
PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

A Research Agenda for Identifying and
Developing Required Competencies in Software

Engineering
1http://dx.doi.org/10.3991/ijep.v3i2.2448

Yvonne Sedelmaier and Dieter Landes
University of Applied Sciences and Arts, Coburg, Germany

Abstract—Various issues make learning and teaching soft-
ware engineering a challenge for both students and instruc-
tors. Since there are no standard curricula and no cookbook
recipes for successful software engineering, it is fairly hard
to figure out which specific topics and competencies should
be learned or acquired by a particular group of students.
Furthermore, it is not clear which particular didactic ap-
proaches might work well for a specific topic and a particu-
lar group of students. This contribution presents a research
agenda that aims at identifying relevant competencies and
environmental constraints as well as their effect on learning
and teaching software engineering. To that end, an experi-
mental approach will be taken. As a distinctive feature, this
approach iteratively introduces additional or modified
didactical methods into existing courses and carefully
evaluates their appropriateness. Thus, it continuously
improves these methods.

Index Terms—Software engineering education, academic
education, research agenda, grounded theory, didactics,
subject didactic software engineering, teaching methodol-
ogy, soft skills, competencies, research design, curriculum,
lifelong learning.

I. INTRODUCTION

Software is a core part of the modern world. Nearly
each aspect of our everyday life is heavily influenced by
software. Software can be found on our mobile phones
and in refrigerators as well as in cars and heart pacemak-
ers. Consequently, education in software engineering on a
university level plays an important role and affects various
subjects of study, ranging from informatics through
mechatronics and embedded systems to areas with only
secondary focus on software such as, e.g., mechanical
engineering, applied physics, or business engineering.

Yet, software engineering is not easy to learn, nor can it
be taught easily for a couple of reasons.

First of all, software engineering is concerned with
building complex systems in a team of developers over an
extended period of time for a more or less precisely
known group of users. This implies that software engi-
neers need to have various social and personal competen-
cies on top of their technical skills. On the one hand, these
personal and social competencies are required to enable
them to work in a, possibly interdisciplinary, team of
developers. On the other hand, identifying the require-
ments that users and other stakeholders expect form the
software to be built requires elaborate communication
skill across disciplinary boundaries. A successful require-
ments engineer must on the one hand control the technical

side and on the other hand understand the interdisciplinary
structure of users' thoughts and communication patterns.
Furthermore, he must translate the requirements into his
own academic discipline software engineering. Yet, it is
difficult to adequately represent reality in all its complex-
ity in an academic course. In addition, students can hardly
transfer their theoretical knowledge into practical use in a
university context.

Secondly, developing software on a large scale involves
various roles such as requirements analysts, software
architects, or software testers. Each of theses roles has its
individual profile with distinct technical, social and per-
sonal skills. Consequently, university education in soft-
ware engineering needs to take into account individual
preferences of students for particular roles.

A third challenge lies in the fact that there are no two
identical software development projects: if there were no
differences at all in the requirements, why should a piece
of software be developed a second time if it is already
available? Thus, there are no cookbook recipes how to
develop software on a large scale that will always work.
As a consequence, students need to develop method-
ological and problem-solving skills which allow them to
select, adapt, and combine methods and tools in such a
way that they are appropriate for the current project. This
is tightly related to practical experience. It is an open issue
how students can be given an opportunity to gain that
experience in a university setting since there is hardly ever
enough time to run large realistic projects.

Finally, information technology in general and software
engineering in particular is changing at a rapid pace due to
technological and methodological advancements. There-
fore, much of the factual knowledge that has been learned
and taught during university education will not remain
valid throughout the whole professional career. Instead,
teaching students how to keep their knowledge and their
skills current is a vital part of university education in
software engineering. Students need to be prepared for
life-long learning.

In summary, these aspects imply that there can hardly
be a standard curriculum for software engineering. What
comes closest to such a standard curriculum is the Soft-
ware Engineering Body of Knowledge (SWEBOK) [1]
that covers various areas that are relevant for a software
engineer. SWEBOK, however, does not take into account
to what extent these areas are relevant for which role, nor
does is provide any indication which didactic approach
might be best suited to learn and teach a particular topic.
This is aggravated by the fact that SWEBOK does not

30 http://www.i-jep.org

http://dx.doi.org/xxx�

PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

address soft skills, even though they are necessary for a
software engineer to apply technical know how success-
fully. To make things worse, the scope of software engi-
neering education that can be covered as well as applica-
ble didactic approaches are highly constrained by various
factors, such as the field of study or group sizes.

In our research, we try to get a better understanding of
which factors need to be taken into account and how they
affect learning and teaching of particular topics in soft-
ware engineering. Since there is no solid theory yet, we
started a project (Experimental improVEment of Learning
software engINeering, EVELIN) to investigate these
issues in an experimental fashion. In particular, we are
interested in two core research questions, namely
 What are the competencies a software engineer

should have?
 Given a particular competence, which didactic ap-

proach is appropriate or even best suited to foster it?

In the remainder of this paper, we will outline our re-
search agenda and the chosen approach to pursue it. After
this, we will provide a short account of the current status
of our research. Finally, we will give a short summary of
key issues and an outlook on intended next steps.

II. OVERVIEW OF THE RESEARCH AGENDA

In our research project EVELIN we observe students
and their learning processes in software engineering
during their academic studies of informatics at Coburg
University of applied sciences and arts. Pursuing a bache-
lor's degree normally takes seven semesters. During this
time students need to be equipped with the basic skills
required for software engineers since approximately one
half of our students leave university with a bachelor's
degree rather than enrolling in a master program. If they
do the latter, they normally spend another three semesters
at university.

In EVELIN we build on already established courses on
bachelor and master level that cover various aspects of
software engineering ranging from fairly basic issues, e.g.
programming, to more advances topics, e.g. model-driven
software engineering. Currently, a variety of didactic
approaches are already employed in these courses, span-
ning the range from lectures over practical exercises to
final-year projects and research-based learning. These
courses provide an opportunity to carefully re-adjust
learning and teaching goals and the didactical instruments
to achieve these goals. However, there is only insufficient
understanding of which didactic approach works well for
which topic in software engineering and which environ-
mental constraints affect the effectiveness of didactic
approaches in which way. Therefore, we cannot be sure
that the selected didactical methods actually perform as
expected. Thus, we need to follow an experimental ap-
proach to gain more detailed insights into these interde-
pendencies.

Figure 1 presents an overview of our research agenda.
In a first step at time t0 required competencies of soft-

ware engineers need to be identified and described. Com-
petencies in this context encompasses soft skills as well as
technical know how. The description also includes state-
ments to what degree these competencies are needed or
what the precise meaning of the respective soft skills e.g.
communicative competence actually is.

Figure 1. Structure of our research agenda.

Then the actual competencies of our students at a given
time t1 will be collected. This can be accomplished by
evaluating their performance with respect to particular
competencies in a context of a course, say course #1. To
be able to do that properly, we need to establish a baseline
of these competencies before students enroll in that
course. Competencies after attending the course can then
be compared to the baseline. To achieve a deeper under-
standing we also intend to perform an "as-is" and "to-be"
analysis of competencies at this particular time t1.

Due to the fact that learning processes are influenced by
various factors we look at them more closely. Among
these factors, process items and structural elements can be
distinguished [2] which come in different shapes in the
courses we observe.

Based on deficiencies which are identified in the “as-
is”, and "to-be" analysis we focus on target competencies
that students should acquire and build hypothesis about
the influence of structural and process variables we ana-
lysed.

Since we aim at improving the levels of competencies
that students can gain in a course, we modify predefined
structural and process variables we analysed.

Since we aim at improving the levels of competencies
that students can gain in a course, we modify predefined
structural and/or process variables in a next step in order
to achieve such an improvement. Then we evaluate stu-
dents' competencies in the same, yet modified course at
time t2 and compare the results again with the target
competencies and with the reached competencies at time
t1 before changing anything. Thus we expect to gain at
least qualitative insights into which variables influence
learning and how they do. After gaining a deeper under-
standing of the influence of process variables and struc-
tural items we again modify several of them in a goal-
directed fashion and evaluate the results to improve stu-
dents’ learning outcomes further.

While the analysis mentioned above is based on differ-
ent groups of students that take the same course at differ-
ent points in time, we also need to figure out how compe-
tencies evolve within the same group of students. To that
end, we also compare the acquired level of competencies
in an analogue fashion. Again, this comparison encom-

iJEP – Volume 3, Issue 2, April 2013 31

PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

passes an "as-is" and "to-be" analysis of competencies,
possibly giving rise to modifications of course #2 with
respect to process and structural factors.

We apply this iterative approach to gradually gain a bet-
ter understanding of which factors influence learning and
how they interact. On the basis of such an improved
understanding we will be able to systematically adapt
structural und process variables and advance students'
learning outcomes efficiently.

III. RESEARCH DESIGN

A. General Approach
Our research is based on the Grounded Theory Model

[3]. This strategy allows us to discover basic processes
which effect change, and we use this methodology to
develop hypotheses and theories to better understand
learning processes. Software engineering is characterized
by a great complexity, requiring various technical compe-
tencies in combination with soft skills. Thus, in software
engineering, like in several other domains, there are
currently no clear cause-and effect relationships among
the factors which may influence learning processes. As of
now, there are no theories and even less previous knowl-
edge about learning processes in Software Engineering.
For this reasons, Grounded Theory seems to be a suitable
research strategy that takes these characteristics into
account.

Grounded Theory has several characteristic features [3]:
 Grounded Theory aims at building categories by

comparing different groups and establishing an un-
derstanding of relationships between these catego-
ries. Therefore, Grounded Theory is not only a strat-
egy to verify theories but to generate theories. The
theory is developed during the research process by
building and testing hypotheses. The aim is to ex-
plain and to understand learning and teaching soft-
ware engineering, not only to describe.

 Grounded Theory assumes no predefined research
agenda, but rather builds on continuous planning
with respect to the next steps to take and data re-
quired for these steps. The next steps are determined
based on the results achieved so far.

 Theoretical Sampling is a core part of Grounded
Theory and means that data collection is controlled
by the research interest in the first place and does not
primarily focus on data being representative in a sta-
tistical sense. Sampling evolves during the whole re-
search process. We analyse qualitative data while
collecting, decide which data are needed next while
evaluating data, and we stop collecting data once it
becomes clear that there will be no further new in-
formation. The evolving theory implies which data
shall be collected next. For this reason, there are no
conclusive statements about the collected data until
the research process is finished. So data collection
and theory development interact during the whole re-
search project.

 Qualitative methods are used in combination with
quantitative ones through triangulation. Qualitative
research basically relies on linguistic data, e.g. in the
form of texts, while quantitative methods use nu-
merical data [4]. Triangulation means that quantita-
tive data are collected in order to complement and

confirm qualitative data and vice versa, thus leading
to a more comprehensive view on the area of re-
search [5].

Research projects do not usually start with theoretically
deduced hypotheses about the research theme. More
usually, at the outset of a research project there are only
assumptions and initial knowledge about the research field
that need to be structured [6]. Thus, starting from an initial
hypothesis, research tries to draw conclusions from previ-
ous findings by analyzing their effects (abduction).
Through repeated target-directed data collections, pre-
liminary concepts can be developed and specified in
interplay of deduction and induction [7].

To achieve reliable results we rely on a mixture of re-
search methods and combine qualitative and quantitative
methods. Qualitative analysis builds upon two basic
principles, namely the principle of openness [8] and the
principle of communication. This means that we investi-
gate in an open und unconstrained fashion and look for
previously unknown aspects of learning software engi-
neering. In most cases, we obtain the required data by
communication and interaction with involved persons like
students or lecturers.

Qualitative analysis often builds on interviews and
document analysis. Qualitative research methods aim at a
relationship of trust between interviewer und interviewee
[8] [9]. For our research it is important to get detailed
insights into students' views, opinions, and thoughts and to
find out how they learn and what they want or expect to
learn. These aspects are often unconscious to students [4].
Yet, a clear picture of these issues is a prerequisite for
understanding and supporting learning processes by
improving structural and process variables. Similarly,
motivational und implicit teaching aspects are uncon-
scious to lecturers. In order to uncover these aspects, we
conduct guided interviews face-to-face or on the phone.
Guided interviews are semi-structured, loosely following a
prepared interview guideline, and allow an open view on
previously unknown factors. The interview guideline
contains a spectrum of potential questions and focuses on
the research themes of interest. It also ensures certain
comparability oft the collected data. The interviews are
recorded, transcribed, and interpreted. Open questions are
employed instead of closed ones to get new information
about, e.g., the factors influencing the learning process.

We use qualitative research methods to build and gen-
eralize hypotheses and to structure the field of study. We
hope that this will finally lead to a theory about learning
processes in software engineering.

All in all, in our research we first identify target compe-
tencies and collect a broad range of data. Then we set up
hypothesis about the influence of structural and process
factors that determine learning processes. In a next step
we gather as-is competencies at a particular time, modify
some influencing factors, and evaluate the competencies
again at a later point of time. Then we compare the com-
petencies before and after changing several factors by
collecting qualitative and quantitative data and adapt our
hypotheses about factors influencing learning processes.

These activities and how we implemented them will be
explained in greater detail in the following paragraphs.

32 http://www.i-jep.org

PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

B. Specific Steps

1) Identification of Target Competencies
Target competencies include technical know-how on

software engineering as well as generic competencies.
These generic competencies are not to be confused with
general-education subjects such as, e.g., lessons on ethics,
but rather refer to capabilities commonly termed soft
skills. Soft skills are described by [10] and others. Generic
competencies in our research context denote non-technical
competencies that a software engineer needs in order to
apply his technical know-how and to cope with complex
new situations [11]. These competencies are closely
related to various personality traits and enable students to
act according to the situation.

In order to identify a usable classification scheme for
technical competencies, we first took a closer look at
existing taxonomies. Several of them concentrate on the
cognitive domain or separate the cognitive domain from
affective and psychomotor domains, e.g. the taxonomies
of Bloom [12], Anderson and Krathwohl [13] or Marzano
and Kendall [14]. Some of these taxonomies are strictly
hierarchical or overly complex due to multiple dimen-
sions.

As none of the established classification schemes
seemed to fit our purpose right away, we decided to
develop our own model of description, the EVELIN
classification system (see fig. 2 and tab. 1). This taxonomy
tries to strike the balance between ease of use and ade-
quate complexity without the necessity for a strictly
hierarchical structure.

The EVELIN-Taxonomy consists of the following
categories:

a) Remember:
Remember means to know information by heart and to

recall it. There is no necessity to understand this informa-
tion.

b) Understand:
Understand means being able to give a definition of

something. The individual is aware of the meaning by
herself. Often, understanding is about implicit knowledge
which is unconscious.

c) Explain:
If an individual can explain something she has explicit

knowledge and does understand the information. To
explain something the person must be able to structure
information and analyse in a fact-based manner. Normally
it is possible to identify advantages and disadvantages.
The category "explain" means that an individual is able to
evaluate and analyse information in a theoretical way, e.g.
with respect to cause-and-effect-relationships, and give
reasons for her evaluation or decision.

d) Use:
Use means that a person is able to apply knowledge in a

defined and simple context with instructions how to
proceed. For "using" it is not necessary to understand
something or be capable of explaining it.

e) Apply:
"Apply" includes the capability to use some knowledge

and it also requires that an individual understands some-
thing on a theoretical level and is able to think about
something. Then she can utilise knowledge in complex

situations without any help from outside. This requires
analysing and evaluating the context before deciding on
the most suitable way to solve a problem.

f) Develop:
"Develop" means to create novel solutions or new in-

formation and knowledge in a problem domain.
The EVELIN classification system seems to be capable

to describe required technical competencies of software
engineers in a manageable and understandable way.
Furthermore, we view it as a comprehensive instrument
for describing learning targets and for planning a curricu-
lum [16]. Although there are some indications, the appli-
cability of the EVELIN classification system to appropri-
ately capture generic competencies, too, still needs to be
confirmed on a larger scale.

2) Data Collection
In a first step the EVELIN classification system needs

to be instantiated with competencies for each domain, e.g.
for informatics or embedded systems. These domain
specific competencies shall be compared in a further step.
To that end, we used various sources of information. First,
we conducted guided interviews with software engineers
and managers from several companies. In addition, exist-
ing curricula are analysed primarily by document analysis.
Curriculum in this context denotes a comprehensive
pedagogical concept including didactical aspects as well
as methods, contents, and teaching goals. Furthermore,
existing references for technical competencies, e.g. the
Software Engineering Body of Knowledge (SWEBOK)
[1], were examined in detail. Thus we obtained a fairly
reliable consistent description of technical and non-
technical competencies that are generally needed. This
isthe basis to decide which of these competencies can
possibly and reasonably be learned in an academic con-

Figure 2. EVELIN classification system to describe technical compe-

tencies

TABLE I.
THE EVELIN CLASSIFICATION SYSTEM FOR TECHNICAL KNOW HOW [15]

[16] - OVERVIEW

Remember Recall information and reproduce it

Understand Capture the sense / meaning of information

Explain Recognize and understand relationships and
analogies between information and explain them in
own words (Cause Effect)

Use Apply in a defined simple context and / or in-
structed while understanding may not play a role

Apply Autonomously utilize in a more complex context
and /or ability to select and apply the best solution
based on the situation.

Develop Devise new solutions or enhance existing solutions

iJEP – Volume 3, Issue 2, April 2013 33

PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

text. Each lecturer has to define individual measurable
teaching targets and to design a specific curriculum with
proper didactical methods.

As shown in fig. 1, multiple factors influence learning
processes of students. These factors can be classified as
process variables, structural items, and outcome [2].
Structural items describe framework conditions that affect
learning such as, e.g., the daytime when a class takes place
or the number of students in a course. Structure also
encompasses issues such as the individual attitudes and
capabilities of lecturers, infrastructure, and technical
equipment. Process variables describe activities that are
necessary to learn, e.g. didactical interactions. Outcome is
tightly related to the as-is and the to-be analysis as de-
scribed in fig. 1. To establish a baseline we conducted
guided interviews with a sample of students. The main
focus of these interviews was on uncovering factors,
which facilitate or complicate learning, and on the per-
ceived learning outcomes from the students' point of view.
We also analysed didactical approaches and contents of
the courses. By this way we got first indications of factors
influencing learning.

Furthermore, the influencing factors of our field of
study as well as the as-is and to-be competencies will be
analysed in regular intervals. To this end, we conduct
guided interviews with students to find out what they
learned, how they learned, and what facilitated the learn-
ing processes. Uncovering hidden and implicit learning
outcomes that students themselves cannot reflect is of
primary interest. Similarly, implicit intentions of instruc-
tors need to be identified. This is necessary for being able
to check if students reached the learning targets the lectur-
ers intended. To that end, we interrogate our students at
midterm about the structural framework and the didactical
settings of the lessons. For this purpose, we developed a
questionnaire which also includes items from BEvaKomp
[17] concerning the self-assessment of the students' com-
petencies. The questionnaire also accounts for quantitative
data about the technical infrastructure and other structural
items and also considers the motivation of students. We
evaluate the outcome each semester by analysing the
results of examinations of our students and compare this
with the estimations of the lecturers.

3) Building Hypotheses

a) Formulating Initial Hypohteses
Following this approach, we expect to be able to come

up with suggestions which factors influence the learning
outcome. What type of hypotheses will be built and in
which way this is accomplished depends on the research
method Grounded Theory. This approach works induc-
tively, i.e. we build hypotheses while collecting and
evaluating data. One we collected initial data we will get
hints to other things to investigate and, as a consequence,
we will also collect data concerning these themes. The
sample also develops during the research process and is
not exactly known at the beginning. Thus, at this point of
time we cannot exactly indicate which data will be con-
sidered for building hypotheses, nor which hypotheses can
be developed based on the collected structural, process, or
outcome data. In a first step we "only" start with assump-
tions. They are gained by concluding from the effects on
the previous influencing things (abduction). Fundamental
questions include which structural and process factors

heavily influence learning processes in a positive way and
how they can be promoted.

b) Repeated Empirical Examination of Hypotheses
and Theory Building

To validate assumptions and to build categories we
modify structural and process variables in a goal-
orientated way. We want to find out how and to which
degree these variables influence learning processes. So we
have to conduct an as-is analysis of competencies before
changing anything in order to obtain a baseline. Then we
carry out courses in a modified way which is intended to
serve the learning goals better. At the end of the course we
again collect data concerning the new as-is competencies
at this point of time. We compare this result with our
baseline data and with the target competencies we want to
achieve. There are two benefits in comparing as-is and to-
be competencies: On the one hand, we analyse the compe-
tencies within one cohort of students over an extended
period of time and observe the development of their
competencies during their whole academic studies. So we
get to know whether and to which degree they reach the
target competencies. On the other hand, we compare
different cohorts of students attending the same course
and compare several instances of results on this specific
course over time. By this way we analyse the influencing
factors of learning processes within a specific course.
From this analysis we get new inputs and indicators how
learning processes in software engineering proceed. Based
on these new data we are able to build hypotheses that can
be tested in the same iterative way and finally lead to a
theory of learning and teaching software engineering. The
target competencies also will be reviewed at several points
in times to adapt them gradually to changing real world
requirements.

After going through this cycle for several times, the tar-
get competencies are expected to converge to a somewhat
stable state (fig. 3) as well as the results from our as-is and
to-be analysis (fig. 4).

By this way we get a deeper understanding of the influ-
ence of structural and process items on the learning out-
come of our students and how to improve and facilitate
learning software engineering. Consolidated hypotheses
will establish the basis for a theory of learning software
engineering.

IV. SUMMARY AND FURTHER WORK

Software engineering is difficult to learn and teach at
universities since there is no "one-size-fits-all" curriculum
for the subject. The lack of such a generic curriculum is
due to the fact that software engineering involves many
competencies. These competencies do not only cover
technical ones, but also, and equally important, non-
technical ones. These competencies need to be present in
varying degrees, depending on the particular domain.
Applicability of didactic methods depends on a variety of
structural constraints and process variables.

In order to be able to improve software engineering
education in a systematic and goal-directed manner, a
theory is required which competencies are needed in a
particular domain and how the development of these
competencies is influenced by structural and process
issues. As a first step towards such a theory, our research
aims at setting up hypotheses on these aspects and at g.

34 http://www.i-jep.org

PAPER
A RESEARCH AGENDA FOR IDENTIFYING AND DEVELOPING REQUIRED COMPETENCIES IN SOFTWARE ENGINEERING

Figure 3. Stabilization of to-be competencies over time

Figure 4. Convergence of intra-group as-is competencies against to-be

competencies.

validating these hypotheses experimentally. This theory
leads to a subject didactic of software engineerin

At a current stage of the project, we devised a classifi-
cation system to specify technical competencies. This
classification system has already been instantiated with
data that were derived form questionnaire-based evalua-
tions of software engineering courses, document analysis,
and qualitative interviews with samples of students. Espe-
cially the latter two indicated a variety of concrete struc-
tural and process variables that need to be accounted for.

We condensed our findings into a first version of tech-
nical target competencies of software engineering for
informatics. In a next step, required personal and social
skills for software engineers need to be added. To that
end, we re-analyse already existing interviews with soft-
ware engineers, but now with a focus on required soft
skills. We will widen our scope by analysing needed
competencies for related domains, e.g. mechatronics.

We also will take al closer look at the lecturers' aims
and their attitudes and personal views on teaching. These
are highly relevant factors for designing adequate curric-
ula and for finding proper didactical approaches for each
lecturer.

Given the collected data, we expect to be able to build
an initial hypothesis on factors influencing learning. This
is the basis for conducting a first experimental validation
by adapting a particular course, namely a software engi-
neering project at Coburg University, by emphasizing
team skills. This course already includes project work but
students train their soft skills implicitly without knowing
they do. This will change by adding didactical elements to
this course in order to make team processes more explicit
and conscious.

REFERENCES
[1] A. Abran and J.W. Moore (eds.), Guide to the Software Engineer-

ing Body of Knowledge. Los Alamitos, CA: IEEE Computer So-
ciety Press, 2004. Available: http://www.computer.org/portal/web/
swebok/htmlformat

[2] A. Donabedian, Explorations in Quality Assessment and Monitor-
ing: The definition of quality and approaches to its assessment.
Ann. Arbor, MI: Health Administration Press, 1980.

[3] B.G. Glaser and A.L. Strauss, The Discovery of Grounded
Theory: Strategies for Qualitative Research. Chicago: Aldine Pub-
lishing Company, 1967.

[4] U. Flick, Qualitative Forschung. Theorie, Methoden, Anwendung
in Psychologie und Sozialwissenschaften, 4th ed., Reinbeck: Ro-
wohlt, 1999.

[5] U. Flick, Triangulation - Eine Einführung, 3rd ed., Wiesbaden: VS
Verlag für Sozialwissenschaften, 2011. http://dx.doi.org/10.1007/
978-3-531-92864-7

[6] H. Legewie, "Qualitative Forschung und der Ansatz der Grounded
Theory", available: http://www.ztg.tu-berlin.de/download/legewie/
Dokumente/Vorlesung_11.pdf.

[7] U. Flick, E. von Kardorff, and I. Steinke, "Was ist qualitative
Forschung? Einleitung und Überblick", in "Qualitative Forschung.
Ein Handbuch", Reinbeck: Rowohlt, 2000, pp. 13-29.

[8] P. Mayring, Einführung in die qualitative Sozialforschung - Eine
Anleitung zum qualitativen Denken, 4th ed., Weinheim: Beltz,
1999.

[9] H. Hermanns, "Interviewen als Tätigkeit", in "Qualitative For-
schung. Ein Handbuch", Reinbeck: Rowohlt, 2000, pp. 360-368.

[10] D. Wilsdorf, Schlüsselqualifikationen. München: Lexika, 1991.
[11] C. Beck, "Kompetenzstudie - Welche Kompetenzen fordern

Unternehmen von Bewerbern?", available: http://www.hs-
koblenz.de/fileadmin/medien/Koblenz/Betriebswirtschaft/Prof._
Dr._Beck/Kompetenzstudie_Final_01.pdf.

[12] B.S. Bloom, Taxonomie von Lernzielen im kognitiven Bereich.
Weinheim: Beltz, 1972.

[13] L. Anderson and D.A. Krathwohl (eds.), A Taxonomy for Learn-
ing, Teaching, and Assessing: A Revision of Bloom's Taxonomy
of Educational Objectives. New York: Longman, 2001.

[14] R.J. Marzano and J.S. Kendall: The New Taxonomy of Educa-
tional Objectives, 2nd ed., Thousand Oaks, CA: Corwin Press,
2007.

[15] S. Claren, "Classification of competencies in Software Engineer-
ing Education", unpublished.

[16] S. Claren and Y. Sedelmaier, "Ein Kompetenzrahmenmodell für
Software Engineering", Proc. Embedded Software Engineering
2012, Sindelfingen, in press.

[17] E. Braun, Das Berliner Evaluationsinstrument für selbsteinge-
schätzte studentische Kompetenzen (BEvaKomp). Göttingen:
V&R Unipress, 2008.

AUTHORS

Y. Sedelmaier studied pedagogy with a major focus on
adult and continuing education at the University of Bam-
berg. After ten years working experience in the educa-
tional sector and in quality management she is now aca-
demic researcher in the project "Experimental improve-
ment of learning software engineering" (EVELIN) at
Coburg University of Applied Sciences and Arts (e-mail:
sedelmaier@hs-coburg.de).

D. Landes studied computer sciences at the University
of Erlangen-Nuremberg and obtained his doctorate at the
University of Karlsruhe. Since 1999 he is Professor in
Informatics at Coburg University of Applied Sciences and
Arts. Since 2012 he is heading the research project
EVELIN (e-mail: landes@hs-coburg.de).

This research is supported by Bundesministerium für Bildung und
Forschung under grant no. 01PL12022A. This article is an extended and
modified version of a paper presented at the International Conference on
Interactive Collaborative Learning (ICL2012), held 26 - 28 September
2012, in Villach, Austria. Received 15 December 2012. Published as
resubmitted by the authors 18 March 2013.

iJEP – Volume 3, Issue 2, April 2013 35

http://www.computer.org/portal/web/swebok/htmlformat�
http://www.computer.org/portal/web/swebok/htmlformat�
http://dx.doi.org/10.1007/�978-3-531-92864-7�
http://dx.doi.org/10.1007/�978-3-531-92864-7�
http://www.ztg.tu-berlin.de/download/legewie/�Dokumente/Vorlesung_11.pdf�
http://www.ztg.tu-berlin.de/download/legewie/�Dokumente/Vorlesung_11.pdf�
http://www.hs-koblenz.de/fileadmin/medien/Koblenz/Betriebswirtschaft/Prof._�Dr._Beck/Kompetenzstudie_Final_01.pdf�
http://www.hs-koblenz.de/fileadmin/medien/Koblenz/Betriebswirtschaft/Prof._�Dr._Beck/Kompetenzstudie_Final_01.pdf�
http://www.hs-koblenz.de/fileadmin/medien/Koblenz/Betriebswirtschaft/Prof._�Dr._Beck/Kompetenzstudie_Final_01.pdf�

	iJEP – Vol. 3, No. 2, March 2013
	A Research Agenda for Identifying and Developing Required Competencies in Software Engineering

