
PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

SWEBOS – The Software
Engineering Body of Skills

http://dx.doi.org/10.3991/ijep.v5i1.4047

Yvonne Sedelmaier and Dieter Landes
University of Applied Sciences and Arts, Coburg, Germany

Abstract—The development of complex software systems
requires a mixture of various technical and non-technical
competencies. While some guidelines exist which technical
knowledge is required to make a good software engineer,
there is a lack of insight as to which non-technical or soft
skills are necessary to master complex software projects.
This paper proposes a body of skills (SWEBOS) for soft-
ware engineering. The collection of necessary skills is devel-
oped on the basis of a clear, data-driven research design.
The resulting required soft skills for software engineering
are described precisely and semantically rich in a three-level
structure. This approach guarantees that skills are not just
characterized in a broad and general manner, but rather
they are specifically adapted to the domain of software
engineering.

Index Terms—Software Engineering Education; Soft Skills
in Software Engineering; Non-Technical Skills; Description
of Competencies; SWEBOK

I. INTRODUCTION
Software is a core ingredient of nearly any part of our

everyday life. Software systems, however, need to be
developed by highly skilled individuals. Consequently,
education in software engineering in order to acquire and
exercise the required skills plays an important role in
university education. Traditionally, universities laid their
main emphasis in software engineering education on tech-
nical expertise, such as programming or testing. In recent
years, however, it became increasingly evident that non-
technical, also known as soft, skills are equally important
as software is developed in teams of individuals who need
to interact with each other and with various stakeholders
such as, e.g., customers or users of their software.

So far, however, there is no subject didactics for soft-
ware engineering which would allow for a more systemat-
ic choice of didactical approaches in software engineering
education [1]. Such a subject didactics would encompass
competency profiles which constitute the targets for soft-
ware engineering education, in conjunction with didactical
approaches that are likely to support the achievement of
these goals. Our approach towards the development of
such a subject didactics encompasses three main areas of
research, namely the identification and description of
relevant competencies for software engineering, experi-
ments with didactical approaches that presumably address
these competencies, and an assessment framework to
evaluate didactical approaches with respect to their eligi-
bility, given particular target competencies.

In the following, we will concentrate on the first issue,
i.e. a competency profile for software engineering. While
there are some guidelines as to which technical expertise

is required for a software engineer, e.g. in the Software
Engineering Body of Knowledge (SWEBOK) [2, 3], the
non-technical side of skills is less well understood.

This contribution presents a framework to describe
software engineering competencies that spans various
degrees of abstraction. In order to fill this framework with
contents, we rely on a data-driven approach which is
based on Grounded Theory [4]. Finally, we outline pre-
liminary results with respect to a “Software Engineering
Body of Skills”, i.e. a prioritized account and characteri-
zation of non-technical skills that are specifically instanti-
ated with respect to the domain of software engineering.
As a consequence of our findings, we argue that it is rea-
sonable to distinguish generic non-technical skills, such as
presentation skills, from context-sensitive non-technical
skills that exhibit a special flavor in software engineering
and in conjunction with specific technical skills.

II. DEFINITION OF TERMS
Many different definitions and descriptions concerning

competency, soft skills, knowledge, expertise etc. exist in
pedagogy. In particular, "competency" is one of the most
popular terms since the beginning of the 21st century and
the introduction of the Bologna process. Yet, it is also one
of the most confusing terms used in several disciplines
and also by lay people. Therefore, we first explain our
understanding of several terms used in this paper and their
interrelationships.

Competency denotes a comprehensive capability to act
appropriately in complex situations. The capability to act
includes technical knowledge, also called factual
knowledge. The capability to cope with complex and new
situations also presupposes additional skills, which are
often subdivided into social, personal, and methodological
competence [5–7].

In this paper, the term “competency” is not used when
factual or technical knowledge is described. Likewise,
according to Weinert [8] (p. 35) “skill is an ability to per-
form complex motor and/or cognitive acts with ease, pre-
cision, and adaptability to changing conditions”. Follow-
ing this view, neither soft skills, nor factual knowledge in
isolation are competencies. Competencies can only come
into existence when both interact: “Competency” presup-
poses technical or factual knowledge and also soft skills.
Moreover, competency encompasses the context, emo-
tional elements, and also possesses an ethical, normative
component. Competency enables individuals to analyze
complex and new situations, to find creative potential
solutions, and to decide on one way of action, in due con-
sideration of causes and consequences. Competency also
includes the willingness and motivation to act autono-

20 http://www.i-jep.org

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

mously and based on self-initiative after a cognitive anal-
ysis of a situation.

We distinguish context-sensitive soft skills, generic soft
skills, and factual knowledge. Generic soft skills are abili-
ties that are largely independent of software development
and are relevant for other disciplines, too. Presentation
skills are a typical example: they are equally relevant for a
social worker, a businessperson, or a software engineer.
Presentations follow the same rules regardless of the con-
text in which they are given. For instance, a presenter
should speak to his audience and show legible slides,
irrespective of whether a software architecture or a new
washing machine is presented. In contrast, domain-
independence does not hold for context-sensitive soft
skills. Skills in this category exhibit a special, unique
profile in the context of software engineering. A lack of
these skills leads to specific consequences in the software
engineering process. Even if a software architecture is not
presented properly, colleagues will still understand what
to do. Yet, if communication skills or the ability to solve
problems or conflicts are available only to an insufficient
degree, the whole software engineering project may fail.
For instance, dealing with requirements for a software
engineering project requires technical knowledge such as
process modelling notations or UML use case diagrams.
Yet, if software engineers were not capable of eliciting
requirements from customers by applying communication
techniques, there would be nothing to model. Therefore, it
is important to understand the precise meaning of com-
munication skills in a software engineering context.

Should software engineers be able to talk in three dif-
ferent languages? Or should they be able to write good
technical documentation? Or must they recognize and
solve misunderstandings arising from badly formulated
requirements? And how can they formulate requirements
as clearly as possible? Which communication techniques
may help to cover these challenges?

The combination of various context-sensitive soft skills
yields a specific profile of software engineering compe-
tencies. Because context-sensitive soft skills are closely
related to technical knowledge, students must be trained
and advanced with respect to these skills in the context of
software engineering. Only in relation to technical exper-
tise and the software development process will students
really become aware of the inherent problems.

Factual knowledge consists of basic and advanced facts
and methods from a specific subject domain. For software
engineering, factual knowledge is, e.g., about the language
features of a particular programming language, key fea-
tures of a process model such as SCRUM or the waterfall
model, or particular requirements elicitation techniques
and their characteristics.

SWEBOK [2, 3] provides a catalog of relevant factual
knowledge in software engineering and offers a structure
to this body of knowledge by organizing knowledge items
in various knowledge areas.

III. EXISTING GUIDELINES FOR TEACHING AND
LEARNING SOFTWARE ENGINEERING

Traditionally, knowledge areas in SWEBOK span the
complete software development lifecycle from require-
ments engineering to software testing, implementation,
and related disciplines. Furthermore, the required level of
competencies is sketched on the basis of Bloom’s taxon-

Figure 1. Non-technical skills in SWEBOK v3

nomy [9]. On this basis, lecturers get a first bit of evi-
dence as to whether students are supposed to only remem-
ber some piece of information in software engineering, to
develop a deep understanding of the topic, or to be able to
analyze a concept and disassemble it into relevant parts.

The new SWEBOK version (SWEBOK v3) [3] con-
tains a new knowledge area called “Software Engineering
Professional Practice” which focusses on “the knowledge,
skills, and attitudes that software engineers must possess
to practice software engineering in a professional, respon-
sible, and ethical manner. The study of professional prac-
tice includes the subareas of professionalism, group dy-
namics and psychology, and communication skills”.

Taking non-technical skills into account at all is defini-
tively a step into the right direction. Yet, the SWEBOK
approach still exhibits several deficiencies.

For one thing, the non-technical skills mentioned in the
new SWEBOK version seem to be the result of a qualita-
tive literature study. But it is not described which method
was used to arrive at exactly those knowledge areas or
skills that are covered in SWEBOK. Such an approach
would be completely inappropriate in social sciences.
Social sciences presuppose a traceable research design in
order to arrive at trustable, valid, and acceptable results. In
social sciences it is inevitable to disclose the way in which
research results were derived in order to make them plau-
sible. Not only the results count, but the approach taken to
get them is even more important. Only a structured, relia-

iJEP ‒ Volume 5, Issue 1, 2015 21

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

ble and valid research process can provide reliable data.
And only reliable data are valuable data for understanding
the field of research. As a core aim of social sciences, data
must mirror reality faithfully. Thus, SWEBOK does not
meet the requirements of social sciences because it is not
traceable where data come from and how they were de-
rived. So there will always be doubt if the findings in
SWEBOK depict the world correctly because there is no
possibility of tracing and checking how they were devel-
oped. In SWEBOK it stays unclear which data were used,
where they came from, and how they were merged. There-
fore, SWEBOK is only a relatively weak guideline due to
its lack of sound scientific underpinning.

SWEBOK tries to “promote a consistent view of soft-
ware engineering worldwide” [3] (p. xxxi). In doing so,
SWEBOK tries to identify the least common denominator
of all disciplines that are concerned with software devel-
opment, i.e. computer scientists, electrical or mechanical
engineers and experts from many other domains. As a
consequence, specific priorities and biases in some of
these disciplines are neglected. SWEBOK describes re-
quired knowledge quite general and abstract to suit all
domains.

Also, relevant non-technical skills are characterized by
a hierarchy of headings, such as “Team and Group Com-
munication” and an additional paragraph of fairly general
explanatory prose text (see Fig.1). There is neither any
prioritization, nor an indication of how non-technical and
technical skills do interact, let alone a scale that would
allow the determination of the degree to which a compe-
tency is exhibited by an individual. Furthermore,
SWEBOK treats skills in a merely descriptive fashion.
There is no guideline as to how required competencies, be
it technical or non-technical, might be broken down into
intended learning outcomes that can be addressed in uni-
versity education for future software engineers.

Besides, SWEBOK addresses a target audience other
than university students, namely software professionals
with four years of work experience.

SWEBOK also wants to “provide a foundation for cur-
riculum development” [3] (p. xxxi). Additional recom-
mendations for a software engineering curriculum can be
found in “Software Engineering 2004 Curriculum Guide-
lines for Undergraduate Degree Programs in Software
Engineering” [10]. Yet, the main criticism that can be
expressed against SWEBOK also applies to the
IEEE/ACM curriculum.

Both SWEBOK and the IEEE/ACM curriculum can
propose contents for a university curriculum in software
engineering, but they are not sufficient as they focus on
technical expertise on a very abstract level. Worst of all,
however, is their lack of attention towards the non-
technical skills that are required in software engineering.
Both handbooks give only superficial recommendations, if
any, of which soft skills a software engineer should have
and what a particular soft skill exactly means. In addition,
as pointed out above, there is no indication of which
methods were used to derive the recommendations in the
SWEBOK and the IEEE/ACM curriculum.

Software engineering education at universities is the
main focus of the research project EVELIN (Experimental
improVEment of Learning software engINeering). For
this purpose, the approach taken in SWEBOK seems to be
insufficient. Therefore, we propose a different approach to

identify and characterize competencies in Software Engi-
neering which will be detailed in the following.

IV. DESCRIPTION OF CONTEXT-SENSITIVE NON-
TECHNICAL SKILLS IN SWEBOS

We have chosen a bottom-up research design for struc-
turing and describing context-sensitive non-technical
skills in software engineering [11].

The SWEBOS structure has to meet several objectives:
First of all, it should support the development of didactical
approaches in software engineering education. SWEBOS
is intended to lay a basis for a teaching goal- and compe-
tency-oriented approach. Thus, SWEBOS should help to
describe and understand the targets of software engineer-
ing education at universities of applied sciences. This
implies that competencies are specified precisely such that
they can be measured. SWEBOS follows a data-driven
scientific approach in order to be not just a simple smor-
gasbord of meaningless phrases, but rather foster a deep
understanding of which competencies a software engineer
must have. SWEBOS should help to understand the se-
mantics of context-sensitive soft skills in a software engi-
neering context. The context of software engineering,
however, may vary. For instance, software engineering for
embedded systems is different from software engineering
for workflow systems. Therefore, the peculiarities of the
context may lead to different emphasis on some compe-
tencies within SWEBOS. SWEBOS should be a clearly
organized tool that nevertheless contains rich descriptions
[12, 13] of relevant competencies, depending on the con-
text. Furthermore, it should impose a structure on required
competencies in software engineering on several levels of
abstraction in order to ensure a uniform description of
competencies.

A. Grounded Theory as Research Methodology
SWEBOK’s approach of gaining data – presumably by

using qualitative content analysis according to Mayring
[14] – seems to be inadequate for our research goals. In
EVELIN, we want to identify required competencies in
software engineering and strive for a better understanding
of what abstract terms like team competence might mean
in the context of software engineering. To that end, we
want to follow a defined and traceable research design in
order to arrive at sound results, based on data from real
practice.

To achieve these goals, Grounded Theory [4] seems to
be an appropriate research methodology as it is data-
driven. Grounded Theory is targeted on establishing a new
theory by building and testing hypotheses rather than
verifying an existing theory. Thus, the main focus lies on
understanding the field of research.

The data sample evolves during the research process.
Initially, there is no fixed sample but rather an idea who
should be asked in the first place about what particular
issue. During the research process researchers get new
hints and decide on who should be asked next. As a con-
sequence, the sample is never complete before the re-
search ends. Insights that are gained from the data control
the ensuing research process. Also research questions may
develop during the process by obtaining unexpected in-
formation from the field of research. Grounded Theory is
based on data and requires adapting the research process
to the data.

22 http://www.i-jep.org

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

Consequently, it is also possible to combine several re-
search methods. There is no exclusive emphasis of quali-
tative or quantitative research methods. The decision on
which methods to use is exclusively driven by the consid-
eration which methods are likely to provide the most in-
teresting data for understanding the field of research.

Grounded Theory seems to be an adequate research de-
sign for understanding desired competencies in software
engineering. Our research aims at understanding required
competencies in software engineering and their precise
meaning. We arrived at a specific understanding and defi-
nition of competencies (see sec. II).

B. Research Process in Detail
We currently pursue a qualitative research design based

on Grounded Theory which consists of two main data
collection activities (see Fig. 2).

In a first step, we returned to a small data sample of in-
formal conversations which were originally conducted in
order to adapt technical knowledge areas from SWEBOK
to university education. We analyzed this material again,
but now with a focus on non-technical skills. In a bottom-
up fashion, we arrived at a first version of a code system
and preliminary indications what is really necessary for
software engineering in industry. The code system was
built by tagging those text sections in the interviews
where non-technical skills are explicitly or implicitly
described or mentioned. The code system also served as
an aid for structuring and clustering identified competen-
cies into a competence profile. Fig. 3 shows the code-
system we extracted from our research data by applying
this methodology.

In a second step, we conduct guided interviews with
practitioners from software companies who are, among
other things, in charge of human-resource issues. Now,
interviews focus on necessary context-sensitive soft skills.
The results of our initial analysis of the material gained in
the previous step were compiled into an interview guide-
line to provide some structure for new interviews. The
interview guideline contains questions such as:
• Please describe a perfectly normal working day of

yours, including your tasks and activities.
• Where did you learn this? How did you become a

good software engineer?
Additional interviews are conducted for two main

goals: on the one hand, we intend to include additional
points of view with respect to context-sensitive soft skills,
and on the other hand, we want to obtain a deeper under-
standing what these competencies exactly mean. In par-
ticular, this research design allows us to analyze detailed
data, giving us a deep understanding of the requirements
in daily software engineering business.

As a further result, we are able to refine our code-
system. The existing code-system was merged with the
results of the interviews of the second phase. On this ba-
sis, the code-system led to semantically rich, thick de-
scriptions [13] of required competencies in software engi-
neering.

Thus, we extracted a deep understanding which compe-
tences a software engineer must have and what is meant
by these competencies. Notably, the “definitions” of com-
petencies in SWEBOS are based on research data and
reflect the real world. This paves the way to deduce con-

Figure 2. Research Process in Detail

Figure 3. Code system (in German)

crete competencies in order to develop curricula and as-
sess competencies.

Our findings substantiate that it is reasonable to distin-
guish technical knowledge, context-sensitive soft skills,
and generic soft skills (see sec II).

iJEP ‒ Volume 5, Issue 1, 2015 23

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

V. REQUIRED COMPETENCIES IN SOFTWARE
ENGINEERING

A. Structure of SWEBOS
SWEBOS aims at describing required soft skills in

software engineering in a precise fashion, not only by
using empty, overly general phrases or a listing of mean-
ingless buzzwords. SWEBOS wants to pinpoint what
exactly is expected from a software engineer by providing
a semantically rich description [12] of the meaning of
relevant soft skills.

One possibility to describe competencies is a textual
definition like in glossaries or dictionaries. This approach
is insufficient for our purpose because this would result in
a collection of somewhat isolated definitions without any
interrelations in between. Furthermore, it is difficult to
obtain a big picture of which mixture of competencies
makes up a competent software engineer.

Interrelationships between particular skills can be high-
lighted well through a graph-based representation [15].
Unfortunately, the precise definition of individual compe-
tencies typically gets lost in a graph since the nodes are
generally tagged with a single noun. Only abstract terms
can be used in a graph, otherwise things become intrans-
parent and confusing.

Apparently, an adequate structure for describing re-
quired competencies must meet two conflicting require-
ments. One the one hand, the required competencies
should be described in a clear and understandable, but not
too complex fashion. On the other hand, SWEBOS should
give the reader a deep understanding of what is meant
when a competent software engineer is described.
SWEBOS also requires a description which depicts inter-
relationships between particular elements of a competent
software engineer without tearing the overall picture to
pieces.

In order to strike the balance between these two re-
quirements, SWEBOS identifies required soft skills in
software engineering in a data-driven approach and de-
scribes them on various levels of abstraction in order to
depict the underlying data properly. These layers should
not be considered in isolation, but as one rich, thick de-
scription as it is used in qualitative social sciences [16–18,
13]. Mills [19] explains the matter as follows: "Many
qualitative researchers [...] use the term thick description
to highlight the necessity of paying attention to significant
detail in the process of doing research field work. Accord-
ing to the well-known qualitative research methodologist
Norman Denzin, the importance of thick description is
that it makes thick interpretation possible. It is not just
quantity of detail that matters but the illumination such
detail can afford. Thick description does not mean accu-
mulating voluminous details about everything that hap-
pens to the point of trivia. Description must be balanced
by analysis, seeking to establish the significance of ac-
tions, behaviors, or events for the participants involved."

This approach of describing competencies as a very
complex issue allows the description of a deep under-
standing of software engineering competencies in a de-
tailed manner, in parallel with an account of the complex
interrelations of particular aspects of competencies.

Thus, each non-technical skill is subsumed under a spe-
cific category, such as communication skills. This level of
abstraction is similar to the hierarchy in SWEBOK v3, but

tends to be more exhaustive. The second abstraction level
characterizes the non-technical skills by a fairly general
prose definition as e.g. in glossaries – again somewhat
similar to SWEBOK’s approach. On the third level of
description, however, the SWEBOS approach provides
particular indicators or criteria that are amenable to be
used for determining if, or to what extent, a particular
competency is present or absent. For instance, an indicator
for communication skills might be that “a software engi-
neer shall be capable of resolving conflicts constructive-
ly”. Thus, non-technical skills are characterized by a set of
measurable indicators, in a similar fashion as the specifi-
cation of non-functional requirements should be accom-
plished, if done properly.

Descriptions of competencies should be understandable
across different domains, from pedagogy through to com-
puter science. Therefore, we have chosen a tabular repre-
sentation for competency descriptions which enforces
some common structure, but still leaves room for prose.

B. Contents of SWEBOS
Our research data indicate that the set of competencies

described below are required for software engineering:

TABLE I. COLLABORATION

Competencies for professional collaboration (Z)
These competencies precede other groups of competencies since they
constitute a core element of software engineering practise. Only those
individuals who are capable of collaborating with other humans are able
to solve the problems that are posed to software engineers. These prob-
lems cannot be solved without taking the organizational context into
account. Software engineers need to collaborate with other humans and
to make appropriate contributions to the overall task, irrespective of
their particular roles in a specific project.

Z1 Software engineers are capable of cooperating with others in a
team.

Z2
Software engineerings are capable of and willing to communi-
cate with others, even across disciplinary boundaries.

Z3 Software engineers exhibit empathy and are capable of getting
acquainted with uncommon circumstances.

Z4 Software engineers are capable of and willing to fit themselves
into given structural and process organizations.

Z5 Software engineers are capable of presenting their ideas and
issues from their own area of expertise to others.

Z6
Software engineers are capable of a realistic self-estimation of
their professional competencies and know their individual
strengths and the limits of their professional competencies.

Z7 Software engineers appreciate the professional competencies of
others and behave with respect.

TABLE II. COMMUNICATION

Communicative competencies (K)
For a similar reason, competencies for professional collaboration with
others are followed by communicative competencies of software engi-
neers. Communication is a necessary and inevitable means of infor-
mation exchange whenever humans collaborate. Since each human
being has an individual model of the world and filters incoming infor-
mation according to this model, ambiguities and misunderstandings are
inevitable. Communicative competencies are required in order to allevi-
ate this problem. Software engineers need to be capable of accepting
and understanding foreign views of the world and of reacting according-
ly. They need to be willing to engage in foreign views of the world and
they need to be capable of handling foreign views of the world appro-
priately.

K1

Software engineers are capable of handling criticism, i.e. they
are capable of appropriately advancing their point of view, of
contributing objectively to discussions, and of giving and
receiving feedback.

K2 Software engineers are capable of resolving conflicts construc-
tively.

24 http://www.i-jep.org

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

TABLE III. STRUCTURE

Competencies for structuring one’s own way of working (S)
These competencies target the fact that software engineers need to
structrue themselves and their way of working in a complex environ-
ment. Since software development is extremely based on a division of
labour, any involved party is dependent on others’ contributions in
order to come up with a working final result. Therefore, software engi-
neers need to be capable of organising themselves and of structuring
their way of working.

S1 Software engineers are capable of analytic thinking.

S2 Software engineers are capable of setting goals for themselves
and of working towards these goals.

S3
Software engineers are capable of motivating themselves to
contribute their share, even in complex workflows, in complex
team structures, and over an extended period of time.

S4
Software engineers are capable of accepting responsibilities and
of solving problems in a self-directed fashion, even without
external push.

S5
Software engineers are capable of planning their time realistical-
ly, of setting up schedules, and of completing tasks in an orga-
nized manner.

S6 Software engineers are working thoroughly and handle their
reposibilities carefully.

TABLE IV. PERSONAL COMPETENCIES

Personal competencies (P)
This group of competencies targets self-relection and the conscious and
goal-oriented handling of individual challenges and obstacles.

P1
Software engineers reflect on themselves and their capabilities
and skills regularly and draw conclusions for future assignments
from that.

P2 Software engineers are capable of working calmly and efficient-
ly, even under time pressure or occupational stress.

P3 Software engineers are capable of bearing and coping with set-
backs appropriately.

P4
Software engineers are aware of the fact that acquired profes-
sional knowledge must be combined with experience for being
able to develop complex software systems.

TABLE V. CONSCIOUSNESS OF PROBLEMS

Capability to understand complex processes, systems, and relation-
ships (problem awareness) (V)

These competencies aim at abstracting complex problem settings and
concretizing potential solutions. Software engineers get in touch with
many other professional disciplines. Thus, they need to be willing to
and capable of thinking outside the box, and of understanding and
accepting the signification and necessity of allegedly strange procedures
and artifacts.

V1 Software engineers are capable of abstracting and modelling
complex situations.

V2 Software engineers recognize which abstract solution pattern
might be applied to a specific situation.

TABLE VI. COMPETENCE TO SOLVE PROBLEMS

Capability to apply one’s individual knowledge and skills to con-
crete and novel situations (Solution competency L)

Acquired professional knowledge is not complete in every respect and
needs to be applied and transferred creatively to novel situations. Situa-
tions differ largely. Thus, cook book recipes are not applicable. Rather,
potential solutions must be developed and analyzed on the basis of
building abstractions and drawing analogies. Therefore, software engi-
neers need to be flexible to respond to novel challenges quickly and
must develop and update their knowlegde continuously.

L1 Software engineers are capable of developing creative potential
solutions for professional problem settings.

L2
Software engineers are capable of evaluating different ap-
proaches, of choosing the most promising approach, and of
pursuing the chosen approach carefully.

L3
Software engineers are willing to and capable of becoming
acquainted with novel subjects and areas over their complete
professional career in a self-directed manner.

L4
Software engineers exhibit openness towards others and towards
novel situations. They are willing to and capable of getting
involved in unprecendented and unplanned situations and of
responding to these situations flexibly and appropriately.

TABLE VII. ADDITIONAL COMPETENCIES

Additional competencies (W)

W1 Software engineers accept responsibility for others and for joint
projects.

W2
Software engineers are capable of researching required infor-
mation and of adapting and utilizing identified information in
order to solve a specific problem.

W3
Software engineers are capable of gauging the consequences of
their activities and of behaving according to social and ethical
norms.

W4 Software engineers are capable of expressing themselves appro-
priately in writing.

VI. SUMMARY AND OUTLOOK
Developing large software systems is a complex under-

taking which requires highly skilled individuals to be
accomplished. Consequently, education in software engi-
neering in order to acquire and exercise these skills plays
an important role in university education. As it turns out,
non-technical, or soft, skills are equally important as fac-
tual or technical knowledge since software is usually
developed in teams of individuals. These individuals need
to interact with each other and various stakeholders such
as, e.g., customers or users of their software.

Unfortunately, there are no sound guidelines that indi-
cate which non-technical skills are particularly relevant
for software engineers. Furthermore, existing recommen-
dations contain only fairly general and very abstract de-
scriptions of the respective skills. In order to address these
shortcomings, our research aims at developing a software
engineering body of skills (SWEBOS) that characterizes
these skills in a precise and semantically rich manner.

The research method for the development of SWEBOS
is a data-driven approach based on Grounded Theory [4].
In particular, a series of interviews with practitioners was
conducted to provide the required data base. These data
were analyzed qualitatively on the basis of a code system,
which was in turn developed on the basis of an initial
sample of the data. We were able to identify a preliminary
list of soft skills that are relevant for software engineers.
In particular, our research showed that the three top soft
skills in software engineering are:
• Comprehension of the complexity of software engi-

neering processes and understanding of cause-effect
relationships;

• Problem-awareness and the capability to develop
creative solutions;

• Team competence including communication skills.

We intend to conduct additional interviews to continu-
ously refine and update SWEBOS in the spirit of Ground-
ed Theory. These interviews are also expected to give us
an even better understanding of biases towards required
competencies in different domains such as mechanical
engineering. Understanding such biases helps us to devel-
op and evaluate didactical approaches which are tailor-
made to the intended learning outcomes of these disci-
plines.

A major advantage of the SWEBOS approach lies in
the fact the results are firmly grounded on the current
practice of software engineering.

SWEBOS serves as a basis for competency oriented
teaching and learning. SWEBOS will be used to deduce
intended learning outcomes in university education. In-

iJEP ‒ Volume 5, Issue 1, 2015 25

PAPER
SWEBOS – THE SOFTWARE ENGINEERING BODY OF SKILLS

tended learning outcomes are the prerequisite for evaluat-
ing and developing adequate didactical approaches to
learn and teach software engineering. SWEBOS has al-
ready been used to clarify, revise, and extend the intended
learning outcomes in a requirements engineering course,
resulting in considerable changes of the employed didacti-
cal approaches [20, 21].

SWEBOS also establishes the basis for a measurement
framework for competencies. We are currently working
on SECAT, a software engineering competency assess-
ment tool. SECAT is primarily intended to support the
identification of potential improvements in software engi-
neering education [22]. To that end, it tries to determine if
and to what extent relevant competencies are present
among the participants of a software engineering course.
A mismatch between the observed level of competence
and the intended learning outcomes indicates that the
employed didactical methods might be inappropriate to
exercise relevant competencies properly and should be
adapted and enhanced.

ACKNOWLEDGMENT
We thank all our interview partners who provided input

to SWEBOS, in particular Bernd Hindel (Methodpark,
Germany), Florian Höpfl (Softgate, Germany), and
Thomas Kammerer (Astrum IT, Germany).

The research project EVELIN is funded by the German
Ministry of Education and Research (Bundesministerium
für Bildung und Forschung) under grant no. 01PL12022A.

REFERENCES
[1] P. Figas, S. Knörl, S. Mörtlbauer, Y. Sedelmaier, and I. Schroll-

Decker, “Developing a Software Engineering Education As a Di-
dactical Discipline,” in 1st European Conference on Software En-
gineering Education (ECSEE), 2014, to appear.

[2] A. Abran and J. W. Moore, Guide to the software engineering
body of knowledge. Los Alamitos, Calif: IEEE Computer Society,
2004.

[3] P. Bourque and R. E. Fairley, Guide to the Software Engineering
Body of Knowledge Version 3.0 - SWEBOK. Available:
http://www.swebok.org/ (15. July 2014).

[4] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theo-
ry: Strategies for Qualitative Research. Chicago: Aldine Transac-
tion, 2009.

[5] H. Orth, Schlüsselqualifikationen an deutschen Hochschulen:
Konzepte, Standpunkte und Perspektiven. Bielefeld: UVW,
Webler, 1999.

[6] L. Reetz, “Zum Zusammenhang von Schlüsselqualifikationen -
Kompetenzen - Bildung,” Aus Politik und Zeitgeschichte. Beilage
zur Wochenzeitung Das Parlament, no. 37, pp. 13–20,
http://www.sowi-online.de/reader/berufsorientierung/reetz_lothar_
1999_zum_zusammenhang_von_schluesselqualifikationen_komp
etenzen_bildung.html, 1999.

[7] D. Schneckenberg, Educating Tomorrow's Knowledge Workers:
The Concept of ECompetence and Its Application in International
Higher Education: Eburon, 2008.

[8] F. E. Weinert, Concepts of Competence: Definition and Selection
of Competencies. Theoretical and Conceptual Foundations
(DeSeCo)

[9] B. S. Bloom, M. Engelhart, E. Furst, W. Hill, and D. R. Krath-
wohl, Taxonomy of Educational Objectives – The Classification of
Educational Goals – Handbook 1: Cognitive Domain. London,
WI: Longmans, Green & Co. Ltd, 1956.

[10] IEEE Computer Society and Association for Computing Machin-
ery ACM, Software Engineering 2004 Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering: A
Volume of the Computing Curricula Series. Available:
http://sites.computer.org/ccse/SE2004Volume.pdf(2013, Sep. 24).

[11] Y. Sedelmaier and D. Landes, “A Research Agenda for Identify-
ing and Developing Required Competencies in Software Engi-
neering,” International Journal of Engineering Pedagogy (iJEP),
vol. 3, no. 2, pp. 30–35, 2013.

[12] S. B. Merriam, Case study research in education: A qualitative
approach, 1st ed. San Francisco: Jossey-Bass, 1988.

[13] S. B. Merriam, Qualitative research in practice: Examples for
discussion and analysis, 1st ed. San Francisco: Jossey-Bass, 2002.

[14] P. Mayring, Qualitative Content Analysis. Available:
http://www.qualitative-research.net/index.php/fqs/article/view/10
89/2385.

[15] M. Koch and D. Landes, “Notations for Modeling Educational
Goal Profiles,” in 1st European Conference on Software Engineer-
ing Education (ECSEE), 2014, to appear.

[16] C. Geertz, The interpretation of cultures: Selected essays. New
York: Basic Books, 1973.

[17] I. Holloway, Basic concepts for qualitative research. London,
Malden, MA, USA: Blackwell Science, 1997.

[18] Y. S. Lincoln and E. G. Guba, Naturalistic inquiry. Beverly Hills,
Calif: Sage Publications, 1985.

[19] A. J. Mills, Encyclopedia of Case Study Research. Thousand
Oaks: Sage Publications, 2010.

[20] Y. Sedelmaier and D. Landes, “A Multi-Level Didactical Ap-
proach to Build up Competencies in Requirements Engineering,”
in Requirements Engineering Education and Training, 2014, to
appear.

[21] Y. Sedelmaier and D. Landes, “Using Business Process Models to
Foster Competencies in Requirements Engineering,” in 27th In-
ternational Conference on Software Engineering Education and
Training (CSEE&T), 2014, pp. 13–22.

[22] Y. Sedelmaier and D. Landes, “A Multi-Perspective Framework
for Evaluating Software Engineering Education by Assessing Stu-
dents' Competencies: SECAT - A Software Engineering Compe-
tency Assessment Tool,” in 44th Frontiers in Education (FIE),
2014, to appear.

AUTHORS
Y. Sedelmaier holds a diploma in pedagogy with a ma-

jor focus on adult learning and continuing education at the
University of Bamberg, Germany. After ten years working
experience in the educational sector and in quality man-
agement she is now academic researcher in the project
"Experimental improvement of learning software engi-
neering" (EVELIN) and investigates students and their
learning processes. Her research interests are teaching and
learning software engineering at universities and software
engineering didactics. She is with the Faculty of Electrical
Engineering and Informatics, University of Applied Sci-
ences and Arts, 96450 Coburg, Germany (e-mail: yvon-
ne.sedelmaier@hs-coburg.de).

D. Landes holds a diploma in informatics from the
University of Erlangen-Nuremberg, Germany, and a PhD
in economics from the University of Karlsruhe, Germany.
After several years in industry, e.g. with Daimler Re-
search, he became a full professor of software engineering
and database systems at the University of Applied Scienc-
es, Coburg, Germany. His research interests are in re-
quirements engineering, software engineering education,
and data mining. He (co-)authored around 50 papers in
books, journals, and conferences in these areas. Since
2012 he is heading the research project EVELIN (e-mail:
dieter.landes@hs-coburg.de).

This article is an extended and modified version of a paper presented
at IEEE Global Engineering Education Conference (EDUCON2014),
held 3 - 5 April 2014, in Istanbul, Turkey. Received 15 July 2014. Pub-
lished as resubmitted by the authors 14 February 2015.

26 http://www.i-jep.org

	iJEP – Vol. 5, No. 1, 2015
	SWEBOS – The Software Engineering Body of Skills

