5
Audience, 1 Chairperson };
groupformation (DebateGroup);
t1 as time = 5m;
textchat1 as textchat;
audchat as audiochat;
doactivity (“provide a brief background about the issue”,
Chairperson, DebateGroup, audchat, time = t1 or
Chairperson = “finished”);
loop (counter = 3 or Chairperson = “finished)
{
 doactivity (“propose your motion”, Proposer,
 DebateGroup, audchat, time = t1 or Proposer =
 “finished”);

 doactivity (“oppose the motion”, Opposer,
 DebateGroup, audchat, time = t1 or Opposer =
 “finished”);
}
doactivity (“all can participate in the discussion”, De-
bateGroup, DebateGroup, audchat textchat1, time =
 t1 or Chairperson = “finished”);
doactivity (“summarize your motion”, Proposer, De-
bateGroup, audchat , time = t1 or Proposer =
 “finished”);
doactivity (“summarize your opposition”, Opposer,
DebateGroup, audchat, time = t1 or Opposer =
 “finished”);
re[] as feedback.option("yes", "no");
re = input ("are you with this argument ", DebateGroup,
feedback .option("yes", "no") ,time =t1);
output ("the result for the voting ….."+ COUNT(re) ,
DebateGroup, Chairperson = “finished);

The Group Brainstorming technique is usually used for
creating ideas or problem solutions, and then choosing the
best idea or solution among them.

The session’s procedure:
1. A brief background about the problem is given

to all.
2. Participants start posting ideas for a certain peri-

od of time or when the chairperson decides to
move on or when all participants have posted
their ideas.

3. Participants discuss each posted ideas one by
one for clarification and evaluation.

4. Participants are asked to assign a mark for each
idea.

5. All ideas with their marks are shown to the
groups.

ColScript for the Group Brainstorming technique:

Participant as role ;
Chairperson as role ;
NomGroup[] as group = {4 Participant, 1 Chairperson };
groupFormation (NomGroup);
t1 as time = 5m;
t2 as time = 30 sec;
audchat as audiochat;
output (" how to solve this problem ….." , NomGroup,
,time = t1);
tv[] as feedback.inputtext
tv = input (" post your ideas ", NomGroup, feed-
back.inputtext , time = t1 or Chairperson = “finish” or
NomGroup= “finish”);

loop (tv as i)
 {
 doactivity (discuss this idea" + tv[i], NomGroup,
 NomGroup , audchat, time =t1);
 }
ff[][] as feedback.inputnumber;
foreach (tv as i)
 {
 ff[i][] = input ("enter scale from 1 to 100 for
 this “ + tv[i] , NomGroup, feed-
back.inputnumber, time = t2);
 }
foreach (tv as i)
 {
 output +("the result ….." + tv[i] + AVR(ff[i]) ,
 NomGroup,);
 }

 CONCLSION VI.
In this paper we have proposed a new scripting lan-

guage, CoScript, that formulates the basic notations and
rules of defining a collaboration scripting language. This
language is flexible enough to describe a wide range of
different types of collaboration learning sessions and at
the same time relatively simple to learn and use. For flexi-
bility, this scripting language has followed a different
approach from previous attempts of using structured
XML-based languages. It has followed other scripting
languages’ styles within software programming field. The
structured XML-based language could be useful in de-
scribing simple sessions’ scenarios but when it comes to
describe complex designs (dynamic group formation,
conditions, notification, etc.), it then becomes very com-
plicated.

We have proposed a limited set of 10 notation compo-
nents that were used to compose ColScript language. The
language components were divided into parts: CoScrip
objects and ColScript command. The ColScript objects
were: role object, group object, feedback object, collabo-
ration tools object, time/date object and resources object
where the structuring commands were: groupformation,
input, output , loop, and the doactivity command.

As a proof of concepts, two scripting examples were
listed to describe the flow of two different collaborative

iJAC ‒ Volume 8, Issue 4, 2015 25

PAPER
COLSCRIPT A NEW SCRIPTING LANGUAGE FOR COLLABORATIVE LEARNING

techniques using ColScript notation. In the future work,
we will develop a ColScript application framework to
implement such language. Instructional designers would
be able use this framework not only for writing their col-
laboration scripts but also to develop a run-time environ-
ment to processes and support the implementation such
scripts.

ACKNOWLEDGMENT
We would like to owe thanks to TAIBAH University,

College of Computer Science and Engineering (CCSE),
KSA for supporting this research.

REFERENCES
[1] Dillenbourg, P. , Sanna J. , and Frank F. “The evolution of re-

search on computer-supported collaborative learning,” Technolo-
gy-enhanced learning, pp. 3-19. 2009.
http://dx.doi.org/10.1007/978-1-4020-9827-7_1

[2] Asensio, J. I., Dimitriadis, Y. A., Heredia, M., Martinez, A.,
Alvarez, F. J., Blasco, M. T. & Osuna, C. A. ,“Collaborative
Learning Patterns: Assisting the Development of Component-
Based CSCL Applications, ” 12th Euromicro Conference on Par-
allel, Distributed and Network-based, pp. 218-224, 2004.
http://dx.doi.org/10.1109/empdp.2004.1271448

[3] Baumgartner, P., & Bergner, I. “Categorization of virtual learning
activities,” In Learning Objects & Reusability of Content, Pro-
ceedings of the International Workshop ICL2003, Villach/Austria,
pp. 24-26, 2003.

[4] Goodyear, P., Avgeriou, P., Baggetun, R., Bartoluzzi, S., Retalis,
S., Ronteltap, F. and Rusman, E. “ Towards a Pattern Language
for Networked Learning,” Proceeding of the 2004 Networked
Learning, Lancaster, UK, pp.5-7. 2004.

[5] Weinberger, A. “Scripting argumentative knowledge construction
in computer-supported learning environments,” Scripting comput-
er-supported collaborative learning, pp. 191-211., 2007.
http://dx.doi.org/10.1007/978-0-387-36949-5_12

[6] Leshed, G. “CoScripter: automating & sharing how-to knowledge
in the enterprise,” Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pp. 1719-1728.,2008.
http://dx.doi.org/10.1145/1357054.1357323

[7] IMS LD. IMS Learning Design Information Model, available at:
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.
html (accessed May 2015).

[8] Neumann, S., Klebl, M., Griffiths, D., Hernández-Leo, D., De la
Fuente-Valentin, L., Hummel, H., & Oberhuemer, P. “Report of
the results of an IMS learning design expert workshop,” 2009.

[9] LAMS. The Learning Activity Management System, available at:
www.lamsinternational.com (accessed May 2015).

[10] COLLAGE. Collaborative learning design editor, available at:
http://www.gsic.uva.es/collage/ (accessed May 2015).

[11] Dillenbourg, P. “Over-scripting CSCL: The risks of blending
collaborative learning with instructional design,” Three worlds of
CSCL. Can we support CSCL?, pp. 61-91., 2002.

[12] Mcgrath, J. “Groups: Interaction and performance,” Englewood
Cliffs, NJ: Prentice-Hall., 1984.

AUTHORS
Aiman Turani is an associate Prof., Faculty of com-

puter science and Engineering, TAIBAH University, Me-
dina, KSA (e-mail: aimanturani@hotmail.com).
Submitted 30 August 2015. Published as resubmitted by the author 30
November 2015.

26 http://www.i-jac.org

	iJAC – Vol. 8, No. 4, 2015
	ColScript a New Scripting Language for Collaborative Learning

