
 4 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

JEP International Journal of

Engineering Pedagogy

iJEP | eISSN: 2192-4880 | Vol. 13 No. 1 (2023) |

Kralev, V., Kraleva, R., Ankov, V. (2023). An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms. International
Journal of Engineering Pedagogy (iJEP), 13(1), pp. 4–19. https://doi.org/10.3991/ijep.v13i1.35661

Article submitted 2022-09-27. Resubmitted 2022-11-27. Final acceptance 2022-12-01. Final version published as submitted by the authors.

© 2023 by the authors of this article. Published under CC-BY.

Online-Journals.org

PAPER

An Interactive Application for Learning and Analyzing
Different Graph Vertex Cover Algorithms

ABSTRACT
This paper deals with an analysis of three algorithms for the graph vertex cover problem.
Certain methods for solving this problem are analyzed. In addition, different studies on the
problem and some approaches to its solution are discussed as well. An exact algorithm (based
on the backtracking approach) is presented. Calculating the average time for execution of this
algorithm is consistent with the multitasking way of work of the operating system. For this
purpose, four different starts of the algorithm are made and then the average time of all of
them is calculated. The exact algorithm found the optimal solutions for all analyzed graphs.
Besides this algorithm, two other heuristic algorithms for solving the problem are discussed.
For this study, an interactive application is developed to visualize the performance of the
three algorithms and display the obtained results. The results show that for small graphs
with no more than 25 vertices, the exact algorithm can be used to solve optimally the graph
vertex cover problem. For the largest graphs, none of the two heuristic algorithms found the
optimal solutions, but these algorithms generated solutions that are very close to the opti-
mal ones. In summary, when the size of the graph increases linearly, the execution time of
the heuristic algorithms increases linearly, while the execution time of the exact algorithm
increases exponentially.

KEYWORDS
graph theory, vertex cover problem, heuristic algorithms

1	 INTRODUCTION

Graph theory is an important part of discrete mathematics [1]. This theory has
developed significantly over the past several decades [2]. Graphs are non-linear
data structures used in discrete mathematics and computer science. These are
abstract structures that provide opportunities to visually and very effectively for-
malize and solve sufficiently complex applied problems. Different types of prob-
lems from different fields of practice can be formulated and modeled by graphs
so that they can be solved by appropriate algorithms. This presupposes finding

Velin Kralev(),
Radoslava Kraleva,
Viktor Ankov

South-West University,
Blagoevgrad, Bulgaria

velin_kralev@swu.bg

https://doi.org/10.3991/ijep.v13i1.35661

https://online-journals.org/index.php/i-jep
https://online-journals.org/index.php/i-jep
https://doi.org/10.3991/ijep.v13i1.35661
https://online-journals.org/
https://online-journals.org/
mailto:velin_kralev@swu.bg
https://doi.org/10.3991/ijep.v13i1.35661

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 5

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

precise structural and numerical characteristics of real objects that are represented
by graph structures [3–8].

Many transportation problems, site allocation problems, optimal route selection
problems or service center placement problems, and problems related to creating
optimal schedules and timetables are also described by graphs and solved by the
corresponding algorithms [9–13]. Graphs are also used for modeling in the field of
learning [14–16] and assessment [17]. In this way, various physical, chemical, eco-
nomic and managerial systems and processes can be successfully represented and
studied with graphs. Solving these problems without a computer and appropriate
software is impossible except in trivial cases where the size of the input data is very
small. But even with the use of a computer and appropriate software, solving some
problems accurately in an acceptable amount of time could also be impossible.
These include all problems from the complexity classes NP-complete and NP-hard,
for which no solution that has a complexity other than exponential, for example
polynomial, has been found yet [18, 19].

Some of these problems are linear, i.e., both the objective function and each of
the constraints are linear, meaning they are solvable through polynomial algorithms
[20]. However, real problems have a large input size, so it is necessary to search for
efficient algorithms that generate approximate solutions [21, 22]. Graph theory pro-
vides good opportunities in this direction [23].

Therefore, in the study of graph theory, it is of particular importance to develop
and use interactive applications (software products) for working with graphs and
for analyzing algorithms in graphs. These applications can visualize the modeled
problems and also test the corresponding algorithms related to these problems.
In addition, the obtained results can be analyzed through graphical representation.
The subject of the present research is the development of an application for working
with graphs and implementing different algorithms for graph vertex covering.

2	 LITERATURE	REVIEW

In the field of graph theory, a vertex cover of a graph is a set of vertices such that
every edge of the given graph is incident to at least one of the vertices of this set. The
problem of finding a minimum vertex cover of a graph is an optimization problem
that falls into the category of classical NP-complete problems [24].

Each graph can be described by two sets – V and E. The set V contains the nodes
(vertices) of the graph and the set E contains its edges. The set of edges contains
elements that connect exactly certain pairs of vertices. The sets V and E are finite.
The vertices of each edge can be represented as an ordered or an unordered pair.
If the vertices of each edge are an ordered pair, then the graph is called directed.
Otherwise, the graph is called undirected. If a numerical value is assigned to each
edge, then the graph is called weighted [25, 26]. Once these notations have been
introduced, the graph vertex cover problem can also be defined.

A vertex cover VC of an undirected graph G = (V, E) is a subset of the vertices
V such that at least one of the two vertices of any edge (v1, v2) ∈ E of the graph G
belongs to the set VC. In other words, either v1 ∈ VC, or v2 ∈ VC, or both v1 and
v2 ∈ VC. Then a vertex cover of a graph can also be defined as a set of vertices VC
such that each edge of the graph has at least one of its two vertices (or both of its
vertices) as an element belonging to the set VC (of both vertices, incident to this
edge). Such a set of vertices is said to “cover” all the edges of the graph. A minimum
vertex cover is one that has the smallest possible power. In other words, a vertex
cover is a minimum vertex cover if it contains the smallest possible number of

https://online-journals.org/index.php/i-jep

 6 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

vertices such that all edges in the graph are incident to at least one of the vertices
in that set [27]. Since the problem of finding a minimal vertex cover in a graph is
an NP-complete problem, this means that no efficient (polynomial) algorithm is yet
known to solve this problem exactly.

For some special types of graphs, for example, tree graphs, there is a polynomial
algorithm that finds a minimum vertex cover in polynomial time. This algorithm
searches for a vertex in the graph that is of type leaf, then adds its parent to the
current vertex cover (i.e., the cover that has been built so far), then deletes the found
leaf, the parent, and all associated edges. The algorithm continues according to the
same scheme until the vertices in the graph are exhausted [28].

A vertex cover in a graph can be generated such that it has an approximation
factor no worse than twice the optimal one. This can easily be done by repeatedly
selecting an edge from the graph that has not been used yet, then adding the two
incident vertices with that edge to the currently constructed vertex cover, then
removing them from the graph [29]. Whenever the two vertices incident to the
selected edge are removed from the graph, all incidents with those edge vertices
are also removed. The set containing the vertices selected in the described man-
ner is actually a vertex cover of the given graph. Also, if the edge e = {v1, v2} ∈ E,
then every cover of the graph will contain either a vertex v1 or a vertex v2 or both
vertices; otherwise, the edge connecting vertices v1 and v2 will not be covered.
Thus, the optimal cover contains at least one of the two vertices of any edge, i.e.,
any one covering set of a given graph will be at most twice as large (in power) as
the optimal covering set for that graph [30]. There are also algorithmic techniques
where the coefficient of approximation to the optimal solution is smaller [31, 32].

One more feature of the problem of finding a minimum vertex cover is important
to mention: finding a vertex cover of minimum size is actually equivalent to find-
ing the maximum set of independent vertices (in the same graph). This problem is
known as Maximum-Size Independent Set [33–37].

The problem of finding a minimal vertex cover is used to model many real and
theoretical problems. For example, in a commercial establishment, it is necessary to
install as few video surveillance cameras as possible. The corridors in the site are
a closed circuit, i.e., it is necessary to “cover” all corridors (edges) that connect all
rooms (vertices). This problem can easily be modeled as a minimum vertex cover
problem. The ability to use the minimum vertex cover problem to model different
processes and activities makes this problem widely applicable in other areas as well.
Another application of this approach is in modeling some processes in the field of
biology [38].

Since finding a minimum vertex cover is an NP-complete problem, in addition to
one exact algorithm, two heuristic algorithms will be presented to solve it. The idea
behind a heuristic algorithm is that it targets one of all subcases of the problem and
solves only it. The selection of this subcase is based on a local optimality criterion
(such as the number of edges incident to a given vertex). In this way, the heuristic
algorithm is always directed to the best choice, but at a local level. However, this
choice may prove inappropriate at the global level [39–42]. Heuristic algorithms
are not difficult to create, respectively, and their implementation is not complicated.
A major drawback of these algorithms is that the solutions they generate are not
always optimal. However, this does not reduce their usefulness, since these algo-
rithms quickly find a solution to the problem which can be optimal or close to it.
For many practical problems, it is impossible to examine all possible cases when
searching for a solution. In this case, quickly finding an approximate solution (close
to the optimal one) can be much more useful, instead of the long search for the real
optimal solution [43, 44].

https://online-journals.org/index.php/i-jep

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 7

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

In this paper, three algorithms for the graph vertex cover problem will be
presented – one exact and two heuristic. The exact algorithm uses a backtracking
approach and finds the exact solutions for all graphs [22, 43]. The other two algo-
rithms are heuristic (approximate) and therefore are characterized by the fact that
it is not always possible to find the optimal (exact) solution. It is also characteristic of
these algorithms that if they do not find the optimal solution, the solution found will
be close to the optimal one [45, 46].

3	 IMPLEMENTATION	OF	THE	ALGORITHMS

As discussed in the previous section, three algorithms will be implemented to
find a minimum vertex cover in a graph. The main idea is to implement the algo-
rithms in such a way that they can be easily integrated into an application that uses
them. If the implementation of the algorithms and the presentation of their results
is implemented in an interactive way, the students will be able to visually see the
step-by-step execution of the algorithms and analyze their results [47–49]. When the
application runs, the algorithms will access some global data structures (variables
and dynamic arrays). The algorithms will use these data structures when they are
executed. These data structures will also be accessible by all functions at the run-
time of the application. Dynamic array and variable declarations are predefined as
shown in Figure 1 (in C++ language).

01 │ unsigned long tS, tE;
02 │ int CoverVertexCount, CoverEdgeCount;
03 │ DynamicArray < int > permutation;
04 │ DynamicArray < int > best_permutation;
05 │ DynamicArray < TVertex > v; DynamicArray < TEdge > e;

Fig. 1. Global declarations source code

The variables CoverVertexCount and CoverEdgeCount (of integer type int) will be
used as counters. They will store the number of covered vertices and edges in the
graph. The tS integer variable of the type long will store a timestamp (in milliseconds)
from the start of the operating system boot to the moment a particular algorithm has
been run. Accordingly, the variable tE will store the completion time of the execution
of the given algorithm. The other global declarations are of the type dynamic arrays.
The arrays [v] and [e] are of the structure types TVertex and TEdge, respectively. The
arrays [permutation] and [best_permutation] are of integer type int. Dynamic arrays
are characterized by the fact that when the application starts, no RAM is allocated
for them, but only a pointer to the address of the structure in RAM. The size of this
structure dynamically changes as the application runs, depending on the number
of items that need to be stored. The main idea of this type of dynamic structures is
to allocate the necessary memory only when it is needed and then during the exe-
cution of the application. The dynamic array [v] of type TVertex will store the data
for the vertices of the graph; respectively, the dynamic array [e] of type TEdge will
store the data for the edges of the same graph. The dynamic array [permutation] of
integer type int will store a randomly generated permutation of the vertices of the
graph. The dynamic array [best permutation], also of integer type int, will store the
permutation of the graph vertices in which the generated vertex cover is respec-
tively optimal.

https://online-journals.org/index.php/i-jep

 8 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

An implementation of the first algorithm (BTR) using the backtracking method
to find a minimum vertex cover of a graph is presented in Figure 2. This algorithm
generates all combinations of n elements of the kth class, for values of k from 1 to n.
For each combination (i.e., for each subset of k number of vertices of the graph),
the algorithm checks whether all edges of the graph can be covered by only these
k vertices. When the algorithm finds a solution, it terminates its execution. The solu-
tion found will be the first solution for a given k (i.e., k will be the minimum number
of vertices needed to cover all edges of the graph), which is actually the condition of
the minimum vertex cover problem.

01 void BTRStart() {
02 │ FoundSolution = false;
03 │ Terminated = false;
04 │ n = g.v; c = 0;
05 │ tS = GetTickCount();
06 │ for (k = 1; k <= n; k++) {
07 │ │ c = CalcCombs(n, k);
08 │ │ combination.set_length(k);
09 │ │ generate(1);
10 │ │ if (FoundSolution) { break; }
11 │ │ if (Terminated) { break; } }
12 │ tE = GetTickCount();
13 │ if ((Terminated == true) && (FoundSolution == false)) {
14 │ │ ShowMessage("The process is terminated!"); }
15 │ if ((Terminated == false) && (FoundSolution == true)) {
16 │ │ DrawGraph();
17 │ │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
18 │ │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
19 │ │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
20 │ │ ShowMessage("Found solution."); }
21 }

Fig. 2. Source code of the BTR algorithm based on the backtracking method

The two global variables – tS and tE – are used to calculate the execution time of
the algorithm. They are of the type long and store the two moments in time (relative
to the start of the operating system), respectively, for the beginning and for the end
of the execution of the algorithm (lines 05 and 12).

The for loop (lines 06–11) is used to iterate through every possible combination of
k (k is a global variable that indicates how large the subset of vertices of the graph
is through which an attempt is made to cover all edges of the graph). This process
runs until the smallest k is found for which a vertex cover is generated, or until
the process is terminated by the user. The if statement on line 13 checks if the pro-
cess has been interrupted by the user while no solution has been found yet. If the
value of the boolean expression of the conditional operator is true, then information
about the partially generated solution is not displayed. If a solution is found and
the process is not interrupted by the user, the source code in the if statement block
(lines 15–20) redraws the graph and displays information about the values of
the variables involved in the process, for example, the number of edges covered
(CoverEdgeCount), the number of vertices used (CoverVertexCount), and the elapsed
time determined by the difference between the values of the variables tE and tS.

Another algorithm (RND) used to find a vertex cover in a graph is presented in
Figure 3. This algorithm is heuristic and is based on the generation of random orders
of vertices (permutations).

https://online-journals.org/index.php/i-jep

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 9

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

01 void RNDStart(int Count) {
02 │ if ((Count < 1) || (Count > 10000))
03 │ { ShowMessage("Incorrect parameter [Count]"); return; }
04 │ permutation.set_length(g.v);
05 │ best_permutation.set_length(g.v);
06 │ int MinCoverVertexCount = MaxInt, MinCounter = 0;
07 │ tS = GetTickCount();
08 │ for (int counter = 1; counter <= Count; counter++) {
09 │ │ for (int I = 1; I <= g.v; i++) { permutation[i] = I; }
10 │ │ random_shuffle(permutation.begin() + 1, permutation.end());
11 │ │ for (int I = 1; I <= g.v; i++) {
12 │ │ │ int v_id = permutation[i];
13 │ │ │ v[v_id].c = clLime; CoverVertexCount ++;
14 │ │ │ for (int j = 1; j <= g.e; j++) {
15 │ │ │ │ if ((e[j].v1 == v_id) || (e[j].v2 == v_id)) {
16 │ │ │ │ │ if(e[j].c != clBlue) {
17 │ │ │ │ │ │ e[j].c = clBlue; CoverEdgeCount ++; } } }
18 │ │ │ if (CoverEdgeCount == g.e) { break; } }
19 │ │ if (MinCoverVertexCount > CoverVertexCount) {
20 │ │ │ MinCoverVertexCount = CoverVertexCount;
21 │ │ │ MinCounter = counter;
22 │ │ │ for (int I = 1; I <= g.v; i++) {
23 │ │ │ │ best_permutation[i] = permutation[i]; } } }
24 │ │ tE = GetTickCount();
25 │ for (int I = 1; I <= g.v; i++) {
26 │ permutation[i] = best_permutation[i]; }
27 │ DrawGraph();
28 │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
29 │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
30 │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
31 }

Fig. 3. Source code of the RND algorithm based on the generation of random orders of vertices

One input parameter of this algorithm is the number of iterations (specified by
the user) which determines how many iterations the algorithm will make to gen-
erate random orders (permutations) of the vertices. For each order of vertices, the
algorithm will “cover” the edges of the graph by traversing the vertices in the cur-
rent order. If the number of iterations is not set correctly by the user, the RNDStart
function exits.

Similarly to the BTR algorithm, the RND algorithm uses the variables tE and
tS to calculate the execution time of the algorithm. The for loop (lines 08–24) first
sorts the elements in the permutation array from 1 to g.v, where g.v is the number
of vertices in the graph (line 09). The elements in the dynamic array permutation
are then shuffled randomly (line 10). In the next step, the vertices are traversed in
the specified (random) order, and the edges incident to the corresponding vertices
are colored, i.e., covered (lines 14–17). The conditional if statement (line 18) checks
whether a solution has already been found for this arrangement of vertices. This
solution must be better than the last best found. The value of the last best solution
(i.e., the minimum number of vertices needed to cover the edges of the graph under
the previous order) is stored in the MinCoverVertexCount variable. If the condition
check on line 19 is true, then the current permutation of the vertices is stored in the
best_permutation array, and the MinCoverVertexCount variable stores the value of
the CoverVertexCount variable. After Count orders of vertices have been generated,
the sequence of vertices where the best solution is found is transferred to the permu-
tation array. The last best permutation is still stored in the best_permutation array, so
its contents are transferred to the permutation array (lines 25–26). The graph is then
redrawn and the values of the parameters are visualized (lines 27–303).

https://online-journals.org/index.php/i-jep

 10 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

The implementation of the third algorithm (SRT) for finding a vertex cover of a
graph is presented in Figure 4. This algorithm is also heuristic and approximate.

01 void SRTStart() {
02 │ permutation.set_length(0); permutation.set_length(g.v + 1);
03 │ for (int i = 0; i <= g.v; i++) { permutation[i] = 0; }
04 │ LoadTemporaryGraph();
05 │ tS = GetTickCount(); int vindex = 1;
06 │ while (tg.e > 0) {
07 │ │ int max_tvindex = GetTemporaryVertexIndexWithMaxDegree();
08 │ │ permutation[vindex] = tv[max_tvindex].c;
09 │ │ DeleteTemporaryVertex(max_tvindex); vindex ++; }
10 │ for (int i = 1; i <= g.v; i++) {
11 │ │ if (permutation[i] == 0) { break; }
12 │ │ int v_id = permutation[i];
13 │ │ v[v_id].c = clLime; CoverVertexCount ++;
14 │ │ for (int j = 1; j <= e.High; j++) {
15 │ │ │ if ((e[j].v1 == v_id) || (e[j].v2 == v_id)) {
16 │ │ │ │ if(e[j].c != clBlue) {
17 │ │ │ │ │ e[j].c = clBlue; CoverEdgeCount ++; } } } }
18 │ tE = GetTickCount();
19 │ DrawGraph();
20 │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
21 │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
22 │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
23 }

Fig. 4. The code of the SRT algorithm based on ordering the vertices according to their degree

When executing the SRT algorithm, the graph is first copied into a temporary
graph using the LoadTemporaryGraph function (line 4). A timestamp is then stored
against which the execution time of the algorithm will be calculated. The method
for calculating the execution time of the algorithm is the same as for the other two
algorithms. Through the loop that is initialized on line 6, the execution of the first
step of the algorithm begins, where the index of the vertex with the greatest degree
is found. The index of this vertex is then stored in the dynamic array permutation
(line 8). In the next step, all edges that are incident to the current vertex are removed
(line 9), then the number of vertices forming the current vertex cover is increased
by one. This cover may still be partial. This process is repeated until the condition of
the while loop is true. When all the edges of the graph are covered, i.e., the condition
of the while loop assumes a value of false, the execution of the loop is terminated
and the execution of the for loop initialized on line 10 (through line 17) is started.
Through this loop, all the vertices are traversed and only those of them that are
stored in the dynamic permutation array are colored, since they are part of the ver-
tex cover. The edges incident to these vertices are also colored. The graph is then
redrawn to visualize the result.

4	 EXPERIMENTAL	RESULTS

For this study, an interactive application (named VertexCoverFinder) was devel-
oped to visualize the performance of the algorithms and conduct the experiments as
well as to display the results as shown in Figure 5.

https://online-journals.org/index.php/i-jep

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 11

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

Fig. 5. A working session with the VertexCoverFinder applicaton

The VertexCoverFinder application offers a rich set of possibilities that the user
can use in the work process. This application provides the ability to interactively cre-
ate and edit graph structures. In addition, it allows running the three algorithms for
finding the minimum vertex cover in a graph, which were presented in the previous
section. The application also provides the ability to save in an external file the graphs
created. The saved graphs can later be loaded from the external file and edited into
the designer. The activity diagram of the application is shown in Figure 6.

Fig. 6. Activity diagram for the VertexCoverFinder application

https://online-journals.org/index.php/i-jep

 12 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

The aim of the experiment, using an application developed to check graphs for
the number of vertices (and, respectively, edges), was to identify the exact algorithm
(based on the backtracking method) that can be used to find an optimal solution
(i.e., to find the minimum number of vertices which are incident to all edges of the
graph). It was necessary to analyze the execution times of the algorithms and the
quality of the generated solutions. For this purpose, it was necessary to make a com-
parative analysis between the algorithms. The comparison between the algorithms
was performed with the same input data.

The VertexCoverFinder application was run on a standard computer configura-
tion with Windows 10 Home 64-bit operating system and the following hardware
configuration: CPU: Intel(R) Core(TM) i7-7700MQ CPU @ 2.80GHz 2.81GHz; RAM
memory: 16.00 GB. The experiment results may be stored in a database and accessed
by a web service, as presented in [50] and [51].

For the purposes of the experiments, 18 graphs were created and stored using
the CoverVertexFinder application. Table 1 presents summary data for the graphs.
In addition, Table 1 also shows the results of the exact algorithm (BRT). The data pre-
sented are for the minimum number of vertices that need to be selected (colored) to
“cover” all the edges in the graph. Also, the time is shown (in two different formats)
to execute the algorithm for each of the analyzed graphs.

Table 1. Summary results after running the exact algorithm

Graph (G) |V| |E| |V×E| VC Time (ms) Time (h, min, s)

G_15_24 15 24 360 9 156 < 1 s

G_16_30 16 30 480 10 422 < 1 s

G_17_35 17 35 595 11 1,062 1 s

G_18_39 18 39 702 12 3,109 3 s

G_19_45 19 45 855 13 6,171 6 s

G_20_49 20 49 980 13 13,140 13 s

G_21_53 21 53 1,113 14 30,859 31 s

G_22_57 22 57 1,254 15 69,843 1 min, 10 s

G_23_65 23 65 1,495 16 173,250 2 min, 53 s

G_24_73 24 73 1,752 17 484,734 8 min, 6 s

G_25_83 25 83 2,075 18 1,135,625 18 min, 54 s

G_26_95 26 95 2,470 19 3,954,000 1 h, 6 min

G_27_103 27 103 2,781 20 5,987,609 1 h, 40 min

G_28_114 28 114 3,192 21 14,234,515 3 h, 57 min

G_29_120 29 120 3,480 22 41,219,172 11 h, 27 min

G_30_133 30 133 3,990 23 95,067,359 26 h, 14 min

G_31_144 31 144 4,464 24 212,546,766 59 h, 2 min

G_32_157 32 157 5,024 25 480,086,110 133 h, 21 min

In Table 1, the columns |V| and |E| contain the number of vertices and edges in
each graph. The “VC” column contains the number of vertices that form the vertex
cover for each of the analyzed graphs.

https://online-journals.org/index.php/i-jep

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 13

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

The purpose of this experiment was to experimentally determine how increasing
the size of the input data (i.e., the number of vertices and edges in the corresponding
graph) affects the execution time of the exact algorithm.

Figure 6 shows the influence of increasing the number of vertices (and,
respectively, edges) in the graph (x-axis) on the execution time of the exact algorithm
(y-axis – in hours).

25, 1 26, 4 27, 6 28, 14

29, 41

30, 95

31, 213

32, 480

0

100

200

300

400

500

15

Number of vertices

Ti
m

e
(m

s ×
 1

06)

17 19 21 23 25 27 29 31 33

Fig. 7. Effect of increasing the number of vertices in the graph on the execution time of the exact algorithm

Table 1 and Figure 7 show that for a graph with 32 vertices and 157 edges,
the execution time of the exact algorithm was unacceptably long (480,086,110
milliseconds, or 133 hours and 21 minutes, respectively). If a conditional bound on
the acceptable execution time of the exact algorithm is set, for example 10 minutes,
then the results show that for graphs with more than 24 vertices, the exact algorithm
will run for an unacceptably long time. Figure 7 also shows that with a linear increase
in the number of vertices in the graph (and edges, respectively), the execution time
of the exact algorithm increases exponentially.

Table 2 shows the summary results after running the three algorithms for the 8
graphs with the most vertices and edges, respectively from G_25_83 to G_32_157.

Table 2. Summary results after running the three algorithms (BTR, SRT and RND)

Graph
BTR SRT RND

VC Time (ms) VC Time VC Time (ms)

G_25_83 18 1,135,625 19 < 0.01 s 19 42

G_26_95 19 3,954,000 20 < 0.01 s 20 47

G_27_103 20 5,987,609 21 < 0.01 s 22 56

G_28_114 21 14,234,515 22 < 0.01 s 23 62

G_29_120 22 41,219,172 23 < 0.01 s 23 78

G_30_133 23 95,067,359 24 < 0.01 s 26 94

G_31_144 24 212,546,766 25 < 0.01 s 25 103

G_32_157 25 480,086,110 26 < 0.01 s 27 116

The results obtained for the eight graphs with the most vertices and edges were
compared, both in terms of the number of vertices forming a vertex cover (the VC

https://online-journals.org/index.php/i-jep

 14 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

columns in Table 2) and also in terms of the execution time of the algorithms (the
Time columns in Table 2).

Figure 7 shows a comparison between the values generated for the number of
vertices forming a vertex cover (for the analyzed graphs) by the three algorithms.

16

18

20

22

24

26

G_25_83 G_26_95 G_27_103 G_28_114 G_29_120 G_30_133 G_31_144 G_32_157

Nu
m

be
r o

f v
er

tic
es

BTR SRT RND

Fig. 8. Comparison between the solution values generated by the three
algorithms (for graphs G_25_83–G_32_157)

Table 2 and Figure 8 show that for the largest graphs, respectively
G_25_83–G_32_157, none of the two heuristic algorithms (STR and RND) found
the optimal solutions. We will note that the optimal solutions for these graphs are
known (generated by the exact algorithm – BRT) and are presented in Table 1. Upon
a more detailed analysis of the data in Table 2, it can be noticed that the SRT algo-
rithm generated solutions that are very close to optimal (the difference is exactly one
vertex). Unlike the SRT algorithm, in half of the cases the RND algorithm generated
worse solutions than the SRT algorithm. However, compared to the exact algorithm
(respectively, compared to the optimal solutions), the RND algorithm generated sig-
nificantly worse ones, with differences ranging between 1 and 3 vertices (relative to
the optimal). Figure 9 shows a comparison between the results of the approximate
algorithms.

16

18

20

22

24

26

G_25_83 G_26_95 G_27_103 G_28_114 G_29_120 G_30_133 G_31_144 G_32_157

Nu
m

be
r o

f v
er

tic
es

SRT RND

Fig. 9. Comparison between the solution values generated by the two approximate
algorithms (for graphs G_25_83–G_32_157)

Figure 10 shows how increasing the number of vertices and edges in the graph
affects the execution time of the RND algorithm.

https://online-journals.org/index.php/i-jep

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 15

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

Nu
m

be
r o

f v
er

tic
es

Ex
ec

ut
io

n
tim

e
(m

s)

0

1,000

2,000

3,000

4,000

5,000

6,000

0

20

40

60

80

100

120

G_25_83 G_26_95 G_27_103 G_28_114 G_29_120 G_30_133 G_31_144 G_32_157

|V×E| RND

Fig. 10. Influence of the number of vertices and edges in the graph on the execution time
of the algorithm with randomly generated vertex orders – RND

Table 2 and Figure 10 show that as the number of vertices in the graph increases
linearly, the execution time of the RND heuristic algorithm also increases linearly.
Since the analyzed graphs are a small number of vertices and edges, this time is
short (values on the order of milliseconds). Unlike the RND algorithm, the SRT algo-
rithm runs significantly faster. The execution time of the SRT algorithm is negligible.

5	 SUMMARY	AND	CONCLUSIONS

In this paper, an analysis of three algorithms for the graph vertex cover problem
was discussed. Some methods for solving this problem were analyzed. In addition,
different studies of the problem and some approaches to its solution were discussed.
An exact algorithm (based on the backtracking approach) was presented. Calculating
the average time for execution of this algorithm was consistent with the multitask-
ing way of work of the operating system. For this purpose, 4 different starts of the
algorithm were made, and then the average time of all of them was calculated. The
exact algorithm found the optimal solutions for all analyzed graphs. Besides this
algorithm, two other heuristic algorithms for solving the problem were discussed
as well. For this study, an interactive application was developed to visualize the per-
formance of the algorithms and display their results. The results show that for small
graphs with not more than 25 vertices, the exact algorithm can be used to solve
optimally the graph vertex cover problem. For the largest graphs, neither of the two
heuristic algorithms found the optimal solutions, but these algorithms generated
solutions that are very close to optimal ones. In summary, when the size of the graph
(the number of the vertices) increases linearly, the execution time of the exact algo-
rithm increases exponentially, but the execution time of the heuristic algorithms
increases only linearly.

The obtained experimental results show that in all considered cases, the SRT
algorithm generated solutions that differ from the optimal ones by only one vertex.
These values show that this algorithm keeps a relatively good (constant) approxima-
tion of the obtained results (compared to the optimal ones). Moreover, the execution
time of this algorithm is very short (for all analyzed graphs on the order of less
than 100 ms).

The interactive GraphVertexFinder application enables the creation and edit-
ing of various graph structures in a convenient and easy way. The possibility of
step-by-step implementation of the algorithms integrated in the application, as well

https://online-journals.org/index.php/i-jep

 16 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

as the option of analyzing the results obtained from them, makes possible easier
teaching by teachers, as well as easier studying by students, of the educational mate-
rial related to topics in the field of graph algorithms. The study can be extended by
implementing and integrating additional graph vertex cover algorithms.

6	 REFERENCES

 [1] Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V. (2007). NP-hard graph problems and
boundary classes of graphs. Theoretical Computer Science, 389(1–2): 219–236. https://
doi.org/10.1016/j.tcs.2007.09.013

 [2] Kralev, V., Kraleva, R. (2020). Methods for software visualization of large graph data
structures. International Journal on Advanced Science, Engineering and Information
Technology, 10(1): 1–8. https://doi.org/10.18517/ijaseit.10.1.10739

 [3] Sabeen, S., Arunadevi, R., Kanisha, B., Kesavan, R. (2019). Mining of sequential patterns
using directed graphs. International Journal of Innovative Technology and Exploring
Engineering, 8(11): 4002–4007. https://doi.org/10.35940/ijitee.K2242.0981119

 [4] Chen, J. (2010). An UpDown directed acyclic graph approach for sequential pattern min-
ing. IEEE Transactions on Knowledge and Data Engineering, 22(7): 913–928. https://doi.
org/10.1109/TKDE.2009.135

 [5] Kurapov, S.V., Davidovsky, M.V., Tolok, A.V. (2018). A modified algorithm for planarity test-
ing and constructing the topological drawing of a graph. The thread method. Scientific
Visualization, 10(4): 53–74. https://doi.org/10.26583/sv.10.4.05

 [6] Xu, J., Qiang, X., Zhang, K., Zhang, C., Yang, J. (2018). A DNA computing model for the
graph vertex coloring problem based on a probe graph. Engineering, 4(1): 61–77.
https://doi.org/10.1016/j.eng.2018.02.011

 [7] Tognon, C.H., Kharabsheh, R.A. (2022). Some properties of the formal local cohomology
module and application in the theory of graphs. Applied Mathematics and Information
Sciences, 16(1): 45–49. https://doi.org/10.18576/amis/160105

 [8] Sarkar, D., Konwar, P., De, A., Goswami, S. (2020). A graph theory application for fast
and efficient search of optimal radialized distribution network topology. Journal of
King Saud University – Engineering Sciences, 32(4): 255–264. https://doi.org/10.1016/
j.jksues.2019.02.003

 [9] Wong, E.Y.C., Tai, A.H., So, S. (2020). Container drayage modelling with graph theory-
based road connectivity assessment for sustainable freight transportation in new
development area. Computers and Industrial Engineering, 149, 106810. https://doi.
org/10.1016/j.cie.2020.106810

 [10] Li, S., Xu, J., Cele, S. (2019). Application of graph theory in transportation linkage in logis-
tics management and its computer aided model design. Journal of Intelligent and Fuzzy
Systems, 37(3): 3319–3326. https://doi.org/10.3233/JIFS-179134

 [11] Balaji, S., Obaidat, M.S., Suthir, S., Rajesh, M., Suresh, K.C. (2021). Selection of intermedi-
ate routes for secure data communication systems using graph theory application and
grey wolf optimization algorithm in MANETs. IET Networks, 10(5): 246–252.

 [12] Alam, T., Qamar, S., Dixit, A., Benaida, M. (2021). Genetic algorithm: Reviews, implemen-
tations and applications. International Journal of Engineering Pedagogy, 10(6): 57–77.
https://doi.org/10.3991/ijep.v10i6.14567

 [13] Devi, R.K., Murugaboopathi, G. (2019). An efficient clustering and load balancing of dis-
tributed cloud data centers using graph theory. International Journal of Communication
Systems, 32(5), e3896. https://doi.org/10.1002/dac.3896

https://online-journals.org/index.php/i-jep
https://doi.org/10.1016/j.tcs.2007.09.013
https://doi.org/10.1016/j.tcs.2007.09.013
https://doi.org/10.18517/ijaseit.10.1.10739
https://doi.org/10.35940/ijitee.K2242.0981119
https://doi.org/10.1109/TKDE.2009.135
https://doi.org/10.1109/TKDE.2009.135
https://doi.org/10.26583/sv.10.4.05
https://doi.org/10.1016/j.eng.2018.02.011
https://doi.org/10.18576/amis/160105
https://doi.org/10.1016/j.jksues.2019.02.003
https://doi.org/10.1016/j.jksues.2019.02.003
https://doi.org/10.1016/j.cie.2020.106810
https://doi.org/10.1016/j.cie.2020.106810
https://doi.org/10.3233/JIFS-179134
https://doi.org/10.3991/ijep.v10i6.14567
https://doi.org/10.1002/dac.3896

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 17

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

 [14] Yue, H., Lin, H., Jin, Y., Zhang, H., Cai, K. (2022). Opening knowledge graph model building
of artificial intelligence curriculum. International Journal of Emerging Technologies in
Learning, 17(14): 64–77. https://doi.org/10.3991/ijet.v17i14.32613

 [15] Wu, Z., Jia, F. (2022). Construction and application of a major-specific knowledge graph
based on big data in education. International Journal of Emerging Technologies in
Learning, 17(7): 64–79. https://doi.org/10.3991/ijet.v17i07.30405

 [16] Huang, Y., Zhu, J. (2021). A personalized English learning material recommendation
system based on knowledge graph. International Journal of Emerging Technologies in
Learning, 16(11): 160–173. https://doi.org/10.3991/ijet.v16i11.23317

 [17] Capuano, N., Caballé, S., Miguel, J. (2016). Improving peer grading reliability with graph
mining techniques. International Journal of Emerging Technologies in Learning, 11(7):
24–33. https://doi.org/10.3991/ijet.v11i07.5878

 [18] De Figueiredo, C.M.H. (2012). The P versus NP-complete dichotomy of some challenging
problems in graph theory. Discrete Applied Mathematics, 160(18): 2681–2693. https://
doi.org/10.1016/j.dam.2010.12.014

 [19] Guturu, P., Dantu, R. (2008). An impatient evolutionary algorithm with probabilistic tabu
search for unified solution of some NP-hard problems in graph and set theory via clique
finding. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(3):
645–666. https://doi.org/10.1109/TSMCB.2008.915645

 [20] Komusiewicz, C., Nichterlein, A., Niedermeier, R., Picker, M. (2019). Exact algorithms for
finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments.
European Journal of Operational Research, 275(3): 846–864. https://doi.org/10.1016/
j.ejor.2018.12.006

 [21] Gao, Z., Chen, D., Wu, H.-C. (2020). Graph coloring inspired approximate algorithm for
wireless energy redistribution in WSNs. IEEE Transactions on Green Communications
and Networking, 4(1): 124–138. https://doi.org/10.1109/TGCN.2019.2947172

 [22] Kralev, V., Kraleva, R., Ankov, V., Chakalov, D. (2022). An analysis between exact and
approximate algorithms for the k-center problem in graphs. International Journal of
Electrical and Computer Engineering, 12(2): 2058–2065. https://doi.org/10.11591/ijece.
v12i2.pp2058-2065

 [23] Wan, X., Wang, H., Li, J. (2019). LKAQ: Large-scale knowledge graph approximate query
algorithm. Information Sciences, 505: 306–324. https://doi.org/10.1016/j.ins.2019.07.087

 [24] Karp, R.M. (2010). Reducibility among combinatorial problems. 50 Years of Integer
Programming 1958–2008: From the Early Years to the State-of-the-Art, 219–241. https://
doi.org/10.1007/978-3-540-68279-0_8

 [25] Debnath, L. (2010). A brief historical introduction to Euler’s formula for polyhedra,
topology, graph theory and networks. International Journal of Mathematical Education
in Science and Technology, 41(6): 769–785. https://doi.org/10.1080/00207391003675166

 [26] Chartrand, G., Eroh, L., Schultz, M., Zhang, P. (2001). An introduction to analytic graph
theory. Utilitas Mathematica, 59: 31–55.

 [27] Pemmaraju, S., Skiena, S. (2003). Minimum Vertex Cover. In Computational Discrete
Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge
University Press, 317. https://doi.org/10.1017/CBO9781139164849

 [28] Fernau, H., Niedermeier, R. (2001). An Efficient Exact Algorithm for Constraint
Bipartite Vertex Cover. Journal of Algorithms, 38(2): 374–410. https://doi.org/10.1006/
jagm.2000.1141

 [29] Fujito, T., Doi, T. (2004). A 2-approximation NC algorithm for connected vertex cover
and tree cover. Information Processing Letters, 90(2): 59–63. https://doi.org/10.1016/
j.ipl.2004.01.011

https://online-journals.org/index.php/i-jep
https://doi.org/10.3991/ijet.v17i14.32613
https://doi.org/10.3991/ijet.v17i07.30405
https://doi.org/10.3991/ijet.v16i11.23317
https://doi.org/10.3991/ijet.v11i07.5878
https://doi.org/10.1016/j.dam.2010.12.014
https://doi.org/10.1016/j.dam.2010.12.014
https://doi.org/10.1109/TSMCB.2008.915645
https://doi.org/10.1016/j.ejor.2018.12.006
https://doi.org/10.1016/j.ejor.2018.12.006
https://doi.org/10.1109/TGCN.2019.2947172
https://doi.org/10.11591/ijece.v12i2.pp2058-2065
https://doi.org/10.11591/ijece.v12i2.pp2058-2065
https://doi.org/10.1016/j.ins.2019.07.087
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1080/00207391003675166
https://doi.org/10.1017/CBO9781139164849
https://doi.org/10.1006/jagm.2000.1141
https://doi.org/10.1006/jagm.2000.1141
https://doi.org/10.1016/j.ipl.2004.01.011
https://doi.org/10.1016/j.ipl.2004.01.011

 18 International Journal of Engineering Pedagogy (iJEP) iJEP | Vol. 13 No. 1 (2023)

Kralev et al.

 [30] Astrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J. (2009). A local
2-approximation algorithm for the vertex cover problem. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5805 LNCS, 191–205. https://doi.org/10.1007/978-3-642-04355-0_21

 [31] Karakostas, G. (2009). A better approximation ratio for the vertex cover problem. ACM
Transactions on Algorithms, 5(4), 41: 1–8. https://doi.org/10.1145/1597036.1597045

 [32] Sun, C., Qiu, H., Sun, W., Chen, Q., Su, L., Wang, X., Zhou, Q. (2022). Better approximation
for distributed weighted vertex cover via game-theoretic learning. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 52(8): 5308–5319. https://doi.org/10.1109/
TSMC.2021.3121695

 [33] Razgon, I. (2009). Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. Journal of Discrete Algorithms, 7(2):
191–212. https://doi.org/10.1016/j.jda.2008.09.004

 [34] Pullan, W. (2009). Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers. Discrete Optimization, 6(2): 214–219. https://doi.org/10.1016/j.
disopt.2008.12.001

 [35] Klobučar, A., Manger, R. (2020). Independent sets and vertex covers considered within
the context of robust optimization. Mathematical Communications, 25(1): 67–86.

 [36] Casel, K., Fernau, H., Ghadikoalei, M.K., Monnot, J., Sikora, F. (2019). Extension of vertex
cover and independent set in some classes of graphs. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11485 LNCS, 124–136. https://doi.org/10.1007/978-3-030-17402-6_11

 [37] Bourgeois, N., Escoffier, B., Paschos, V.T. (2011). Approximation of max independent set,
min vertex cover and related problems by moderately exponential algorithms. Discrete
Applied Mathematics, 159(17): 1954–1970. https://doi.org/10.1016/j.dam.2011.07.009

 [38] Hossain, A., Lopez, E., Halper, S.M., Cetnar, D.P., Reis, A.C., Strickland, D., Klavins, E.,
Salis, H.M. (2020). Automated design of thousands of nonrepetitive parts for engineering
stable genetic systems. Nature Biotechnology, 38(12): 1466–1475. https://doi.org/10.1038/
s41587-020-0584-2

 [39] Zhang, W., Tu, J., Wu, L. (2019). A multi-start iterated greedy algorithm for the minimum
weight vertex cover P3 problem. Applied Mathematics and Computation, 349: 359–366.
https://doi.org/10.1016/j.amc.2018.12.067

 [40] Bouamama, S., Blum, C., Boukerram, A. (2012). A population-based iterated greedy algo-
rithm for the minimum weight vertex cover problem. Applied Soft Computing Journal,
12(6): 1632–1639. https://doi.org/10.1016/j.asoc.2012.02.013

 [41] Wang, Y., Lü, Z., Punnen, A.P. (2021). A fast and robust heuristic algorithm for the mini-
mum weight vertex cover problem. IEEE Access, 9: 31932–31945. https://doi.org/10.1109/
ACCESS.2021.3051741

 [42] Zhang, Y., Wu, J., Zhang, L., Zhao, P., Zhou, J., Yin, M. (2018). An efficient heuristic algorithm
for solving connected vertex cover problem. Mathematical Problems in Engineering,
2018, 3935804. https://doi.org/10.1155/2018/3935804

 [43] Wang, L., Hu, S., Li, M., Zhou, J. (2019). An exact algorithm for minimum vertex cover
problem. Mathematics, 7(7): 603. https://doi.org/10.3390/math7070603

 [44] Xiao, M., Kou, S. (2017). Exact algorithms for the maximum dissociation set and mini-
mum 3-path vertex cover problems. Theoretical Computer Science, 657: 86–97. https://
doi.org/10.1016/j.tcs.2016.04.043

 [45] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001). Introduction to Algorithms.
The MIT Press. ISBN: 0262032937

 [46] Khot, S., Regev, O. (2008). Vertex cover might be hard to approximate to within 2 – ε.
Journal of Computer and System Sciences, 74(3): 335–349. https://doi.org/10.1016/
j.jcss.2007.06.019

https://online-journals.org/index.php/i-jep
https://doi.org/10.1007/978-3-642-04355-0_21
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1109/TSMC.2021.3121695
https://doi.org/10.1109/TSMC.2021.3121695
https://doi.org/10.1016/j.jda.2008.09.004
https://doi.org/10.1016/j.disopt.2008.12.001
https://doi.org/10.1016/j.disopt.2008.12.001
https://doi.org/10.1007/978-3-030-17402-6_11
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1038/s41587-020-0584-2
https://doi.org/10.1038/s41587-020-0584-2
https://doi.org/10.1016/j.amc.2018.12.067
https://doi.org/10.1016/j.asoc.2012.02.013
https://doi.org/10.1109/ACCESS.2021.3051741
https://doi.org/10.1109/ACCESS.2021.3051741
https://doi.org/10.1155/2018/3935804
https://doi.org/10.3390/math7070603
https://doi.org/10.1016/j.tcs.2016.04.043
https://doi.org/10.1016/j.tcs.2016.04.043
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1016/j.jcss.2007.06.019

iJEP | Vol. 13 No. 1 (2023) International Journal of Engineering Pedagogy (iJEP) 19

An Interactive Application for Learning and Analyzing Different Graph Vertex Cover Algorithms

 [47] Alenezi, M., Akour, M. (2022). Methodical software testing course in higher education.
International Journal of Engineering Pedagogy, 12(1): 51–62. https://doi.org/10.3991/ijep.
v12i1.26111

 [48] Karnalim, O., Kurniawati, G., Sujadi, S.F., Nathasya, R.A. (2020). Comparing the impact
of programming assessment type: In-class vs take-home. International Journal of
Engineering Pedagogy, 10(4): 125–132. https://doi.org/10.3991/ijep.v10i4.13509

 [49] Atoum, I. (2019). A spiral software engineering model to inspire innovation and
creativity of university students. International Journal of Engineering Pedagogy, 9(5):
7–23. https://doi.org/10.3991/ijep.v9i5.10993

 [50] Kralev, V., Kraleva, R., Sinyagina, N., Koprinkova-Hristova, P., Bocheva, N. (2018).
An analysis of a web service based approach for experimental data sharing. International
Journal of Online Engineering, 14(9): 19–34. https://doi.org/10.3991/ijoe.v14i09.8740

 [51] Halim, M., Adadi, N., Berrada, M., Tahiri, A., Chenouni, D. (2022). Proposition of web
services discovery and composition approach: Application in E-learning platform.
International Journal of Emerging Technology and Advanced Engineering, 12(9): 49–62.
https://doi.org/10.46338/ijetae0922_06

7	 AUTHORS

Velin Kralev is Associate Professor of Computer Science at the South-West
University, Blagoevgrad, Bulgaria. He defended his Ph.D. thesis in 2010. His research
interests include optimization problems of the graph theory and component-
oriented software engineering.

Radoslava Kraleva is Associate Professor of Computer Science at the South-
West University, Blagoevgrad, Bulgaria. She defended her Ph.D. thesis in 2014.
Her research interests include speech recognition, mobile app development, and
computer graphic. She is a reviewer of International Journal on Advanced Science,
Engineering and Information Technology (e-mail: rady_kraleva@swu.bg).

Viktor Ankov received his M.Sc. degree in Computer Science from the South-West
University, Blagoevgrad, Bulgaria in 2021. He is a Ph.D. student of Computer Science
at the South-West University, Bulgaria.

https://online-journals.org/index.php/i-jep
https://doi.org/10.3991/ijep.v12i1.26111
https://doi.org/10.3991/ijep.v12i1.26111
https://doi.org/10.3991/ijep.v10i4.13509
https://doi.org/10.3991/ijep.v9i5.10993
https://doi.org/10.3991/ijoe.v14i09.8740
https://doi.org/10.46338/ijetae0922_06
mailto:rady_kraleva@swu.bg

