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PAPER

An Interactive Application for Learning and Analyzing 
Different Graph Vertex Cover Algorithms

ABSTRACT
This paper deals with an analysis of three algorithms for the graph vertex cover problem. 
Certain methods for solving this problem are analyzed. In addition, different studies on the 
problem and some approaches to its solution are discussed as well. An exact algorithm (based 
on the backtracking approach) is presented. Calculating the average time for execution of this 
algorithm is consistent with the multitasking way of work of the operating system. For this 
purpose, four different starts of the algorithm are made and then the average time of all of 
them is calculated. The exact algorithm found the optimal solutions for all analyzed graphs. 
Besides this algorithm, two other heuristic algorithms for solving the problem are discussed. 
For this study, an interactive application is developed to visualize the performance of the 
three algorithms and display the obtained results. The results show that for small graphs 
with no more than 25 vertices, the exact algorithm can be used to solve optimally the graph 
vertex cover problem. For the largest graphs, none of the two heuristic algorithms found the 
optimal solutions, but these algorithms generated solutions that are very close to the opti-
mal ones. In summary, when the size of the graph increases linearly, the execution time of 
the heuristic algorithms increases linearly, while the execution time of the exact algorithm 
increases exponentially.
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graph theory, vertex cover problem, heuristic algorithms

1	 INTRODUCTION

Graph theory is an important part of discrete mathematics [1]. This theory has 
developed significantly over the past several decades [2]. Graphs are non-linear 
data structures used in discrete mathematics and computer science. These are 
abstract structures that provide opportunities to visually and very effectively for-
malize and solve sufficiently complex applied problems. Different types of prob-
lems from different fields of practice can be formulated and modeled by graphs 
so that they can be solved by appropriate algorithms. This presupposes finding  
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precise structural and numerical characteristics of real objects that are represented 
by graph structures [3–8].

Many transportation problems, site allocation problems, optimal route selection 
problems or service center placement problems, and problems related to creating 
optimal schedules and timetables are also described by graphs and solved by the 
corresponding algorithms [9–13]. Graphs are also used for modeling in the field of 
learning [14–16] and assessment [17]. In this way, various physical, chemical, eco-
nomic and managerial systems and processes can be successfully represented and 
studied with graphs. Solving these problems without a computer and appropriate 
software is impossible except in trivial cases where the size of the input data is very 
small. But even with the use of a computer and appropriate software, solving some 
problems accurately in an acceptable amount of time could also be impossible. 
These include all problems from the complexity classes NP-complete and NP-hard, 
for which no solution that has a complexity other than exponential, for example 
polynomial, has been found yet [18, 19].

Some of these problems are linear, i.e., both the objective function and each of 
the constraints are linear, meaning they are solvable through polynomial algorithms 
[20].  However, real problems have a large input size, so it is necessary to search for 
efficient algorithms that generate approximate solutions [21, 22]. Graph theory pro-
vides good opportunities in this direction [23].

Therefore, in the study of graph theory, it is of particular importance to develop 
and use interactive applications (software products) for working with graphs and 
for analyzing algorithms in graphs. These applications can visualize the modeled 
problems and also test the corresponding algorithms related to these problems.  
In addition, the obtained results can be analyzed through graphical representation. 
The subject of the present research is the development of an application for working 
with graphs and implementing different algorithms for graph vertex covering.

2	 LITERATURE	REVIEW

In the field of graph theory, a vertex cover of a graph is a set of vertices such that 
every edge of the given graph is incident to at least one of the vertices of this set. The 
problem of finding a minimum vertex cover of a graph is an optimization problem 
that falls into the category of classical NP-complete problems [24].

Each graph can be described by two sets – V and E. The set V contains the nodes 
(vertices) of the graph and the set E contains its edges. The set of edges contains 
elements that connect exactly certain pairs of vertices. The sets V and E are finite. 
The vertices of each edge can be represented as an ordered or an unordered pair. 
If the vertices of each edge are an ordered pair, then the graph is called directed. 
Otherwise, the graph is called undirected. If a numerical value is assigned to each 
edge, then the graph is called weighted [25, 26]. Once these notations have been 
introduced, the graph vertex cover problem can also be defined.

A vertex cover VC of an undirected graph G = (V, E) is a subset of the vertices 
V such that at least one of the two vertices of any edge (v1, v2) ∈ E of the graph G 
belongs to the set VC. In other words, either v1 ∈ VC, or v2 ∈ VC, or both v1 and 
v2 ∈ VC. Then a vertex cover of a graph can also be defined as a set of vertices VC 
such that each edge of the graph has at least one of its two vertices (or both of its 
vertices) as an element belonging to the set VC (of both vertices, incident to this 
edge). Such a set of vertices is said to “cover” all the edges of the graph. A minimum 
vertex cover is one that has the smallest possible power. In other words, a vertex 
cover is a minimum vertex cover if it contains the smallest possible number of 
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vertices such that all edges in the graph are incident to at least one of the vertices 
in that set [27]. Since the problem of finding a minimal vertex cover in a graph is 
an NP-complete problem, this means that no efficient (polynomial) algorithm is yet 
known to solve this problem exactly.

For some special types of graphs, for example, tree graphs, there is a polynomial 
algorithm that finds a minimum vertex cover in polynomial time. This algorithm 
searches for a vertex in the graph that is of type leaf, then adds its parent to the 
current vertex cover (i.e., the cover that has been built so far), then deletes the found 
leaf, the parent, and all associated edges. The algorithm continues according to the 
same scheme until the vertices in the graph are exhausted [28].

A vertex cover in a graph can be generated such that it has an approximation 
factor no worse than twice the optimal one. This can easily be done by repeatedly 
selecting an edge from the graph that has not been used yet, then adding the two 
incident vertices with that edge to the currently constructed vertex cover, then 
removing them from the graph [29]. Whenever the two vertices incident to the 
selected edge are removed from the graph, all incidents with those edge vertices 
are also removed. The set containing the vertices selected in the described man-
ner is actually a vertex cover of the given graph. Also, if the edge e = {v1, v2} ∈ E, 
then every cover of the graph will contain either a vertex v1 or a vertex v2 or both  
vertices; otherwise, the edge connecting vertices v1 and v2 will not be covered. 
Thus, the optimal cover contains at least one of the two vertices of any edge, i.e., 
any one covering set of a given graph will be at most twice as large (in power) as 
the optimal covering set for that graph [30]. There are also algorithmic techniques 
where the coefficient of approximation to the optimal solution is smaller [31, 32].

One more feature of the problem of finding a minimum vertex cover is important 
to mention: finding a vertex cover of minimum size is actually equivalent to find-
ing the maximum set of independent vertices (in the same graph). This problem is 
known as Maximum-Size Independent Set [33–37].

The problem of finding a minimal vertex cover is used to model many real and 
theoretical problems. For example, in a commercial establishment, it is necessary to 
install as few video surveillance cameras as possible. The corridors in the site are 
a closed circuit, i.e., it is necessary to “cover” all corridors (edges) that connect all 
rooms (vertices). This problem can easily be modeled as a minimum vertex cover 
problem. The ability to use the minimum vertex cover problem to model different 
processes and activities makes this problem widely applicable in other areas as well. 
Another application of this approach is in modeling some processes in the field of 
biology [38].

Since finding a minimum vertex cover is an NP-complete problem, in addition to 
one exact algorithm, two heuristic algorithms will be presented to solve it. The idea 
behind a heuristic algorithm is that it targets one of all subcases of the problem and 
solves only it. The selection of this subcase is based on a local optimality criterion 
(such as the number of edges incident to a given vertex). In this way, the heuristic 
algorithm is always directed to the best choice, but at a local level. However, this 
choice may prove inappropriate at the global level [39–42]. Heuristic algorithms 
are not difficult to create, respectively, and their implementation is not complicated. 
A major drawback of these algorithms is that the solutions they generate are not 
always optimal. However, this does not reduce their usefulness, since these algo-
rithms quickly find a solution to the problem which can be optimal or close to it. 
For many practical problems, it is impossible to examine all possible cases when 
searching for a solution. In this case, quickly finding an approximate solution (close 
to the optimal one) can be much more useful, instead of the long search for the real 
optimal solution [43, 44].
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In this paper, three algorithms for the graph vertex cover problem will be 
presented – one exact and two heuristic. The exact algorithm uses a backtracking 
approach and finds the exact solutions for all graphs [22, 43]. The other two algo-
rithms are heuristic (approximate) and therefore are characterized by the fact that 
it is not always possible to find the optimal (exact) solution. It is also characteristic of 
these algorithms that if they do not find the optimal solution, the solution found will 
be close to the optimal one [45, 46].

3	 IMPLEMENTATION	OF	THE	ALGORITHMS

As discussed in the previous section, three algorithms will be implemented to 
find a minimum vertex cover in a graph. The main idea is to implement the algo-
rithms in such a way that they can be easily integrated into an application that uses 
them. If the implementation of the algorithms and the presentation of their results 
is implemented in an interactive way, the students will be able to visually see the 
step-by-step execution of the algorithms and analyze their results [47–49]. When the 
application runs, the algorithms will access some global data structures (variables 
and dynamic arrays). The algorithms will use these data structures when they are 
executed. These data structures will also be accessible by all functions at the run-
time of the application. Dynamic array and variable declarations are predefined as 
shown in Figure 1 (in C++ language).

01 │ unsigned long tS, tE;
02 │ int CoverVertexCount, CoverEdgeCount;
03 │ DynamicArray < int > permutation;
04 │ DynamicArray < int > best_permutation;
05 │ DynamicArray < TVertex > v; DynamicArray < TEdge > e;

Fig. 1. Global declarations source code

The variables CoverVertexCount and CoverEdgeCount (of integer type int) will be 
used as counters. They will store the number of covered vertices and edges in the 
graph. The tS integer variable of the type long will store a timestamp (in milliseconds) 
from the start of the operating system boot to the moment a particular algorithm has 
been run. Accordingly, the variable tE will store the completion time of the execution 
of the given algorithm. The other global declarations are of the type dynamic arrays. 
The arrays [v] and [e] are of the structure types TVertex and TEdge, respectively. The 
arrays [permutation] and [best_permutation] are of integer type int. Dynamic arrays 
are characterized by the fact that when the application starts, no RAM is allocated 
for them, but only a pointer to the address of the structure in RAM. The size of this 
structure dynamically changes as the application runs, depending on the number 
of items that need to be stored. The main idea of this type of dynamic structures is 
to allocate the necessary memory only when it is needed and then during the exe-
cution of the application.  The dynamic array [v] of type TVertex will store the data 
for the vertices of the graph; respectively, the dynamic array [e] of type TEdge will 
store the data for the edges of the same graph. The dynamic array [permutation] of 
integer type int will store a randomly generated permutation of the vertices of the 
graph. The dynamic array [best permutation], also of integer type int, will store the 
permutation of the graph vertices in which the generated vertex cover is respec-
tively optimal.

https://online-journals.org/index.php/i-jep
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An implementation of the first algorithm (BTR) using the backtracking method 
to find a minimum vertex cover of a graph is presented in Figure 2. This algorithm 
generates all combinations of n elements of the kth class, for values of k from 1 to n. 
For each combination (i.e., for each subset of k number of vertices of the graph), 
the algorithm checks whether all edges of the graph can be covered by only these 
k vertices. When the algorithm finds a solution, it terminates its execution. The solu-
tion found will be the first solution for a given k (i.e., k will be the minimum number 
of vertices needed to cover all edges of the graph), which is actually the condition of 
the minimum vertex cover problem.

01 void BTRStart() {
02 │ FoundSolution = false;
03 │ Terminated = false;
04 │ n = g.v; c = 0;
05 │ tS = GetTickCount();
06 │ for (k = 1; k <= n; k++) {
07 │ │ c = CalcCombs(n, k);
08 │ │ combination.set_length(k);
09 │ │ generate(1);
10 │ │ if (FoundSolution) { break; }
11 │ │ if (Terminated) { break; } }
12 │ tE = GetTickCount();
13 │ if ((Terminated == true) && (FoundSolution == false)) {
14 │ │ ShowMessage("The process is terminated!"); }
15 │ if ((Terminated == false) && (FoundSolution == true)) {
16 │ │ DrawGraph();
17 │ │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
18 │ │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
19 │ │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
20 │ │ ShowMessage("Found solution."); }
21 }

Fig. 2. Source code of the BTR algorithm based on the backtracking method

The two global variables – tS and tE – are used to calculate the execution time of 
the algorithm. They are of the type long and store the two moments in time (relative 
to the start of the operating system), respectively, for the beginning and for the end 
of the execution of the algorithm (lines 05 and 12). 

The for loop (lines 06–11) is used to iterate through every possible combination of 
k (k is a global variable that indicates how large the subset of vertices of the graph 
is through which an attempt is made to cover all edges of the graph). This process 
runs until the smallest k is found for which a vertex cover is generated, or until 
the process is terminated by the user. The if statement on line 13 checks if the pro-
cess has been interrupted by the user while no solution has been found yet. If the 
value of the boolean expression of the conditional operator is true, then information 
about the partially generated solution is not displayed. If a solution is found and 
the process is not interrupted by the user, the source code in the if statement block 
(lines 15–20) redraws the graph and displays information about the values of 
the variables involved in the process, for example, the number of edges covered 
(CoverEdgeCount), the number of vertices used (CoverVertexCount), and the elapsed 
time determined by the difference between the values of the variables tE and tS.

Another algorithm (RND) used to find a vertex cover in a graph is presented in 
Figure 3. This algorithm is heuristic and is based on the generation of random orders 
of vertices (permutations).

https://online-journals.org/index.php/i-jep
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01 void RNDStart(int Count) {
02 │ if ((Count < 1) || (Count > 10000)) 
03 │ { ShowMessage("Incorrect parameter [Count]"); return; }
04 │ permutation.set_length(g.v);
05 │ best_permutation.set_length(g.v);
06 │ int MinCoverVertexCount = MaxInt, MinCounter = 0;
07 │ tS = GetTickCount();
08 │ for (int counter = 1; counter <= Count; counter++) {
09 │ │ for (int I = 1; I <= g.v; i++) { permutation[i] = I; }
10 │ │ random_shuffle(permutation.begin() + 1, permutation.end());
11 │ │ for (int I = 1; I <= g.v; i++) {
12 │ │ │ int v_id = permutation[i];
13 │ │ │ v[v_id].c = clLime; CoverVertexCount ++;
14 │ │ │ for (int j = 1; j <= g.e; j++) {
15 │ │ │ │ if ((e[j].v1 == v_id) || (e[j].v2 == v_id)) {
16 │ │ │ │ │ if(e[j].c != clBlue) {
17 │ │ │ │ │ │ e[j].c = clBlue; CoverEdgeCount ++; } } }
18 │ │ │ if (CoverEdgeCount == g.e) { break; } }
19 │ │ if (MinCoverVertexCount > CoverVertexCount) {
20 │ │ │ MinCoverVertexCount = CoverVertexCount;
21 │ │ │ MinCounter = counter;
22 │ │ │ for (int I = 1; I <= g.v; i++) {
23 │ │ │ │ best_permutation[i] = permutation[i]; } } }
24 │ │ tE = GetTickCount(); 
25 │ for (int I = 1; I <= g.v; i++) {
26 │ permutation[i] = best_permutation[i]; }
27 │ DrawGraph();
28 │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
29 │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
30 │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
31 }

Fig. 3. Source code of the RND algorithm based on the generation of random orders of vertices

One input parameter of this algorithm is the number of iterations (specified by 
the user) which determines how many iterations the algorithm will make to gen-
erate random orders (permutations) of the vertices. For each order of vertices, the 
algorithm will “cover” the edges of the graph by traversing the vertices in the cur-
rent order. If the number of iterations is not set correctly by the user, the RNDStart 
function exits.

Similarly to the BTR algorithm, the RND algorithm uses the variables tE and 
tS to calculate the execution time of the algorithm. The for loop (lines 08–24) first 
sorts the elements in the permutation array from 1 to g.v, where g.v is the number 
of vertices in the graph (line 09). The elements in the dynamic array permutation 
are then shuffled randomly (line 10). In the next step, the vertices are traversed in 
the specified (random) order, and the edges incident to the corresponding vertices 
are colored, i.e., covered (lines 14–17). The conditional if statement (line 18) checks 
whether a solution has already been found for this arrangement of vertices. This 
solution must be better than the last best found. The value of the last best solution 
(i.e., the minimum number of vertices needed to cover the edges of the graph under 
the previous order) is stored in the MinCoverVertexCount variable. If the condition 
check on line 19 is true, then the current permutation of the vertices is stored in the 
best_permutation array, and the MinCoverVertexCount variable stores the value of 
the CoverVertexCount variable. After Count orders of vertices have been generated, 
the sequence of vertices where the best solution is found is transferred to the permu-
tation array. The last best permutation is still stored in the best_permutation array, so 
its contents are transferred to the permutation array (lines 25–26). The graph is then 
redrawn and the values of the parameters are visualized (lines 27–303).

https://online-journals.org/index.php/i-jep
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The implementation of the third algorithm (SRT) for finding a vertex cover of a 
graph is presented in Figure 4. This algorithm is also heuristic and approximate.

01 void SRTStart() {
02 │ permutation.set_length(0); permutation.set_length(g.v + 1); 
03 │ for (int i = 0; i <= g.v; i++) { permutation[i] = 0; } 
04 │ LoadTemporaryGraph();
05 │ tS = GetTickCount(); int vindex = 1;
06 │ while (tg.e > 0) {
07 │ │ int max_tvindex = GetTemporaryVertexIndexWithMaxDegree();
08 │ │ permutation[vindex] = tv[max_tvindex].c;
09 │ │ DeleteTemporaryVertex(max_tvindex); vindex ++; }
10 │ for (int i = 1; i <= g.v; i++) {
11 │ │ if (permutation[i] == 0) { break; } 
12 │ │ int v_id = permutation[i];
13 │ │ v[v_id].c = clLime; CoverVertexCount ++;
14 │ │ for (int j = 1; j <= e.High; j++) {
15 │ │ │ if ((e[j].v1 == v_id) || (e[j].v2 == v_id)) {
16 │ │ │ │ if(e[j].c != clBlue) {
17 │ │ │ │ │ e[j].c = clBlue; CoverEdgeCount ++; } } } }
18 │ tE = GetTickCount();
19 │ DrawGraph();
20 │ sb->Items[3]->Text = " CV : " + IntToStr(CoverVertexCount);
21 │ sb->Items[4]->Text = " CE : " + IntToStr(CoverEdgeCount);
22 │ sb->Items[5]->Text = " time : " + IntToStr(tE-tS) + " ms";
23 }

Fig. 4. The code of the SRT algorithm based on ordering the vertices according to their degree

When executing the SRT algorithm, the graph is first copied into a temporary 
graph using the LoadTemporaryGraph function (line 4). A timestamp is then stored 
against which the execution time of the algorithm will be calculated. The method 
for calculating the execution time of the algorithm is the same as for the other two 
algorithms. Through the loop that is initialized on line 6, the execution of the first 
step of the algorithm begins, where the index of the vertex with the greatest degree 
is found. The index of this vertex is then stored in the dynamic array permutation 
(line 8). In the next step, all edges that are incident to the current vertex are removed 
(line 9), then the number of vertices forming the current vertex cover is increased 
by one. This cover may still be partial. This process is repeated until the condition of 
the while loop is true. When all the edges of the graph are covered, i.e., the condition 
of the while loop assumes a value of false, the execution of the loop is terminated 
and the execution of the for loop initialized on line 10 (through line 17) is started. 
Through this loop, all the vertices are traversed and only those of them that are 
stored in the dynamic permutation array are colored, since they are part of the ver-
tex cover. The edges incident to these vertices are also colored. The graph is then 
redrawn to visualize the result.

4	 EXPERIMENTAL	RESULTS

For this study, an interactive application (named VertexCoverFinder) was devel-
oped to visualize the performance of the algorithms and conduct the experiments as 
well as to display the results as shown in Figure 5.

https://online-journals.org/index.php/i-jep
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Fig. 5. A working session with the VertexCoverFinder applicaton 

The VertexCoverFinder application offers a rich set of possibilities that the user 
can use in the work process. This application provides the ability to interactively cre-
ate and edit graph structures. In addition, it allows running the three algorithms for 
finding the minimum vertex cover in a graph, which were presented in the previous 
section. The application also provides the ability to save in an external file the graphs 
created. The saved graphs can later be loaded from the external file and edited into 
the designer. The activity diagram of the application is shown in Figure 6.

Fig. 6. Activity diagram for the VertexCoverFinder application

https://online-journals.org/index.php/i-jep
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The aim of the experiment, using an application developed to check graphs for 
the number of vertices (and, respectively, edges), was to identify the exact algorithm 
(based on the backtracking method) that can be used to find an optimal solution 
(i.e., to find the minimum number of vertices which are incident to all edges of the 
graph). It was necessary to analyze the execution times of the algorithms and the 
quality of the generated solutions. For this purpose, it was necessary to make a com-
parative analysis between the algorithms. The comparison between the algorithms 
was performed with the same input data.

The VertexCoverFinder application was run on a standard computer configura-
tion with Windows 10 Home 64-bit operating system and the following hardware 
configuration: CPU: Intel(R) Core(TM) i7-7700MQ CPU @ 2.80GHz 2.81GHz; RAM 
memory: 16.00 GB. The experiment results may be stored in a database and accessed 
by a web service, as presented in [50] and [51].

For the purposes of the experiments, 18 graphs were created and stored using 
the CoverVertexFinder application. Table 1 presents summary data for the graphs. 
In addition, Table 1 also shows the results of the exact algorithm (BRT). The data pre-
sented are for the minimum number of vertices that need to be selected (colored) to 
“cover” all the edges in the graph. Also, the time is shown (in two different formats) 
to execute the algorithm for each of the analyzed graphs.

Table 1. Summary results after running the exact algorithm

Graph (G) |V| |E| |V×E| VC Time (ms) Time (h, min, s)

G_15_24 15 24 360 9 156 < 1 s

G_16_30 16 30 480 10 422 < 1 s

G_17_35 17 35 595 11 1,062 1 s

G_18_39 18 39 702 12 3,109 3 s

G_19_45 19 45 855 13 6,171 6 s

G_20_49 20 49 980 13 13,140 13 s

G_21_53 21 53 1,113 14 30,859 31 s

G_22_57 22 57 1,254 15 69,843 1 min, 10 s

G_23_65 23 65 1,495 16 173,250 2 min, 53 s

G_24_73 24 73 1,752 17 484,734 8 min, 6 s

G_25_83 25 83 2,075 18 1,135,625 18 min, 54 s

G_26_95 26 95 2,470 19 3,954,000 1 h, 6 min

G_27_103 27 103 2,781 20 5,987,609 1 h, 40 min

G_28_114 28 114 3,192 21 14,234,515 3 h, 57 min

G_29_120 29 120 3,480 22 41,219,172 11 h, 27 min

G_30_133 30 133 3,990 23 95,067,359 26 h, 14 min

G_31_144 31 144 4,464 24 212,546,766 59 h, 2 min

G_32_157 32 157 5,024 25 480,086,110 133 h, 21 min

In Table 1, the columns |V| and |E| contain the number of vertices and edges in 
each graph. The “VC” column contains the number of vertices that form the vertex 
cover for each of the analyzed graphs.
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The purpose of this experiment was to experimentally determine how increasing 
the size of the input data (i.e., the number of vertices and edges in the corresponding 
graph) affects the execution time of the exact algorithm.

Figure 6 shows the influence of increasing the number of vertices (and, 
respectively, edges) in the graph (x-axis) on the execution time of the exact algorithm 
(y-axis – in hours).
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Fig. 7. Effect of increasing the number of vertices in the graph on the execution time of the exact algorithm

Table 1 and Figure 7 show that for a graph with 32 vertices and 157 edges, 
the execution time of the exact algorithm was unacceptably long (480,086,110 
milliseconds, or 133 hours and 21 minutes, respectively). If a conditional bound on 
the acceptable execution time of the exact algorithm is set, for example 10 minutes, 
then the results show that for graphs with more than 24 vertices, the exact algorithm 
will run for an unacceptably long time. Figure 7 also shows that with a linear increase 
in the number of vertices in the graph (and edges, respectively), the execution time 
of the exact algorithm increases exponentially.

Table 2 shows the summary results after running the three algorithms for the 8 
graphs with the most vertices and edges, respectively from G_25_83 to G_32_157.

Table 2. Summary results after running the three algorithms (BTR, SRT and RND)

Graph
BTR SRT RND

VC Time (ms) VC Time VC Time (ms)

G_25_83 18 1,135,625 19 < 0.01 s 19 42

G_26_95 19 3,954,000 20 < 0.01 s 20 47

G_27_103 20 5,987,609 21 < 0.01 s 22 56

G_28_114 21 14,234,515 22 < 0.01 s 23 62

G_29_120 22 41,219,172 23 < 0.01 s 23 78

G_30_133 23 95,067,359 24 < 0.01 s 26 94

G_31_144 24 212,546,766 25 < 0.01 s 25 103

G_32_157 25 480,086,110 26 < 0.01 s 27 116

The results obtained for the eight graphs with the most vertices and edges were 
compared, both in terms of the number of vertices forming a vertex cover (the VC 
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columns in Table 2) and also in terms of the execution time of the algorithms (the 
Time columns in Table 2).

Figure 7 shows a comparison between the values generated for the number of 
vertices forming a vertex cover (for the analyzed graphs) by the three algorithms.
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Fig. 8. Comparison between the solution values generated by the three  
algorithms (for graphs G_25_83–G_32_157)

Table 2 and Figure 8 show that for the largest graphs, respectively 
G_25_83–G_32_157, none of the two heuristic algorithms (STR and RND) found 
the optimal solutions. We will note that the optimal solutions for these graphs are 
known (generated by the exact algorithm – BRT) and are presented in Table 1. Upon 
a more detailed analysis of the data in Table 2, it can be noticed that the SRT algo-
rithm generated solutions that are very close to optimal (the difference is exactly one 
vertex). Unlike the SRT algorithm, in half of the cases the RND algorithm generated 
worse solutions than the SRT algorithm. However, compared to the exact algorithm 
(respectively, compared to the optimal solutions), the RND algorithm generated sig-
nificantly worse ones, with differences ranging between 1 and 3 vertices (relative to 
the optimal). Figure 9 shows a comparison between the results of the approximate 
algorithms.
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Fig. 9. Comparison between the solution values generated by the two approximate  
algorithms (for graphs G_25_83–G_32_157)

Figure 10 shows how increasing the number of vertices and edges in the graph 
affects the execution time of the RND algorithm.
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Fig. 10. Influence of the number of vertices and edges in the graph on the execution time  
of the algorithm with randomly generated vertex orders – RND

Table 2 and Figure 10 show that as the number of vertices in the graph increases 
linearly, the execution time of the RND heuristic algorithm also increases linearly. 
Since the analyzed graphs are a small number of vertices and edges, this time is 
short (values on the order of milliseconds). Unlike the RND algorithm, the SRT algo-
rithm runs significantly faster. The execution time of the SRT algorithm is negligible.

5	 SUMMARY	AND	CONCLUSIONS

In this paper, an analysis of three algorithms for the graph vertex cover problem 
was discussed. Some methods for solving this problem were analyzed. In addition, 
different studies of the problem and some approaches to its solution were discussed. 
An exact algorithm (based on the backtracking approach) was presented. Calculating 
the average time for execution of this algorithm was consistent with the multitask-
ing way of work of the operating system. For this purpose, 4 different starts of the 
algorithm were made, and then the average time of all of them was calculated. The 
exact algorithm found the optimal solutions for all analyzed graphs. Besides this 
algorithm, two other heuristic algorithms for solving the problem were discussed 
as well. For this study, an interactive application was developed to visualize the per-
formance of the algorithms and display their results. The results show that for small 
graphs with not more than 25 vertices, the exact algorithm can be used to solve 
optimally the graph vertex cover problem. For the largest graphs, neither of the two 
heuristic algorithms found the optimal solutions, but these algorithms generated 
solutions that are very close to optimal ones. In summary, when the size of the graph 
(the number of the vertices) increases linearly, the execution time of the exact algo-
rithm increases exponentially, but the execution time of the heuristic algorithms 
increases only linearly.

The obtained experimental results show that in all considered cases, the SRT 
algorithm generated solutions that differ from the optimal ones by only one vertex. 
These values show that this algorithm keeps a relatively good (constant) approxima-
tion of the obtained results (compared to the optimal ones). Moreover, the execution 
time of this algorithm is very short (for all analyzed graphs on the order of less 
than 100 ms).

The interactive GraphVertexFinder application enables the creation and edit-
ing of various graph structures in a convenient and easy way. The possibility of 
step-by-step implementation of the algorithms integrated in the application, as well 
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as the option of analyzing the results obtained from them, makes possible easier 
teaching by teachers, as well as easier studying by students, of the educational mate-
rial related to topics in the field of graph algorithms. The study can be extended by 
implementing and integrating additional graph vertex cover algorithms.
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