
PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

Using EDUCache Simulator for the Computer
Architecture and Organization Course

http://dx.doi.org/10.3991/ijep.v3i3.2777

Sasko Ristov, Marjan Gusev, Blagoj Atanasovski, and Nenad Anchev
Ss. Cyril and Methodius University, Skopje, Macedonia

Abstract—The computer architecture and organization
course is essential in all computer science and engineering
programs, and the most selected and liked elective course for
related engineering disciplines. However, the attractiveness
brings a new challenge, it requires a lot of effort by the in-
structor, to explain rather complicated concepts to beginners
or to those who study related disciplines. The usage of visual
simulators can improve both the teaching and learning pro-
cesses. The overall goal is twofold: 1) to enable a visual envi-
ronment to explain the basic concepts and 2) to increase the
student’s willingness and ability to learn the material.

A lot of visual simulators have been used for the computer
architecture and organization course. However, due to the
lack of visual simulators for simulation of the cache memory
concepts, we have developed a new visual simulator EDU-
Cache simulator. In this paper we present that it can be ef-
fectively and efficiently used as a supporting tool in the
learning process of modern multi-layer, multi-cache and
multi-core multi-processors.

EDUCache’s features enable an environment for perfor-
mance evaluation and engineering of software systems, i.e.
the students will also understand the importance of comput-
er architecture building parts and hopefully, will increase
their curiosity for hardware courses in general.

Index Terms—Cache Memory; CPU; Education; Multi-
processor; Performance.

 INTRODUCTION I.
The Computer Architecture and Organization course is

acknowledged as a significant part of the body of
knowledge and an important area in undergraduate com-
puter science (CS) curricula [1], [2]. Nevertheless, the
problem arises since the high-level programming lan-
guages do not provide a clear picture of how the program
is executed by the computer. As a consequence, learning of
computer architecture and organiza-tion decreases the stu-
dent’s interest and deeper understanding.

Teaching computer architecture is a very difficult pro-
cess and requires a lot of effort from both instructors and
students [3]. It is usually scheduled in the first study year
and it is almost always a completely new course for the
students. Visual simulators lighten the teaching process
and significant-ly improve CS student interest in hardware
generally [4]. Teachers must select appropriate hands-on
exercises, assignments and projects. Liang [5] realizes a
nice survey of hands-on assignments and projects.

Modern multi-processors use multilayer cache memory
system [6] to balance the gap between CPU and main
memory and to speedup data access. Thus students must

understand not only the architecture, but the organization
inside the multi-processor. We have not found appropriate
educational simulator that will help the students to under-
stand easily all cache parameters and their impact to pro-
gram execution. In this paper we present the EDUCache
simulator that visually presents cache hit and miss, cache
line fulfillment, cache associativity problem [7], for both
sequential and parallel algorithm execution.

The rest of the paper is organized as follows. In Section
II we discuss the related work in the literature about other
simulators similar to our EDUCache simulator. In Section
III, we present the course “Computer Architecture and
Organization” organization and challenges that motivated
us to develop the EDUCache simulator. Section IV de-
scribes the architecture of EDUCache simulator. EDU-
Cache user interface and different working modes are de-
scribed and depicted in Section V. Several demo case stud-
ies are presented in Section VI-B. The final Section VII is
devoted to conclusion and future work.

 RELATED WORK II.
We found many visual simulators that help students to

surmount particular fundamental parts of computer archi-
tecture and organization. However, there is no single simu-
lator which covers all topics in computer architecture [8].
Most visual simulators are not designed to teach the stu-
dents neither about cache memory hierarchy and organiza-
tion, nor it’s internal parameters such as cache size, cache
line, cache associativity, cache inclusivity etc.

Visual EduMIPS64 is a learning aid for instruction pipe-
lining, hazard detection and resolution, exception handling,
interrupts, and memory hierarchies [9]. It is a very power-
ful learning tool and it simulates the complete pipeline
architecture of the MIPS64 processor, but it does not offer
a thorough overview on how the cache memory hierarchy
works or affects execution. Also the simulator requires the
students to be already familiar with the MIPS64 ISA be-
fore they are able to use the simulator which is impossible
for the first year computer science students.

Dinero IV is the cache simulator that simulates a
memory hierarchy with various caches [10]. It is a power-
ful and accurate tool but it can simulate only single core
systems. However, it is only a command line tool that of-
fers neither visualizations nor explanations when the stu-
dents use it. Fraguela et al. [11] define a fully parameteriz-
able models applicable to n-way associative caches, but
only for LRU (Least Recently Used) replacement policy.
Our EDUCache simulator simulates both FIFO (First In
First Out) and LRU cache replacement policies for all
cache levels.

iJEP ‒ Volume 3, Issue 3, July 2013 47

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

CMP$im is a simulator based on the Pin binary instru-
mentation tool [12]. It is a better simulator offering multi-
core support and data gathering for all levels of the cache.
However, the capturing of results is more complex than
our EDUCache simulator. HC-Sim simulator is also based
on Pin that generates traces during runtime and simulates
multiple cache configurations in one run [13].

Herruzo et al. [14] designed a configurable cache sys-
tem simulator that helps students in understanding the pro-
cess of cache look up and writing elements in the cache
memory. They made it possible to configure the block size,
the number of blocks in a set and cache capacity, but only
with a few predefined values. Also, their implementation
does not have the support for multi-core cache systems.
Misev and Gusev have developed visual simulator for ILP
dynamic out-oforder executions [15], covering aspects on
shelving, register renaming, issuing, dispatch and other
elements of out-of-order executions.

Valgrind [16] with its module Cachegrind is the most
used profiler for cache behavior. Although Valgrind goes
deep into code and provides information about each func-
tion of the program, it provides the information only for
the first and the last level cache. Modern multi-processors
possess three level caches and our EDUCache simulator
can simulate middle level L2 cache behavior. Another im-
portant advantage of our simulator is its platform inde-
pendence. Valgrind also does not support shared memory
parallel system when using threads.

All these simulators were not primarily developed for
teaching the cache memory although most of them are
visual. They lack educational features since they are built
to complete the simulation as fast as possible rather than to
present the architecture and organization of cache memory
system in a modern multi-processor. EduCache simulator
offers step by step simulation allowing the students to
pause the simulation and analyze the cache hits and misses
in each cache level.

 THE COURSE COMPUTER ARCHITECTURE AND III.
ORGANIZATION

This section briefly describes the course Computer Ar-
chitecture and Organization.

The course’s main objective is to offer the students a
clear understanding of the main computer architectures,
performance of the computer parts and the whole computer
system. It also covers the topics of today’s modern multi-
chip and multi-core multi-processors, as well as the digital
logic circuits.
!" Course Organization

The course is organized in three parts: theoretical lec-
tures with 2 classes per week, tutorials with 2 classes per
week and practical lab tutorials with 1 class per week. Lec-
tures and theoretical tutorials are organized in larger
groups of less than 100 students, while practical lab tutori-
als are carried out in computer labs in groups of up to 20
students, with each student working on its own work-
station. Prerequisites for enrolling in the course are previ-
ously completed courses in Discrete Mathematics.

Theoretical lectures cover the computer abstractions and
technology, the computer language (MIPS), computer
arithmetic, the processor, memory, storage, and multi-chip
multicore multi-processors [17].

Tutorials are divided in two parts. The first midterm co-
vers the topics: computer arithmetic, codes and perfor-
mance parameters, while the second part is devoted to digi-
tal logic circuits. Hands-on lab assignments follow the
topics of theoretical tutorials. A comprehensive overview
of the core concepts and organization of the Computer
Architecture and Organization course can be found in [2].
#" Challenges and Motivation

The previous section briefly described the course organ-
ization. We have analyzed the student’s results and deter-
mined that they have more problems with the topics of
theoretical lectures compared to the exercises, and more
precisely, the topics planned for the second midterm, i.e.,
the processor, memory, I/O and parallelization.

Our analysis shows that although these topics are cov-
ered during the theoretical lectures, neither theoretical nor
practical tutorials are provided for these topics, since the
exercises are devoted to the design of digital logic circuits.
Even more, IEEE Computer Society and ACM stated that
more attention should be given to the multi-core processors
architecture and organization, instead of the hardware logic
design level [18].

Therefore, we realized a small survey of the students
with two simple questions:
• Q1: Should we remove the hands-on lab tutorials with

topics for hardware logic design level and introduce
topics for multi-processor architecture and organiza-
tion?; and

• Q2: Should we introduce visual simulator in lab tuto-
rials for multi-processor architecture and organiza-
tion?

We offered two simple answers: Yes or No for both
questions.

61 Students participated in the survey.
Figure 1 presents the results of the survey for the first

question Q1. Almost 64% of the students answered affirm-
atively to change the lab tutorials of the second part of the
course, i.e. replace topics for hardware logic design with
multi-processor architecture and organization lab tutorials.

The results of the survey for the second question Q2 are
depicted in Figure 2. Although we expected that the stu-
dents will answer both questions with the same answer, the
results of the second question are more affirmatively. Al-
most 92% of the students answered Yes, i.e., they would
like visual simulator to learn the multi-processor architec-
ture and organization.

Figure 1. Results of the survey for Q1

48 http://www.i-jep.org

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

Figure 2. Results of the survey for Q2

What have we learned from the survey? There is a sub-
stantial group of students (one third) that want to have de-
tailed lab tutorial on hardware logic design. It seems that
they need extensive help to understand these concepts. We
also conclude that visual simulators will substantially im-
prove the learning process, as a conclusion of the second
question.

Overall conclusions, approved our commitment to build
a new visual simulator for multi-processor’s architecture
and organization, as necessity for realization of the Com-
puter Architecture and Organization course.

 EDUCACHE SIMULATOR FEATURES AND IV.
INTERFACES

This section describes the main features and interfaces
of new proposed EDUCache simulator. It is a platform
independent simulator developed in JAVA which main
simulation is described by a set of Java classes, each for a
different CPU cache parameter. EDUCache simulator al-
lows the students to design a multi-layer cache system with
different multi-core multi-cache hierarchy and to analyze
sequential and parallel execution of particular algorithm.
!" Single-core or Multi-core Multi-processor

Students can create homogeneous multi-processor with
one or several cores with particular processor speed.
#" Chip Cores and Cache Owners

Each chip can have one or several homogeneous cores.
Each core has access to some cache of different cache level
(generally L1 to L3). Particular cache can be owned by
one, several or all cores of the chip. In general, L1 and L2
caches are dedicated per core in modern multi-processors,
while L3 cache is shared among several or all cores in the
chip.
$" Cache Parameters per Cache Level

Particular cache level parameters can vary. Cache is de-
termined by cache memory size, cache line size, cache
associativity and replacement policy. Even more, the ”in-
clusivity” among cache levels is also defined. EDUCache
simulator allows the students to configure all these cache
parameters.
%" Data Statistics

EDUCache simulator collects various data about the
configured multi-processor system during its simulation.
The most important parameters are:
• The number of hits and misses for each CPU cache

level regardless of shared or dedicated cache per core;
and

• The number of hits and misses per core.
• The logged data helps the students in their analysis of

different cache level behavior in each core.

 EDUCACHE USER INTERFACE V.
Each visual simulator devoted to teaching must have us-

er friendly graphical user interface. Our main focus was to
create an easy-to-use and easy-to-learn visual simulator. In
this section we describe the EDUCache user interface and
its working modes in details.

The EDUCache interface is visual and user friendly. It
uses the Multiple Document Inteface (MDI) paradigm.
EDUCache simulator works in two modes: Design and
Simulation.

The students can design particular multi-processor in
design mode and save the multi-processor’s cache hierar-
chy and parameters to use it in the simulation mode. The
simulation mode offers the students to load a set of
memory addresses and run the simulation either with au-
tomated execution on intervals or step by step on user in-
put.

 Design Mode A.
The students can configure various cache parameters

and levels to create instances of cache levels and share
them among chip cores. Figure 3 depicts an overview of
EDUCache user interface in design mode.

The main window contains 2 main frames. The panel on
the left side offers the students to select what kind of a
cache level instance they would like to create. The students
should create the cache levels with fulfilling the parame-
ters such as cache replacement policy, cache associativity,
cache size (in KB or MB), cache line size and Unique ID
(UID) for that particular cache level. The students use
UIDs to create a chip core instance configuring which pre-
viously created cache level instances will be incorporated
as L1, L2 or L3 caches for particular CPU core. Figure 3
also depicts an example how a student can create very easi-
ly L3 cache level instance with a FIFO replacement policy,
8 way set associativity, 64 byte cache line, 512 KB L3
cache size and UID L3 FIFO.

The right frame of the window shows the previously
created instances with their type, UID and description. The
grid shows that 4 other instances have been previously
created, two L1 and two L2 instances, as depicted in Fig-
ure 3.
After creating cache level instances, the students can cre-
ate a core, selecting cache instances from the list of previ-
ously created ones (visible in the table in the right frame)
for each cache level. Figure 4 depicts a design of a core
with UID C1 that has L1 and L3 caches with FIFO re-
placement policy and L2 cache with LRU replacement
policy. The EDUCache simulator offers the students to
configure the “inclusivity” among the cache levels, as
well.

iJEP ‒ Volume 3, Issue 3, July 2013 49

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

Figure 3. Overview of design mode of EDUCache simulator - Creating L3 cache instance

Figure 4. Overview of design mode of EDUCache simulator - Creating a CPU core

Figure 5. Overview of Simulation mode - hit in L1 level of core C2, set #8, line #1, address 123416

50 http://www.i-jep.org

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

The main advantage of our EDUCache simulator com-
pared to others is in allowing the design of multi-
processor with two or more cores (for example C1, C2, C3
and C4) which can share the same cache level instance.
For example, choosing the same instance (for example L3
FIFO) for all cores as L3 cache will design a shared last
level L3 cache. The students can configure two by two
cores to share last level cache, and can share L1 or L2
caches among more cores, as well.

Finally the students can save the created configuration
that represents a CPU chip. They configure which core
instances they would like to include on the chip and they
are prompted where to save the configuration file. The
configuration file format is discussed in Appendix A.

Additional information icons are positioned next to
each label, to alleviate the computer architecture learning
process and the usage of the simulator. Figure 6 depicts
these icons which give short explanations and directions
to the students of the purpose of the field they are config-
uring, but also allows the students to learn and understand
the features and the purpose of the cache parameter repre-
sented with that field. The explanations are shown as tool
tip boxes when the students click the icons or hold the
mouse pointer over a particular icon. Completing the de-
sign mode successfully, the students have designed a mul-
ti-core chip with different caches as described in this sec-
tion. Now they can move to the simulation mode in order
to simulate some memory accesses and analyze which of
them will generate hit or miss in a particular cache level of
particular core.
B. Simulation Mode

EduCache’s Design mode is used for configuration and
the Simulation mode for execution, simulating and analyz-
ing. After a configuration of the CPU chip with multiple
cores per chip and multiple cache levels per each core, the
students should load the memory addresses and then run
the simulation of accessing for those addresses. Figure 5
depicts the Simulation mode. Its main window consists of:
• Simulation Control Menu Bar;
• Loaded Address Trace Frame;
• Verbose Output Frame; and
• Visual Representation Frame.

Let’s explain their purpose and layout in more details.
 Simulation Control Menu Bar: 1)

The menu bar is the central control hub for the simula-
tion process. It contains 2 menus, Simulation and Con-
struction as depicted in Fig 7.

Construction menu has two options, i.e. “Create New
Configuration” and “Load Configuration”. The former
opens Design Mode, while the latter prompts for a loca-
tion of a configuration file. The Simulation menu has op-
tions to load a study case file, to load a trace file, to start
the simulation, to pause it, to stop it completely, and to
enter into step by step working mode.

All options except Load Study Case in Simulation
menu are disabled at the beginning when no configuration
is loaded in the EDUCache simulator. The particular
menu items are enabled after the appropriate configuration
file is loaded.

 Loaded Address Trace Frame: 2)

Loaded Address Trace Frame is located on the top of
the left side and shows the contents of the trace file. The
items consist of two parts. The first part is a core’s UID
showing which core should read the address. The second
part is the physical address that is loaded. The item that is
being examined is highlighted during the simulation.

 Verbose Output Frame: 3)
Verbose Output Frame is placed on the bottom of the

window as output pane. EDUCache simulator gives the
student the explanation of the whole cache lookup process
while the simulation is running. It shows the addresses
that are read by cores, the search in L1 cache and selecting
the set in which the address is supposed to map, the result,
i.e. cache hit or miss, the cache line number if it is hit and
the evicted line if the chosen set was full and read miss is
generated. The whole output is written out to a text file for
later revision and analysis.

 Visual Representation Frame: 4)
Visual Representation Frame is the main feature of

simulation mode and is the third frame of the window.
EDUCache gives a visual representation to the lookup
process. This frame is divided in 4 parts, each representing
a different level of the cache level architecture:
• Core Pane - each tab in this pane contains the infor-

mation for particular CPU core. For example, C1 and
C2 are the cores that are depicted in Figure 5. Select-
ing each of these tabs shows the designed cache lev-
els in selected core presented as buttons with the
UID’s of the instances chosen as captions. The stu-
dents click the cache level buttons to obtain the in-
formation about that cache instance and the cache
sets for that level that are loaded in the Cache Sets
Pane.

• Cache Sets Pane - this pane presents the cache sets
for selected cache level instance of selected core in
Core Pane according its design (cache set associativi-
ty).

• Cache Lines Pane - this pane presents the cache lines
of selected cache set in Cache Sets Pane.

• Cache Line Info Pane - this pane presents the ad-
dresses located of selected single cache line in Cache
Line Pane. It shows the loaded addresses in selected
cache line and it can be also configured to show sta-
tistics about the selected cache line as number of
cache writes and number of cache reads.

Figure 6. A tool tip explanation box showing information about re-

placement policy

iJEP ‒ Volume 3, Issue 3, July 2013 51

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

The Visual Representation Frame is repeatedly updated
during the simulation. The whole process can be described
with the following sequence:
• A memory address is read from the trace file along

with the information which core is doing the reading.
• Lookup begins by checking the L1 level of the se-

lected core.
• A cache set is chosen depending on the physical ad-

dress, the set associativity and number of cache sets.
• The cache lines are searched for the required element

in the chosen set.
o If the required element is found in one of the

cache lines, then it is highlighted with green in the
Cache Line Info pane. The cache line containing
the found element in the Cache Lines Pane is
highlighted also with green. The corresponding
cache set of the Cache Sets Pane and L1 cache
level instance in the Core Pane are also highlight-
ed with green.

o If the required element is not found in L1, then the
same elements that are described in the previous
step will be highlighted, but with red indicating
that cache miss is generated. Lookup process will
continue in L2 and if L2 cache miss occurs, ana-
logue items are highlighted with red and the simi-
lar process continues for L3 cache.

The verbose output is produced and shown during the
process in the Verbose Output Pane.
C. EDUCache Simulation

In this section we present the procedure to find a partic-
ular address in the caches.

Figure 8 presents the activity diagram. A memory ad-
dress is read from the trace file. Lookup begins by check-
ing L1 cache of the selected core. A cache set is chosen
depending on the physical address, the set associativity
and number of cache sets. Then the cache lines in the cho-
sen set are searched for the required element. If the re-
quired element is found in one of the cache lines the ele-
ment is highlighted with green in the Cache Line Info
pane, the line containing the element in the Cache Lines
and the corresponding cache set and L1 instance. If the
element is not found in L1, the same elements described
in the previous step are highlighted with red, and lookup
process continues in L2 cache, with the same steps. The
verbose output is produced and showed in the bottom
frame simultaneously.

The following two sections describe the simulation of
L1 cache hit, and L1 miss and hit in lower cache level.

 Simulation of L1 Cache Hit: 1)
Figure 5 depicts an example of a L1 cache hit. It shows

that the second core C2 is about to require the physical
address 123416. Looking at the L1 cache size, associativi-
ty and number of sets, EDUCache simulator calculates
that this address should be mapped into set number 8. Set
#8 contains 4 cache lines. Two steps before, C2 core re-
quired the address 12400 and it wrote into Cache Line #1
along with the items of the whole cache line, i.e. up to
address 123456, including the required address 123416.
Thus, L1 cache hit will occur and the address in the Cache
Line Info Pane, Cache Line #1, Set #8 and C2 L1 FIFO
are all highlighted with green.

 Simulation of L1 Cache Hit: 2)
Figure 5 Simulation of L1 Cache Miss and Hit in Low-

er Cache level: When a cache miss occurs in a par-
ticular

Figure 7. Menu bar in Simulation Mode

cache level, then all the cache level, cache set and cache
lines that were looked up are highlighted with a red. Fig-
ure 9 depicts the scenario of L1 cache miss and successful
lookup cache level L2, i.e. L1 cache miss and L2 cache
hit. The EDUCache simulator highlights L1 elements with
red and L2 elements with green. The results from this
lookup are also seen in the verbose output.

 TUTORIALS AND DEMO CASE STUDIES VI.
In this section we present several demos and case stud-

ies on the usage of the EDUCache simulator for learning
purposes. They present examples of characteristic
memory access patterns and will enable a visual presenta-
tion that will support the learning process and more effi-
cient understanding of the processor and its cache memory
architecture and organization. A more comprehensive
study on realized tutorials and experiments using the ED-
UCache simulator [19] explain basic concepts of a modern
processor processor and its cache memory, in the course
of Computer Architecture and Organization.
A. Tutorials

Ristov et al. [19] define hands-on lab tutorials for the
EDUCache simulator. The following exercises present the
essence of these tutorials:
• Exercise 1: Intro to EDUCache Environment It in-

troduces basic cache concepts about the multicore
multi-chip processors and explains the EDUCache
simulator environment and user interface to select
appropriate parameter in the cache configuration.
The learning objectives include at least: 1) managing
the configuration files, 2) simulation of trace files, 3)
analysis of results.

• Exercise 2: Different Cache Parameters
• The goal is to present several cache memory parame-

ters: size, associativity and the principles of multiple
cache levels. The learning objectives include at least:
1) impact of parameters on a specific program execu-
tion, 2) effect of time and space locality, 3) creation
of multiple configurations files and single memory

52 http://www.i-jep.org

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

trace files, 4) deeper analysis and explanation of the
results and parameter impact.

• Exercise 3: Overview of Cache Set Associativity and
Replacement Policies

This exercise addresses issues of cache set associativity
and replacement policies, being the most complex con-
cepts to understand. The learning objectives include at
least: 1) impact of parameters on a specific program exe-
cution, 2) using different configurations and address trac-
es; and 3) understanding the results and bringing relevant
conclusions.
B. Demo Case Studies

Demo cases studies are based on special files contain-
ing a reference to configuration and trace files. They set
up a practical example with a certain goal. Using these
demo case study files will not only help the students in
understanding computer architecture and organization
focusing on CPU cache memory, but also will help in de-
termining the average number of clocks per particular
cache level hit or miss. In this section we propose several
demo case studies that simulate some extremes.
• Always Cache Hits This example uses a trace file that

always generates cache hits for a given loaded con-
figuration. It generates a specific address pattern to
access the elements stored in a particular cache level.

For example, sorting a small array of elements is an
algorithm that will always generate cache hits.

• Always Cache Misses due to Cache Capacity Prob-
lem It presents another extreme example, where
cache misses are always generated due to the cache
capacity problem. The address pattern is such that the
required elements can not be found in a particular
cache level. For example, accessing the elements of
one column in a huge-enough squared matrix in raw
major will always produce cache misses. The de-
tailed analysis for storing the matrix elements in the
cache can be found in [20].

• Always Cache Misses due to Cache Associativity
Problem The last example is another extreme, since
it generates cache misses due to the cache associa-
tivity problem. The address pattern creates a situation
where all of the required elements can be found in a
particular cache set, introducing a specific situation
when only one (or small number of sets) are used out
of the cache memory. Gusev and Ristov [7] give a
comprehensive analysis how, when and why maxi-
mum performance drawbacks appear when using the
set associative cache. For example, accessing the el-
ements of one column for characteristic matrices in
raw major will always produce cache misses since all
the column elements will be stored in one cache set,
and the rest of the cache will be empty.

Figure 8. Activity diagram of the steps that update the visual representation

iJEP ‒ Volume 3, Issue 3, July 2013 53

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

Figure 9. Overview of simulation mode of EDUCache simulator, L1 miss and L2 hit while reading the address 123464

More detailed explanation of the demo case study file
structure is given in Appendix A.

 CONCLUSION AND FUTURE WORK VII.
A new EDUCache visual simulator was developed as a

support tool in the teaching process of the Computer Ar-
chitecture and Organization course. It can be efficiently
used by the students in learning the relevant concepts of
cache memory functioning, especially in modern multi-
chip and multicore processors.

The students have an ability to realize experiments by
configuring various cache parameter independently. It en-
ables: 1) visual understanding of the basic concepts of pro-
cessing in the today’s multi-core multi-layer cache archi-
tectures and organization; and 2) simulation of activities in
the cache, i.e., cache misses and hits in a particular cache
set and memory location for sequential and parallel execu-
tion of an algorithm. The benefits of the new developed
EDUCache simulator are numerous. It has several ad-
vantages over other educational simulators in computer
architecture and organization area. For example, using the
EDUCache simulator, the students can interactively learn
and efficiently understand the following concepts:
• The organization and processing in cache hierarchy

(L1 to L3 cache levels);
• The organization and sharing of cache memory, by

identifying the owners, i.e. either it is a dedicated par-
ticular cache level per core or it is shared among all
cores or even shared among several CPU cores;

• The concept of ”inclusivity” between different cache
levels;

• The effect of exploiting different parameters: a) sizes
of the cache memory, b) the n-way cache set associa-
tivity, c) the cache line sizes; and

• The effect of choosing various cache replacement pol-
icy, being able to test various cache replacement poli-
cies per different cache levels.

The overall performance benefit of introducing the new
EDUCache simulator is: 1) to enable the students learn the
fundamentals of computer architecture and organization, 2)
to realize experiments on performance engineering of
software systems. The expected impact is that the students

will easily understand the importance of computer archi-
tecture and increase their willingness to learn hardware
based courses beside software based.

The usage of EDUCache simulator is not limited to the
Computer Architecture and Organization course, but we
plan to use in the Parallel and Distributed Computing
course in the next semester. We observe that it can be used
for learning hardware courses in general, due to its features
and user interface. The final impact is increased student’s
willingness on hardware related courses and better and
faster learning the relevant topics. We plan to use EDU-
Cache simulator for further research and for example, find
the optimal hardware platform to maximize the speed and
speedup of cache intensive algorithms for sequential and
parallel execution. Since it is initially developed for stu-
dents, we plan to enable the next EDUCache version to be
a free tool realized as cloud solution.

APPENDIX

EDUCACHE INTERFACES
EDUCacheSim uses a number of files for keeping data

or using them as input. There are 3 types of files: Chip
Configuration File (CCF), Address Trace File (ATF) and
Study Case File (SCF).
A. CCF File

The CCF is the product of design mode and it is used as
an input in simulation mode. It contains the information
about the created architecture for a chip, by defining the
number of cores per chip, cache level instances chosen for
each core and the relationship between them. The file has
an XML structure which makes the simulator inter-
operable with other similar systems. The root of the file is
a Configuration tag that contains two children, CacheLev-
els and CacheCores. CacheLevels has 3 or more children
(at least one child for every type of cache level). These
children have the tag CacheLevel and each child must have
the following items:
• UID - the id of the level instance
• Level - the type of cache level (1, 2 or 3)
• RP - replacement policy
• Size - the size in bytes

54 http://www.i-jep.org

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

• LWidth - the line width in bytes
• The first level CacheCores tag has at least one child,

representing a single core. A Core tag contains 6
items:

• UID - id of the core
• L1 - UID of a L1 instance • L2 - UID of a L2 instance
• L3 - UID of a L3 instance
• L1InclL2 - true if L1 is inclusive with L2
• L2InclL3 - true if L2 is inclusive with L3

Listing 1 shows an exact structure of a cache configura-
tion file as it would look in XML.

LISTING 1: XML STRUCTURE OF A CCF
<Configuration >
<CacheLevels>

<CacheLevel>
<UID>id of instance </UID>
<Level >[1 ,2 ,3] </ Level>
<RP>[FIFO ,LRU,BPLRU]</RP>

<Size>number in bytes </Size>
<LWidth>l i n e width in bytes
</LWidth>

</CacheLevel>
. . .

<CacheLevel>
. . .

</CacheLevel>
</CacheLevels>
<CacheCores>

<Core>
<UID>UID of core </UID>
<L1>UID of L1</L1>
<L2>UID of L2</L2>
<L3>UID of L3</L3>

<L1InclL2 >[true , f a l s e]</ L1InclL2>
<L2InclL3 >[true , f a l s e]</ L2InclL3>

</Core>
. . .

<Core> . . . </Core>
</CacheCores> </Configuration >

B. ATF File

The ATF file has a fairly simple structure as shown in
Listing 2. It has a number of lines where each line consists
of two comma separated values. The first value is a UID of
a core created previously in some other CCF File and is
used to show which core should read the following ad-
dress. The second value is a physical address of a data el-
ement in main memory that the core will try to use. Com-
mentary can be added at the beginning of the file, each line
beginning with a ’%’ character.

LISTING 2: EXAMPLE OF AN ATF FILE WITH COMMENTARY
\%Sample address t r a c e f i l e , assuming cores C1 and C2

C1 , 123392
C2 , 123400
C1 , 123408
C2 , 123416
C. SCF File

A SCF File contains the data about activities designed
for the student to observe the working of the simulator on a
particular chip configuration and trace file. it also has a

XML structure as CCF File. The root of the file is a
StudyCase node. The root node has 5 direct children:
• Title - of the study case
• Goal - what the students should learn
• Activities - description of steps to take
• ChipConfig - URI to a chip configuration file
• AddressTrace - URI to address trace file

The Activities child is the only complex element. It is
consisted of a list of children nodes named Activity. Each
activity node has two children. The first one is Name, for
that step, and the second one is Requirement or what the
students should observe. Listing 3 shows the structure of
the SCF Files.

LISTING 3: XML STRUCTURE OF A SCF FILE
<StudyCase>

<Title >String </ Title >
<Goal>String </Goal>
<A c t i v i t i e s >

<Activity >
<Name>String </Name>

<Requirement>String </Requirement>
</ Activity >

. . .
<Activity > . . . </ Activity >

</ A c t i v i t i e s >
<ChipConfig>URI</ChipConfig>
<AddressTrace>URI</AddressTrace>

</StudyCase>

D. Simulator Output File

The Simulator Output File is generated while the simu-
lation is running. It is basically a dump file for the verbose
output log shown in the Verbose Output pane. During the
simulation the lookups to the cache are explained in a
readable form. After the simulation ends the statistics
gathered are appended at the beginning of the file so that a
student seeking only this information does not have to
scroll through the whole output.

ACKNOWLEDGMENT
This work was partially financed by the Faculty of

Computer Science and Engineering at the “Ss. Cyril and
Methodius” University, Macedonia.

REFERENCES
[1] R. Shackelford, A. McGettrick, R. Sloan, H. Topi, G. Davies, R.

Kamali, J. Cross, J. Impagliazzo, R. LeBlanc, and B. Lunt, “Com-
puting curricula 2005: The overview report,” SIGCSE Bull., vol.
38, no. 1, pp. 456–457, Mar. 2006. http://dx.doi.org/
10.1145/1124706.1121482

[2] M. Stojcev, I. Milentijevic, D. Kehagias, R. Drechsler, and M.
Gusev, “Computer architecture core of knowledge for computer
science studies,” Cyprus Computer Society Journal, vol. 5, no. 4,
pp. 39–42, 2003.

[3] M. Stolikj, S. Ristov, and N. Ackovska, “Challenging students
software skills to learn hardware based courses,” in Information
Technology Interfaces (ITI), Proc. of the 33rd Int. Conf. on, 2011,
pp. 339 –344.

[4] S. Ristov, M. Stolikj, and N. Ackovska, “Awakening curiosity -
hardware education for computer science students,” in MIPRO,
2011 Proc. of the 34th Int. Convention, IEEE Conf. Publications,
2011, pp. 1275 –1280.

[5] X. Liang, “A survey of hands-on assignments and projects in un-
dergraduate computer architecture courses,” in Advances in Com-

iJEP ‒ Volume 3, Issue 3, July 2013 55

PAPER
USING EDUCACHE SIMULATOR FOR THE COMPUTER ARCHITECTURE AND ORGANIZATION COURSE

puter and Information Sciences and Engineering, T. Sobh, Ed.
Springer Netherlands, 2008, pp. 566–570.
http://dx.doi.org/10.1007/978-1-4020-8741-7_101

[6] J. L. Hennessy and D. A. Patterson, “Computer Architecture, Fifth
Edition: A Quantitative Approach,” MA, USA, 2012.

[7] M. Gusev and S. Ristov, “Performance gains and drawbacks using
set associative cache,” Journal of Next Generation Information
Technology (JNIT), vol. 3, no. 3, pp. 87–98, 31 Aug 2012.
http://dx.doi.org/10.4156/jnit.vol3.issue3.9

[8] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses in
computer architecture and organization,” Education, IEEE Trans-
actions on, vol. 52, no. 4, pp. 449 –458, nov. 2009.
http://dx.doi.org/10.1109/TE.2008.930097

[9] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania,
“Supporting undergraduate computer architecture students using a
visual mips64 cpu simulator,” Education, IEEE Transactions on,
vol. 55, no. 3, pp. 406 –411, aug. 2012.
http://dx.doi.org/10.1109/TE.2011.2180530

[10] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor cache
simulator,” 2012. [Online]. Available: http://pages.cs.wisc.edu/
!markhill/DineroIV/

[11] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Automatic analytical
modeling for the estimation of cache misses,” in Proc. of the Int.
Conf. on Parallel Architecture and Compilation Techniques (PACT
’99). IEEE Comp. Society, 1999, pp. 221–231.

[12] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmpsim: A pin-
based on-the-fly multi-core cache simulator,” in The Fourth Annu-
al Workshop MoBS, co-located with ISCA ’08, 2008.

[13] Y.-T. Chen, J. Cong, and G. Reinman, “Hc-sim: a fast and exact l1
cache simulator with scratchpad memory co-simulation support,”
in Proc. of the 7-th IEEE/ACM/IFIP Int. conf. on HW/SW codesign
and system synthesis (CODES+ISSS ’11). USA: ACM, 2011, pp.
295–304.

[14] E. Herruzo, J. Benavides, R. Quislant, E. Zapata, and O. Plata,
“Simulating a reconfigurable cache system for teaching purposes,”
in Microelectronic Systems Education (MSE ’07). IEEE Int. Conf.
on, 2007, pp. 37 –38.

[15] A. Misev and M. Gusev, “Visual simulator for ILP dynamic OOO
processor,” in WCAE ’04, Proc. of the workshop on Computer ar-
chitecture education: in conduction with the 31st Int. Symposium
on Computer Architecture, E. F. Gehringer, Ed. ACM, USA, 2004,
pp. 87 –92.

[16] Valgrind, “System for debugging and profiling linux programs,”
[17] [retrieved: Nov, 2012]. [Online]. Available: http://valgrind.org/
[18] D. A. Patterson and J. L. Hennessy, “Computer organization and

design, forth edition: The hardware/software interface,” MA, USA,
2009.

[19] ACM/IEEE-CS Joint Interim Review Task Force, “Computer
science curriculum 2008: An interim revision of cs 2001, report
from the interim review task force,” 2008. [Online]. Available:
http:
//www.acm.org/education/curricula/ComputerScience2008.pdf

[20] S. Ristov, B. Atansovski, M. Gusev, and N. Anchev, “Hands-on
exercises to support computer architecture students using educache
simulator,” University Sts Cyril and Methodius, Faculty of Com-
puter Science, Tech. Rep. IIT-35-2013, 2013.

[21] S. Ristov and M. Gusev, “Achieving maximum performance for
matrix multiplication using set associative cache,” in The 8th Int.
Conf. on, Computing Technology and Information Management
(ICCM2012), IEEE Conf. Publications, ser. ICNIT ’12, vol. 2,
2012, pp. 542–547.

AUTHORS
Sasko Ristov, Blagoj Atanasovski, Marjan Gusev,

Nenad Anchev are with the Faculty of Information
Sciences and Computer Engineering, “Ss. Cyril and
Methodius” University - Skopje. Email: {sashko.ristov,
marjan.gushev}@finki.ukim.mk,
blagoj.atanasovski@gmail.com,
nenad_ancev@hotmail.com

This article is an extended version of a paper presented at the IEEE
EDUCON20213 Conference, held from March 13th-15th, 2013, in Berlin,
Germany. Submitted 16 May 2013. Published asre-submitted by the au-
thors 26 June 2013.

56 http://www.i-jep.org

	iJEP – Vol. 3, No. 3, July 2013
	Using EDUCache Simulator for the Computer Architecture and Organization Course

