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Abstract—The phenomenon of high dropout rates has been the concern of 
MOOC providers and educators since the emergence of this disruptive technol-
ogy in online learning. This led to the focus on learner motivation studies from 
different aspects like demotivation signs detection, learning path personaliza-
tion and course recommendation. Our paper aims to predict learner motivation 
for MOOCs to select the right MOOC for the right learner. Accordingly, we 
predict the motivation in an educational data mining approach by extracting and 
preprocessing learners’ navigation traces on a MOOC platform, and building a 
Machine Learning model that predicts accurately a given learner’s motivation 
for a MOOC. The comparison of the performance of four supervised learning 
algorithms resulted in the selection of the Random Forest classifier as the best 
modeling technique for motivation prediction with an accuracy of 95%. After-
ward, we test the Machine Learning-based recommendation function for learners 
of the MOOC platform dataset to recommend the Top-10 MOOCs suitable for 
the target learner. Finally, further research on learner characteristics considered in 
recommender systems could enlarge the recommendation scope of MOOCs and 
maintain learner motivation.
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1 Introduction

Massive Open Online Courses (MOOCs) refer to online courses where participants 
from all backgrounds can follow a course without subscription fees or qualifications. 
These online courses were developed in the higher education sphere [1], [2] and later 
proliferated for a lifelong learning experience. With the large numbers of MOOCs 
available for learners worldwide, MOOCs recommendation is a tool to guide learners 
in their learning quest. However, it’s challenging to foresee the learners’ interests with 
a range of learner profiles and a difficult understanding of elements impacting their 
motivation and engagement for a given MOOC [3]. 
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In MOOC literature, the two concepts of motivation and engagement are intrinsi-
cally related. It is a learner’s motivations (personal or professional reasons) towards 
subscribing to a MOOC that induces a positive or negative engagement towards this 
MOOC. Here, learner engagement in MOOCs “refers to student actions such as videos 
watched, quizzes answered and posts made to forums” [4]. Consequently, in a learning 
analytics approach, we need to analyze learners’ engagement actions to define their 
motivation toward a MOOC. 

Moreover, the learner engagement parameters’ analysis will enable motivation 
prediction for a MOOC by a target learner. A prediction model will enable finding the 
relationship between an input and an output [5]. Although the model structure is set, 
its parameters are adjustable which allows the same model training on various data to 
deduce relationships for varying research problems [5]. 

As a first step of the learner motivation prediction, we use Educational Data Mining 
(EDM) techniques to preprocess a MOOC platform learning activities dataset. 

In general, EDM is a technique used in learning analytics [6] that applies data min-
ing techniques to analyze the learner’s activities and get an overview of the learning 
context [7]. It was also used for online courses recommendation, like the research of [8] 
that developed an adaptive system for the recommendation of an English course learn-
ing sequence based on the learner profile. Ref. [8] collected data from an administered 
questionnaire to learners as input data for the Decision Tree algorithm to recommend 
the optimal learning sequence as an output. Much later, Ref. [9] performed preprocess-
ing of data based on a distributed computation framework to recommend MOOCs by 
association rules data mining. 

In educational data mining, Machine Learning (ML) algorithms like association 
rules and decision trees are not only used for course recommendation but are also used 
for MOOC dropout and demotivation prediction [10]. In a recent Systematic Literature 
Review of [11], twenty-seven research papers relied on ML techniques among 116 
research works analyzed by [11] on MOOC recommender systems developed from 
2013 to 2021. 

Broadly, ML algorithms can be classified into two categories: supervised learning 
and unsupervised learning. However, new methods of a machine acquiring knowledge 
include reinforcement learning and transfer learning. This induced a large sphere of 
selected ML algorithms by researchers for MOOC recommendations such as k-means, 
K-Neighrest Neighbor, Apriori association algorithm, and decision tree [11]. 

Considering the related work identified by [11] as mentioned above and another 
systematic literature review of [12] on adaptive content recommenders in personal-
ized learning environments from 2015 to 2020, the prediction model that we suggest 
in this paper is an ML-based prediction model for a MOOC personalized recom-
mender. Indeed, the MOOC ML-based recommender “should decide two strategies: 
learner/learning object model and the recommendation technique” [12]. This paper 
aims to use the MOOC and learner data extraction from a MOOC platform dataset, and 
then predict the motivation of a learner for MOOCs based on historical learning data by 
resorting to EDM and ML algorithms. The paper’s contribution relies upon the detailed 
description of preprocessing mechanisms of MOOCs data and the selection of adequate 
ML models for the classification problem of learner motivation prediction.
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2 Materials and methodology

To generate a learner motivation prediction model, finding the right dataset that pro-
vides sufficient learner and MOOC features is essential for a researcher. In this sense, 
we use the Canvas Network open dataset that contains data from “Canvas Network 
open courses (running January 2014–September 2015)” [13]. The dataset contains 
more than 325.000 records where each record describes a learner activity in a MOOC 
from a list of 238 Canvas Network online courses [13]. It is the most recent dataset 
in terms of years of learner activity tracked (2014–2015) and offers 24 informed fea-
tures with a balance between learner features and course features (compared to similar 
open datasets related to our research like the HarvardX-MITx dataset [14] or the Open 
University Learning Analytics dataset [15]).

In our previous work [16], we used the same dataset for learner profile enrichment 
which enabled a first data cleaning and feature selection of the data pre-processed on 
a Python notebook in “Google Colaboratory”. The preprocessing steps in our previous 
work [16] included: irrelevant features removal, features renaming, datatype conver-
sion, missing values detection, imputation of missing values, and data records sorting 
[16]. In this context, learner missing values are standard since it is due to survey ques-
tions unanswered by a learner at his subscription to a MOOC. 

Figure 1 gives an overview of the obtained canvas dataset after the first preprocess-
ing [16] that the authors use in this paper for the MOOC recommendation model. The 
dataset mainly provides three subsets of information: learner features, MOOC features, 
and learning activity features.

Fig. 1. Canvas dataset preview after pre-processing and missing values imputation

Through the investigation of the historical data of the MOOC platform, we intend to 
predict whether a learner will be motivated or not to follow a MOOC. Practically, this 
implies a binary classification problem for which we need specific dataset processing 
and adequate ML algorithms selection for the prediction methodology.

2.1 Data pre-processing

Overall, The Canvas Network dataset preprocessing for MOOC recommendation 
purposes shows two major variable types: numerical variables (e.g.: user id and course 
length), and categorical variables (learner type, educational level…). For Dataset selec-
tion, feature engineering techniques are used to make data usable for ML algorithms of 
behavior prediction. The feature engineering for the Canvas Network dataset includes 
the following:
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Variables removal: variables that are derived from the learner activity were removed  
(e.g.: number of forum posts, and number of events) since they are the result of a 
learner exploration of a MOOC, whereas we intend to analyze learner and MOOC 
features’ values that contribute to one’s motivation to follow a MOOC or not. 

Dependent and independent variables definition: concerning our problem state-
ment above, the target variable (e.g. dependent variable) from the Canvas Network 
dataset is the “explored” variable since it expresses the exploration of a given Canvas 
MOOC by a learner which shows one’s motivation for a course. As for the independent 
variables, it comes to MOOC features (e.g.: course requisites, course start, and course 
end date) and the learner features from the survey data stored in each learner subscrip-
tion to a course. The features list and data types are summarized in Table 1. 

Categorical features transformation: ML algorithms usually require that each 
data input is represented as a numerical value to predict the probability of the response 
variable values. Thereby, we encode the categorical features using the one-hot encoder 
from the Sickit-learn library in Python to transform categorical features with more than 
two categories and convert the binary categorical features to the Boolean variable type 
(cf. Table 1 for feature values after categorical values numerical encoding).

Dataset sampling: As some ML models, like Random Forest, require a well-balanced 
representation of each predicted class in the dataset, we verify the number of rows with 
a “True” value and rows with a “False” value for the target variable “explored”. The 
results show that the pre-processed dataset contains 138000 additional observations for 
MOOCs explored by learners compared to unexplored MOOCs. Therefore, we proceed 
to a data sampling with a random selection of 9711 observations for each predicted 
class category.

Table 1. Features ‘selection for learner motivation prediction for a MOOC

Feature Type Feature Name Feature Data Type Feature Values 
Encoding Type

MOOC features

course_reqs Categorical (binary) (bool)

grade_reqs Categorical (binary) (bool)

course_length Numerical (discrete) (Int64)

course_start Categorical (ordinal) (Int64)

course_end Categorical (ordinal) (Int64)

Learner features

encoded_primary_reason Categorical (nominal) (Int64)

encoded_learner_type Categorical (ordinal) (Int64)

expected_hours_week Categorical (ordinal) (Int64)

encoded_education_level Categorical (ordinal) (Int64)

explored Categorical (binary) (bool)

2.2 Methodology

In general, technology trends in MOOC recommender systems are heading towards 
the employment of ML algorithms [11]. Approaches applied to the learning context with 
a perspective of considering a wide set of variables for recommendation are Bayesian 
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networks, association rules, clustering, genetic algorithms, and semantics [17]. Since 
we already have a dataset that provides historical data about a learner’s exploration of 
a course, supervised learning algorithms are the most adapted for our binary classifica-
tion problem. Indeed, labeled input feature data is a prerequisite for supervised learning 
algorithms [18]. The latter use identified data properties to generate a model that accu-
rately predicts labels for new data inputs [18].

Hence, we’ll use the supervised learning models, specifically the classifiers adapted 
to our features data types (categorical and numerical independent features) to predict 
if a learner will have a true or false label for the probability of exploring a MOOC. 
Four ML models are used for this study to inspect the accuracy of learner motivation 
prediction, namely the Bayesian network, the Logistic Regression, the Support Vector 
Machine (SVM), and Random Forest models. It will be implemented in three stages.

First, we split the data into a training set of 70% of the Canvas dataset and 30% 
for the testing set. Second, we fit the model on the training set after importing each 
ML model function and defining its hyperparameters. Finally, we use the ML model 
to make predictions and measure its prediction’s accuracy by using ML models’ per-
formance measures. Details of ML models’ implementation and the evaluation of the 
model’s performance will be given in the next section.

3 Machine learning models implementation

After the dataset uploading and preprocessing described in the previous section, it 
comes to the implementation of the selected ML algorithm to generate a classification 
model of learners’ motivation depending on their learning activity history and their 
characteristics alongside the MOOC characteristics.

3.1 Naïve Bayes model 

Broadly, a Bayesian function algorithm is used in supervised learning for classifica-
tion. It mainly determines the probability of an event A given B when we already know 
the probability of A, the probability of B, and the probability of B given A as stated in 
the Bayes theorem equation [19]: 

P AB P B A P A
P B

( ) ( ). ( )
( )

| |
=

The Naïve Bayes classifier is based on the Bayes theorem and considers variables 
to be independent of each other as a hypothesis [19]. Consequently, we assume that all 
features are independent of each other [19], [20] and predict the likelihood of an event 
occurring (response variable value) based on evidence in our dataset (independent fea-
tures values). In that, the Naïve Bayes classifier is known to be efficient and fast [21]  
and “one of the simplest classifiers” [19]. It has many application domains like the 
classification of news articles and emails, object recognition, weather prediction, etc.

Moreover, the Naïve Bayes model has three kernels: the multinomial, the Bernoulli, 
and the Gaussian kernel [18]. For our Naïve Bayes classifier implementation, we use 
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the Gaussian kernel since our independent features’ values have a normal distribution 
(cf. Table 1: most features have ordinal values). Figure 2 shows the Naïve Bayes model 
implementation on Google Colaboratory. 

Fig. 2. Naïve Bayes model implementation

3.2 Logistic Regression model 

A Logistic Regression algorithm is mainly used for binary classification to predict 
if something is true or false and is generally used “to estimate values for a categorical 
target variable” [18] that needs to be binary or ordinal [18]. Unlike the naïve classi-
fier that ignores relationships among feature values, the Logistic Regression model 
is used “to model relationships between features in a dataset” [18] and enables us to 
test if a feature is significant for predicting the target value. Hence, it could help in 
confirming if a newly added learner or MOOC feature impacts the learner’s motiva-
tion for a MOOC. 

Still, the features need to be independent of each other for a Logistic Regression 
model but contrary to the gaussian Naïve Bayes model, they “are not required to have 
a normal distribution” [18], which gives a wider margin for learner profile enrichment 
with features of different value distribution. 

For the implementation of the Logistic Regression model on our dataset, we spec-
ify the hyperparameter solver = ‘liblinear’ which is used for small datasets such as 
our Canvas Network preprocessed dataset. Figure 3 illustrates the Logistic Regression 
model implementation.
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Fig. 3. Logistic Regression model implementation

3.3 Support Vector Machine

Differing from the Naïve Bayes classifier, the SVM model is “a non-probabilistic 
binary classifier” [22] that starts with data in a low dimension and moves into a 
higher dimension to find the Support Vector Classifier (SVC) that separates the higher 
dimensional data into two groups by a hyperplane. 

Moreover, SVM uses a kernel function to compute the relationship of a new observa-
tion with existing observations to find the SVC in higher dimensions. The basic kernel is 
the linear classifier “where SVM can classify data that can be separated linearly” [23].  
If the number of features is large, the linear data mapping is sufficient to map data to a 
higher dimensional space [24]. However, in our Canvas dataset, we have a small num-
ber of features (9 features) which made us explore the nonlinear kernels that are the 
closest to real-world applications where features don’t usually have a linear relation. In 
this sense, there are many popular nonlinear kernel functions like the polynomial, the 
Radial Basis Function (RBF), and the sigmoid kernel. For this study, we test three of 
the popular SVM kernels: linear, polynomial, and RBF kernel.

After the data is split into training and testing sets, we proceed with data scaling 
with the scale function from the Sickit-Learn Python library. The data scaling step aims 
to center the data before scaling to get a balance of each feature’s data representation 
regardless of its numeric range for our SVM model implementation. The data scal-
ing also provides the advantage of making calculations easier in SVM kernels. Kernel 
values are typically determined by the inner products of feature vectors like the linear 
kernel and the polynomial kernel where big attribute values may engender numerical 
issues [24]. 

Secondly, we implement the SVM model by importing the SVM function, creating 
the SVM classifier with a specification of the kernel, and giving the True value for the 
probability parameter that is essential to generate the ROC curve. The latter will be 
used in the next sections (cf. ML models performance) to measure the model perfor-
mance and requires a probabilistic approach to prediction results which isn’t the SVM 
characteristic by default. 
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Thirdly, we fit the model to the training set and make predictions for the testing set 
for the different SVM model kernels to compare their accuracy percentage and focus 
on the optimal kernel. Figure 4 shows the implementation of the linear kernel, the poly-
nomial kernel, and the RBF kernel respectively. 

Testing of the prediction accuracy results shows that the RBF kernel gives the high-
est accuracy score (92%) compared to the linear kernel (89%) and the polynomial ker-
nel (91%) functions of SVM. Hence, we proceed to the parameter tuning of the RBF 
kernel to get the best accuracy score for the SVM model. 

For the RBF kernel, the most influencing parameters are “C” and “gamma”. The “C” 
parameter is for the regularization of SVM “classification of training examples against 
maximization of the decision function’s margin” [25]. The gamma parameter defines 
the influence radius of dataset samples selected by the SVM model [25]. Therefore, we 
use the grid search technique to define the best (C, γ) pair for our SVM model. This 
technique establishes a finite number of alternative values for each parameter. After-
ward, all conceivable combinations of these values are examined to achieve the optimal 
result [26]. 

Results of the selection of the best parameters from a list of finite numbers’ are 
illustrated in Figure 5. We use these results to recreate the RBF SVM model (Gaussian 
model) with the newly defined parameters. The results demonstrate the increase in the 
accuracy percentage (94%) compared to the model generation before parameter tuning 
(92%).

Fig. 4. SVM kernels implementation
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Fig. 5. Grid search for SVM parameter tuning

3.4 Random Forest 

Random Forest is an ensemble algorithm developed by Leo Breiman and used in 
supervised learning for classification and regression [19]. The Random Forest algo-
rithm uses multiple independent decision trees classifiers with a double random draw-
ing: the random draw of observations with a replacement on rows and the random draw 
of variables [19]. This process is called “bagging” [27] and its advantage compared to 
decision trees is that it constructs random trees and aggregates the tree’s predictions to 
classify a new observation by using the voting method [28], this stops the error propaga-
tion risk of decision trees [18]. Though Random Forest requires extra computation [22]  
which makes it slower compared to decision trees [18], it is still efficient for its robust-
ness [18], [28].

For Random Forest implementation (cf. Figure 6) to predict learner exploration of a 
course, we follow these steps:

•	 Previous steps described for dataset preprocessing (feature selection, categorical 
features transformation, data sampling, …) and Data split into two sets: training set 
(70%) and testing set (30%)

•	 Data scaling to get a balance of data representation by using the Min_Max_scaler 
function from Sickit-learn that scales all the data features in the default range [0, 1].

•	 Model fitting: we fit the Random Forest classifier to the data with the definition of 
the n_estimators parameter which defines the number of trees to generate by the 
model. As we have few features and a small dataset, we define a small number of  
10 for this parameter.
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•	 Accuracy calculation for the training set and the testing set: the computation of the 
accuracy for each split of data is done to verify if the model isn’t overfitted to the 
training set since the overfitting problem is very common in ML models generally 
and Random Forests specifically [28].

Fig. 6. Random Forest model implementation

4 Machine learning models performance and prediction 
evaluation 

Since our prediction model is based on a classifier, we can use many prediction qual-
ity metrics to evaluate the classification model like the prediction accuracy measures, 
the confusion matrix, the ROC curve, and the Area Under the Curve (AUC). In addi-
tion, accuracy, precision, recall, and F-measure are the most used evaluation metrics of 
MOOC recommender systems in general [11]. 
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4.1 The prediction accuracy measures

Above all, accuracy is the percentage of successful predictions from all the predic-
tions [21]. In classification, the accuracy score is the percentage of correctly predicted 
labels in the true subset labels. Nonetheless, other measures investigate deeper the pre-
dictions’ correctness and error metrics, especially for an ML model intended for the 
recommendation.

First of all, the precision measure calculates the proportion of pertinent recommen-
dations from the given recommendations. Therefore, it focuses on the results of a rec-
ommender and is given by [29]:

Precision
T

T F
p

p p

�
�

Where: 
Tp: True positive, e.g. the number of pertinent recommendations 
Fp: False positive, e.g. the number of false recommendations
Secondly, the recall measure calculates the capacity of a recommender to give per-

tinent recommendations. It focuses on the pertinence of a recommender compared to 
what it should recommend. Hence, it is given by [29]: 

Recall
T

T F
p

p n

�
�

Where:
Fn: False-negative, e.g.: pertinent recommendations that weren’t given by the RS.
Subsequently, the F-measure comes to combine both precision and recall into a sin-

gle measure [30]. It is used for recommender systems and computes the harmonic mean 
of precision and recall [30]. It is also the standard measure to evaluate a binary classifier 
[20] like our prediction classifier for learner exploration of a MOOC. Its formula is: 

1

2* *Precision RecallF
Precision Recall

=
+

4.2 The confusion matrix 

The utility of a confusion matrix is that it compares observed data and predicted 
data for each class and shows the misclassification rate for each class to predict by the 
binary classifier. The confusion matrix is a two-by-two matrix that shows how many 
points in a testing data were assigned to a category compared to where they should be 
assigned [20].

It becomes an essential tool to evaluate the classifier performance for each class [31], 
especially when the model accuracy rate is very high but the classification’s error rate 
for a class is much higher than the error rate for the other class. 
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4.3 The ROC curve and the Area Under the Curve

The Receiver Operating Characteristic (ROC) curve is constructed by using two 
performance indicators [19]: 

•	 the specificity β: the False Positive Rate (FPR) with 1-β for the x-axis and which 
represents the number of negative examples that are predicted correctly;

•	 the sensitivity α: the True Positive Rate (TPR) on the y-axis, which represents “the 
fraction of all hits that are correctly classified as hits” [20].

The specificity and sensitivity indicators are in the range [0, 1] and are measured by 
varying the thresholds of the confusion matrix each time to get a curve point (1 – β, α).

Hence, the ROC curve enables a common ground for different ML models compar-
ison. This comparison could be done globally regardless of the decision threshold by 
considering the Area Under the Curve (AUC) [19] a common measure used for depict-
ing the accuracy of classifiers from ROC curves based on the same data. Indeed, the 
larger the AUC is, the better is the model, whereas a model with a ROC curve under 
an AUC = 0.5 has a problem of predicting the Positive as Negative and the Negative 
as Positive.

4.4 The ML models’ performance comparison

After the ML models implementation, we verify by using the confusion matrix for 
each of the 4 models that the algorithms’ accuracy prediction for each class doesn’t have 
a significant gap with the prediction accuracy for its opposite class. In general, the main 
metrics used for a classification problem are the F1-measure and the ROC Curve [19].  
The F1-measure “will be 1.0 for a perfect classifier and 0.0 in the worst case” [20] 
and the ROC curve could be represented by its AUC. Nonetheless, the accuracy score  
is a common measure for all ML models and is worth using in the performance 
comparison. 

In our ML models’ prediction results (cf. Figure 7), the accuracy is between 89% 
and 95%. Therefore, the chosen ML models have a good performance on the dataset. 
What’s more is that for classification and recommendation purposes, the F1-measure 
high values obtained for all 4 models with a similar range of the accuracy scores  
[0.89 – 0.95] also assure the suitability of all models for our classification problem and 
could be used to predict interchangeably the learner exploration of a course or not. 

Nonetheless, the main cutting value for the designation of the most performing clas-
sifier is the AUC value, which also had values for all four models near the optimum 
value 1, but the Random Forest model attained the largest AUC of 0.98 with a very fast 
execution time of 0.059 seconds compared to the SVM model that had a close AUC 
of 0.95 but took more than 46 seconds to fit the model to the dataset. 

In consequence, the Random Forest is the best ML model compared to the SVM, 
the Logistic Regression, and the Naïve Bayes classifiers that we could use for learner 
motivation prediction.
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Fig. 7. Comparison of classifiers’ performance for prediction of learner motivation

5 Machine Learning-based MOOC recommender

The ML-based recommender that we suggest takes as input only the learner ID and 
uses his historical data to recommend adequate MOOCs. This recommendation func-
tion excludes the MOOCs with a null label for the motivation prediction of the target 
learner. It concretizes the approaches of many research papers and platforms of adopt-
ing a filtering approach based on learner characteristics and MOOC metadata.

To illustrate the MOOC recommender system functioning, Figure 8 displays an 
example of a target learner profile: ready to dedicate a maximum of 4 hours of work per 
week to follow a MOOC but considers themselves as an active learner and has personal 
motivations for topics of interest. After selecting the target learner for the RS, we test 
the ML-based MOOC recommender function that uses the Random Forest previously 
generated model to predict which MOOCs will be explored by the target learner and 
generate the top-10 recommended courses list (cf. Figure 9).

Fig. 8. Target learner for ML-based MOOC recommender
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Fig. 9. Machine Learning-based MOOC recommender result

As Figure 9 demonstrates, the recommended MOOCs have varying disciplines and 
course lengths but all share the same course and grade requisites. This infers that the 
recommender system predicts that the target learner will be more motivated for courses 
with pre-requisites and a learning level evaluation. 

Consequently, the suggested MOOCs by the recommender satisfy the personal curi-
osity of the target learner for following MOOCs since they are about different domains 
and enable the learner to choose a MOOC with a course length that is adequate with a 
tight schedule (4 hours per week amount of work).

Furthermore, we also use the features importance technique on the Random Forest 
implemented model to explore the most influential features on learner behavior predic-
tion (cf. Table 1 for list of features). The bar chart in Figure 10 summarizes the feature 
importance results for our dataset. 

Figure 10 shows that the features that influenced greatly the motivation of the 
Canvas Network learners are mainly the MOOC characteristics (eg.: grade and course 
requisites, course length and course start and end date). This is predictable as the data-
set of the Canvas Network provides precise information about MOOCs characteris-
tics, whereas the learner features values had an important amount of missing values  
(48.4% of dataset records with missing values for all learner features). Consequently, 
the algorithm learned better from MOOC feature values than synthetic imputed values 
of learner features missing data.

For this reason, a greater focus on learner data collection is necessary to get learner 
feature values (eg.: learner type, education level, primary reason and expected hours 
per week) and balance their importance compared to MOOCs features for the MOOC 
recommendation criteria. 
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Fig. 10. Learner and MOOC features’ importance from the Random Forest classifier

6 Conclusion and future work

At present, learner motivation is a key element for MOOC recommendation and 
increasing the MOOC completion rates with the proliferation of MOOCs and the 
increasing dropout rates [32], [33]. Upon the interdependence of learner motivation and 
achievement in MOOCs [33], we studied learner and MOOC data on MOOC platforms 
and selected an adequate dataset for the implementation of a MOOC recommender. The 
latter aimed to explore the historical data on the MOOC platform Canvas Network [13] 
and pre-process it to enable the recommendation function’s learning about interesting 
MOOCs to learners and recommend the top-10 most adequate online courses for a 
given learner. 

Subsequently, we selected the ML algorithms suitable for learner profile classifica-
tion into one of the two categories: is likely to explore or not likely to explore a MOOC. 
The four implemented ML classifiers: Naïve Bayes, Logistic Regression, SVM, and 
Random Forest gave similar performance percentages but the Random Forest-based 
model gave the highest accuracy rate (95%). 

Therefore, the conception of the MOOC recommender ML-based system used the 
Random Forest model for learner motivation prediction and relied on both learner and 
MOOC characteristics. The testing of the ML-based recommender concretizes the use-
ful inclusion of ML in MOOCs list filtering since it provides a personalized list of 
MOOC items to learners. 

Furthermore, we concluded from the feature importance algorithm that MOOC fea-
tures have a bigger influence, compared to the personal characteristics of learners, on 
the exploration or not of a given MOOC.

However, using ML to recommend MOOCs similar to MOOCs previously explored 
by learners is a content-based recommendation since it is based solely on MOOC 
features and doesn’t take into account the individual characteristics of a learner. 
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Additionally, the Canvas dataset learner features don’t include the knowledge 
domains of interest for a learner or the sought skills to develop through MOOCs. Even 
if such data is available, ML algorithms don’t enable the semantic matching of learner 
domains of interest with MOOCs disciplines.

For these research limitations, we will be exploring in future works the hybridization 
of ML techniques with the ontology-based recommendation approach as suggested by 
[34] to upgrade the variety of learner features used for recommendation in adherence to 
the MOOC recommendation criteria. In this sense, educational resources management 
systems use ontologies to share information and annotate semantically these resources 
[35]. The semantic annotations will enable matching MOOC content knowledge with 
the sought knowledge by a target learner. Consequently, it’ll expand the potential 
learner features used for MOOC recommendation.
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