
PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

Embedding Topical Elements of Parallel
Programming, Computer Graphics, and Artificial

Intelligence across the Undergraduate CS
Required Courses

http://dx.doi.org/10.3991/ijep.v5i1.4090

J. Wolfer
Indiana University South Bend, South Bend, USA

Abstract—Traditionally, topics such as parallel computing,
computer graphics, and artificial intelligence have been
taught as stand-alone courses in the computing curriculum.
Often these are elective courses, limiting the material to the
subset of students choosing to take the course. Recently
there has been movement to distribute topics across the
curriculum in order to ensure that all graduates have been
exposed to concepts such as parallel computing. Previous
work described an attempt to systematically weave a tapes-
try of topics into the undergraduate computing curriculum.
This paper reviews that work and expands it with repre-
sentative examples of assignments, demonstrations, and
results as well as describing how the tools and examples
deployed for these classes have a residual effect on classes
such as Comptuer Literacy.

Index Terms— Pedagogy, Artificial Intelligence, Computer
Graphics, Parallel Computing, Instructional approaches.

I. INTRODUCTION
Distributing a variety of traditionally elective topics

across the required CS curriculum is both pedagogically
sound and fits the spirit of the new ACM/IEEE Computer
Science Curricula 2013 guidelines [1]. Earlier work [2]
profiled efforts to weave concepts from three of these
elective courses, Computer Graphics, Parallel Processing,
and Artificial Intelligence through a series of required
undergraduate courses, giving students early and sustained
exposure to vocabulary and concepts. This work expands
that initial attempt to systematically expose students to
these concepts by providing specific assignments, exam-
ples, and demonstrations provided to the students. In addi-
tion, observations on how the infrastructure developed to
support this approach can provide residual benefit to other
classes, such as Computer Literacy are also provided.

In addition to the ACM/IEEE Guidelines, other re-
searchers have looked at topical distribution in the curricu-
lum. For example, Sheldon and Turbak [3] describe dis-
tributing aspects of computing topics ranging from com-
putational theory to artificial intelligence. They also dis-
cuss challenges and tradeoffs involved such as identifying
prerequisites and the necessity for faculty collaboration.

 Given the NSF/IEEE-TCPP Parallel and Distributed
Computing [4] guidelines, the move to distribute parallel
computing concepts may be the most mature at this time.
For example, Minaie and Sanati-Mehrizy [5] review a
variety of programs, both domestic and international, in

terms of their parallel computing curriculum. They report
that in China there are two primary approaches, either a
dedicated parallel processing course, or integrating paral-
lel concepts into the Computer Organization, Architecture,
Operating Systems, and/or Embedded Systems courses
among others. Their review of seventeen universities in
the United States identified four integration models: an
independent undergraduate course, an independent gradu-
ate course, concept integration into existing courses, or a
combination of the three previous approaches. In all cases
the trend is to move topics out of the elective-only curricu-
lum.

Finally, Danner and Newhall [6] describe a systematic
approach to ensuring that all their CS students are exposed
to “parallel thinking” during the course of their studies.
The approach includes a required introductory course that
includes parallel concepts in anticipation of future
coursework. The balance of the parallel topics in their
program are distributed among various more advanced
courses such as Compilers, Operating Systems, and Com-
puter Graphics, among others.

While all of these approaches seem to be effective in
the distribution of parallel concepts across the curriculum,
all except [3] ignore the potential of distributing topics
from other specialties. This work describes one effort to
identify three specific courses and to systematically inte-
grate concepts from each of them into a subset of classes
that all CS students must take. This serves two purposes.
First it exposes the students to the topics, even if only in
passing for some cases. Second, it serves as a “sampler” to
give the students a taste of each topic to help inform their
future course selection. The courses and topics included in
this effort are Computer Graphics, Parallel Computing,
and Artificial Intelligence.

In the Computer Science program at our institution the
Computer Graphics, Parallel Computing, and Artificial
Intelligence classes are entirely elective, upper-level com-
puting classes. While this means that students in the clas-
ses are there by choice, it also implies that many students
will not have encountered some of these topics prior to
graduation. Furthermore, those who do take these classes
often arrive with no significant concept of the constituents
of the respective class. This approach to the problem is to,
as seamlessly as possible, introduce concepts from Com-
puter Graphics, Parallel Computing, and Artificial Intelli-
gence early in a student’s program, then allowing the
concepts to re-emerge in subsequent courses.

iJEP ‒ Volume 5, Issue 1, 2015 27

PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

Figure 1. CS1: Random Text Generation

II. FOUNDATION COURSES

From a pedagogical perspective being exposed to con-
cepts multiple times, and in multiple contexts, is an im-
portant part of information transfer [7,8]. Additional bene-
fits include potential interest in the elective classes as well
potential recruits for undergraduate research programs.

That having been said, when classes are structured topi-
cally, there are constraints to weaving external topics into
the class. Specifically, the following principles are adopt-
ed:
• Any embedding must not be gratuitous. There must

be a natural fit to the material being covered in the
host class.

• Any topical embedding must not take excessive time
to explain and illustrate.

• Any topical embedding should provide topical in-
sight for future elective classes.

With these principles in mind, the balance of this work
provides examples of this embedding in both early and
advanced CS courses.

III. CS1
The first opportunity for introducing concepts from the

three classes featured here is CS1, the introductory pro-
gramming class. This class is taught using C++ for the
programming language. While prior exposure to pro-
gramming is encouraged, it is not required for admission
to the course. Therefore this class must start with an over-
view of basic computer concepts and proceed to develop
algorithms and programs at a beginning level. Classroom
examples and corresponding assignments serve to subtly,
and seamlessly, weave a pre-AI thread into the course.

One example is a simple simulation of Eddington’s
Monkeys [9], based on the proposition that monkeys typ-
ing randomly will eventually create all the works of
Shakespeare. For the CS1 student this introduces the con-
cept of characters, their underlying numeric encoding, the
modulus operator (to constrain them to the alphabet), and
random number generators. It also introduces the concept
of simulation using the computer. Using these tools the
students create a randomly typing “monkey” that gener-
ates text. Sample output is shown in Figure 1.

From a “weaving AI” perspective it allows mention of
Natural Language Processing and Computational Linguis-
tics.

Later the skills for dealing with text are extended to el-
ementary analysis in the context of learning array han-
dling. Skills such as indexing are acquired within a famil-
iar context, having already worked with character simula-
tion. For example, in one assignment students evaluate the
number of occurrences of each character in Tolstoy’s War
and Peace [10], then calculate the space to total-characters
ratio. This, in turn, invites a short discussion of other ap-

Figure 2. H1N1 DNA Sequence Samples

plications of more sophisticated Natural Language Pro-
cessing (NLP) and textual analysis such as the IBM Wat-
son project [11], thus putting their work in a broader AI
context.

Other assignments expand on this early text processing
introduction. Students write code to count the number of
each nucleotide in the DNA sequence for, recently, the
H1N1 virus, using an integer array to contain the respec-
tive counts. Figure 2 shows a sample of the DNA se-
quence for a New York strain of the H1N1 virus. A repre-
sentative assignment associated with this dataset might be:

For this assignment you are to create an array large
enough to hold an entire DNA sequence for H1N1. To be
safe, let's make it much larger than we need, say 20,000
characters in length.

Using the fstream library, read a DNA sequence into
the array, making the sequence into a proper cstring.

Scan the string to find:
1. The number of occurrences of each letter in the DNA

string by using the letter as an index into an integer
array to accumulate totals. Print the number of in-
stances of each letter.

2. The longest substring of repeated characters.
Print which character it is, the length of the repeated
substring, and where in the string the repeated se-
quence begins.

Approaching the assignment in this manner allows for a
short description of Bioinformatics, Artificial Intelligence,
and Pattern Recognition without serious impact on time or
the core objectives for the class.

CS1 also introduces computer graphics, lightly, in the
context of learning input-output manipulation and format-
ting. Figure 3 shows the output of one cycle of a sine
wave plotted using the ‘*’ character on the screen. This
serves to introduce the graphics concepts of translation
and scale (to fit one cycle on the screen) as well as dynam-
ic output manipulation.

Figure 3. CS1: First “graphics” encounter, character-plot sine wave

28 http://www.i-jep.org

PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

IV. CS2
The CS2 course extends both the student’s knowledge

and experience with programming and offers incremental-
ly more latitude for interjecting relevant samples from AI,
Graphics, and Parallel Computing. Currently CS2 both
expands syntactic knowledge and introduces elementary
data structures. For example, multi-dimensional arrays
and linked lists are introduced. Other topics include the
use of pointers, C++ structs and classes, function and
operator overloading, templates, as well as best practice
topics such as conditional compilation, error trapping, and
separate compilation of program components.

Since students are gaining maturity, the topics from
CS1 are expanded in CS2. For example, the “Eddington’s
Monkey” program is expanded to create bigram and tri-
gram correlation matrices from large bodies of English (in
our case), which are then used to inform the “monkey”
simulator – increasing the probability that they will pro-
duce letter sequences consistent with the language. Sam-
ple output is shown in Figure 4. Note that some English
words, such as “with”, “who”, and “me” appear. Spaces
delimit character strings at typical word-like intervals, and
many character sequences are pronounceable, if not sensi-
ble. This assignment makes an excellent segue for discuss-
ing additional aspects of NLP, and to introduce tools such
as the Google N-gram Viewer [12] as a way of tracking
concept and sentiment in the literature over the span of
decades as shown in Figure 5.

Computer Graphics illustrations are also a natural fit in
a discussion of multidimensional arrays as well as those
for dynamic memory allocation. During the introduction
of multi-dimensional arrays the concept of a gray-scale
pixel is introduced as a character element in a 2-D array.
Various C++ functions are developed to populate the array
of pixels forming various simple geometric forms. To
avoid the complexity of user-interface and graphics library
development at this early stage in their experience these
arrays are wrapped in appropriate header information and
exported in PGM format to be displayed by an independ-
ent display program. More complex images, such as the
Mona Lisa (Figure 6), illustrate the association of pixel
value and image intensity as displayed on the screen.
Practice problems using simple image processing, such as
local averaging, is sometimes introduced as a means of
teaching elementary array manipulation. Finally, images
are used as an example data element to be dynamically
allocated when developing the concepts and implementa-
tion of pointers, dynamic memory allocation, and linked
lists.

V. COMPUTER ORGANIZATION
While CS1 and CS2 provide opportunities for touching

on AI and computer graphics, parallel processing is barely
mentioned. It is in the context of Computer Organization
that Parallel Processing gets it’s undergraduate debut. The
Computer Organization course introduces basic computer
structures at the logic level, such as full- and half-adders,
multiplexors, flip-flops, and decoders. Students are then
exposed to a significant assembly language project culmi-
nating in the development of a simulated CPU with em-
bedded robot control instructions. The students then write
programs using their own CPU to actually control robots
as shown in Figure 7. Since the robots are programmed to
respond to sensors and react to their environment, it is an

Figure 4. CS1: First “graphics” encounter, character-plot sine wave

Figure 5. Google N-Gram Viewer

Figure 6. Mona Lisa

excellent introduction to some of the pragmatic aspects of
Artificial Intelligence such as navigation, sensor interpre-
tation, and autonomous navigation.

Computer Graphics is introduced to the Computer Or-
ganization class indirectly, in the context of haptic interac-
tion. To give students a feel for the limited sensor capabil-
ity of the robots – that is, to give students a “robot-eye”
view of the world – we developed a haptic maze environ-
ment for them to explore with their eyes closed. A haptic
mouse, the Logitech iFeel mouse [13] (Figure 8), is pro-
grammed to give vibration sensations when encountering
a boundary in the maze shown in Figure 9. The goal for
the student is to traverse the maze blind, using only the
contact information – thus simulating the limited perspec-
tive of the robots and enhancing their understanding of the
constraints under which they must develop their assembly
language software.

iJEP ‒ Volume 5, Issue 1, 2015 29

PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

Computer Organization also offers the first serious in-
troduction to parallel processing. Both in terms of the
basic architectural aspects as illustrated with Flynn’s Tax-
onomy, but also an opportunity to introduce contemporary
parallel software development tools.

Specifically, to tie the discussion to equipment that
which the students may already possess, we include an
introduction to OpenMP [14] for shared-memory ma-
chines represented by our current multi-core CPUs, and a
short introduction to Graphics Processing Units (GPU)
illustrated by a survey of both Nvidia’s CUDA [15] lan-
guage and the vendor-neutral OpenCL [16] programming
language.

VI. OPERATING SYSTEMS
Concepts from all three areas are touched upon in the

Operating Systems course. This class is positioned late in
the overall program to act as a captstone course encapsu-
lating much of the knowledge and experience gained dur-
ing the previous three or so years. The class covers classi-
cal operating system concepts such as process manage-
ment, scheduling, interprocess communication, memory
and file management, security, and device handling.

Parallel processing is a natural fit for this class. Topics
include multi-core threading, OpenMP, and the use of the
GPU at the operating system level. Artificial Intelligence
is considered in two specific contexts, scheduling where
genetic optimization is discussed and security where inva-
sion detection techniques such as Artificial Immune Sys-
tems are introduced. Finally, low-level support for Com-
puter Graphics is introduced in the context of device driv-
ers for interactive devices. Specific attention is made at
the device-driver and user library level to haptic devices
supporting Computer Graphics such as the Novint Falcon
(Figure 11) and the aforementioned Logitech haptic
mouse (Figure 8).

VII. AI, GRAPHICS, AND PARALLEL PROGRAMMING
COURSES

The courses described in Sections II through VI are par-
ticularly important since they represent a sequence that all
students in the program must take. This ensures that all of
the students get some exposure to the relevant material
even if they do not elect to enroll in the AI, Graphics, or
Parallel Computing courses. That having been said, to
weave a tapestry the individual threads must be entangled
to create the whole. This section describes interconnecting
the Parallel, Graphics, and AI courses.

The Computer Graphics course is a fairly typical
graphics course embedded in a CS program. Beginning
with the concept of raster and pixels the class moves
quickly to 3D, including volumetric imagery, 3D model-
ing, transformation, and rendering. The class is sometimes
taught with a medical motif, giving the opportunity to
develop a model from a series of CT images to a volumet-
ric representation and, finally, a physical model as shown
in Figure 10. These models, in turn, are extracted for hap-
tic interaction as shown in Figure 11, where a Novint
Falcon [17] haptic robot is poised to explore a model of a
carotid artery. The development of these models enables
AI related discussions of segmentation and computer
vision.

Figure 7. Robot Maze

Figure 8. Logitech IFeel Mouse

Figure 9. Simulated Robot Maze

Figure 10. CT sequence, Volume Rendering, Physical Model

30 http://www.i-jep.org

PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

Figure 11. Haptic Aorta Exploration

The course also includes a significant project compo-
nent, including formal proposals and final presentations.
Since the GPU is central to modern transformation and
shading, an introduction to parallel concepts is intrinsic to
the graphics course. A short diversion into general-
purpose GPU programming is included since computer
graphics and image processing have a largely intersecting
knowledge base.

Likewise, graphics is easy to interject into the parallel
computing class. The Parallel Processing course covers a
wide range of architectures and algorithms, concentrating
on tools, algorithms, and project implementation. Soft-
ware tools include Message Passing Interface (MPI) [18]
for distributed clusters, OpenMP and threading for multi-
core CPU’s, and Nvidia CUDA and OpenCL for pro-
gramming the GPU. Graphics illustrations, such as dis-
secting large images, such as mammograms, and distrib-
uting their processing provide a very visual indication of
success or failure. A quick glance will indicate whether
the resulting image is reconstructed, or scrambled!

AI is introduced into parallel processing in the context
of parallelizing AI paradigms such as Pulse-Coupled Neu-
ral Networks (PCNN) [19], a biologically inspired model
for computer vision and image preprocessing. Figure 12,
for example, shows eight frames from an echocardio-
graphic cineloop, or “movie”, which have been border-
enhanced using the PCNN. Figure 13 shows the speedup
plot as additional processors are added to a PCNN imple-
mentation processing these images.

Finally, the Artificial Intelligence class offers many op-
portunities to integrate concepts from both graphics and
parallel processing. The AI class is a hybrid of a discipline
survey and senior/graduate project-based seminar. Topics
include search, machine learning, computer vision, deci-
sion support, knowledge representation, neural networks,
genetic algorithms, information theory, and natural lan-
guage processing. In addition to lectures and assignments,
students are required to propose and implement a formal
project and present the results of their investigation as an
integral part of the class.

Computer graphics is a natural fit for the computer vi-
sion component of the AI class. For example, Figure 14
shows the result of one Genetic Programming experiment
for artistic expression. Here computer programs are
evolved under selective pressure. The programs are then
executed, producing an image, in this case an abstraction

Figure 12. Pulse-Coupled Neural Network Echocardiogram Cineloop

Figure 13. Speedup for PCNN Echocardiogram Processing

Figure 14. Genetic Programming for Visual Art

of the Mona Lisa. Additional computer graphics informed
AI discussions include natural language processing and
image retrieval, and a serious discussion of intelligent
image segmentation algorithms.

While there would, on the surface, seem to be less overt
opportunity for a discussion of parallel processing in AI,
in fact parallel concepts form an important topic for dis-
cussion. Since much of what we currently believe about
intelligence stems from massively parallel biological sys-
tems, such as the human brain, there is opportunity to
explore parallel topics at a fundamental level. This in-
cludes alternate information encodings, such as neural
spike intervals, as well as parallel control ranging from
that in animal ethology to robotic applications.

iJEP ‒ Volume 5, Issue 1, 2015 31

PAPER
EMBEDDING TOPICAL ELEMENTS OF PARALLEL PROGRAMMING, COMPUTER GRAPHICS, AND ARTIFICIAL INTELLI…

Figure 15. Mammogram with PCNN Identified Lesion

Pragmatically, it is often advantageous to use parallel
processing for AI projects. For example Figure 15 shows a
mammogram from the Digital Database for Screening
Mammography [20] and the corresponding PCNN-
isolated malignant lesion. The mammograms represented
in these images are on the order of 2800x4700 12-bit
pixels in a 16-bit container. Parallelizing this process
using a gaming GPU reduced the processing from 13.4 to
1.5 minutes/mammogram with a naïve implementation.

VIII. RESIDUAL BENEFITS
One, often overlooked, benefit of this approach to topi-

cal distribution in the curriculum is the accumulation of
concepts, examples, and demonstrations suitable for the
general education Computer Literacy course [21]. Com-
puter literacy classes for non-computing majors are some-
times received with less than enthusiastic regard by stu-
dents. They are often viewed as simply another require-
ment toward graduation, and do not command the atten-
tion we would like from students forming the next genera-
tion of professionals and policy makers. By featuring a
series of demonstrations and experiences, largely drawn
from the topical embedding described in this work, we
engage students with real-life examples demonstrating
both computing principles and possibilities.

Suitable topics include the robotics, haptic, medical im-
aging, evolutionary computing, art, and natural language
processing featured in this paper. Additional topics such
as 3D printing, affective computing, encryption, data
sonification, and brain-computer interfacing are straight-
forward extensions of the infrastructure. Taken together,
we believe that these experiences provide broad insight
into computing that can serve the non-computing students
in their future work with only an incremental addition to
the effort required for the topical embedding for majors.

IX. SUMMARY AND CONCLUSION
While a formal assessment of the impact of this ap-

proach has not been attempted, and it is unclear how to
measure such a distributed approach, several anecdotal
observations can be made. First, the topics included have
been designed, and have in practice, had a minimal time
impact on the respective classes. Secondly, there is a rec-
ord of several students becoming interested and ultimately

pursuing both undergraduate and graduate research in
areas including AI for medical imaging, bio-inspired
computing for mammogram analysis, and GPU program-
ming to accelerate such processing, some leading to publi-
cation.

In conclusion, we believe that we have formed an ap-
proach to distributing topics that preserves the depth af-
forded by individual classes while distributing founda-
tional concepts across a subset of the curriculum, thus
weaving a fabric for future studies.

REFERENCES
[1] ACM/IEEE-CS Joint Taskforce, “Computer Science Curricula

2013 Final Report 0.9, Pre-release version”, http://cs2013.org,
Oct, 2013

[2] Wolfer,J., “Topical Tapestry: Weaving Threads of Parallel Pro-
gramming, Computer Graphics, and Artificial Intelligence into
Undergraduate CS Courses”, IEEE Educon, April, 2014.

[3] Sheldon, M. and Turbak,F., “An Aspect-Oriented Approach to the
Undergraduate Programming Language Curriculum”, SIGPLAN
Programming Language Curriculum Workshop, May, 2008.

[4] Prasad S. et al., “NSF/IEEE-TCPP Curriculum Initative on Paral-
lel and Distributed Computing – Core Topics for Undergraduates”,
http://www.cs.gsu.edu/~tcpp/curriculum/, 2012.

[5] Minaie, A. and Sanati-Mehrizy,R., “Incorporating Parallel Com-
puting in the Undergraduate Computer Science Curriculum”, Pro-
ceedings 2009 ASEE Annual Conference and Exposition, 2009.

[6] Danner, A. and Newhall, T., “Integrating Parallel and Distributed
Computing Topics into an Undergraduate CS Curriculum”, Pro-
ceedings Workshop on Parallel and Distributed Computing Edu-
cation (EduPar-13), 2013.

[7] Mastascusa, E.j., Snyder, W. J., and Hoyt, B. S.,Effective Instruc-
tion for STEM Disciplines: From Learning Theory to College
Teaching, Jossey-Bass, 2011.

[8] Ambrose, S. A. et al.,How Learning Works: Seven Research-
Based Principles for Smart Teaching, Jossey-Bass, 2010.

[9] Bennett, W. R.,Scientific and Engineering Problem-solving with
the Computer, Prentice Hall, 1976.

[10] Project Guttenberg Ebook, http://www.gutenberg.org
[11] IBM, “Watson Project”, http://www.ibm.com/watson
[12] Google, “Ngram Viewer”, http://books.google.com/ngrams
[13] Logitech Products, “iFeel Mouse”, http://www.logitech.com
[14] OpenMp, http://openmp.org
[15] Nvidia,”CUDA”,

http://www.nvidia.com/object/cuda_home_new.html
[16] Khronos, “OpenCL”, http://www.khronos.org/opencl
[17] Novint, http://www.novint.com/index.php/novintfalcon
[18] OpenMPI, http://www.open-mpi.org
[19] T. Lindblad and J. M. Kinser, Image Processing using Pulse-

Coupled Neural Networks, 2nd. Ed. Springer Verlag, 2005.
[20] Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer,

W.P., Digital Database for Screening Mammography, Proceedings
of the Fifth International Workshop on Digital Mammography,
M.J. Yaffe, ed., 212-218, Medical Physics Publishing, 2001.

[21] Wolfer,J., Refreshing the Computer Literacy Course: Computing
for the General Education Student, International Congress on En-
gineering and Technology Education, April, 2014.

AUTHOR
J. Wolfer is with the Computer Science department of

Indiana University South Bend, South Bend, IN 46634
USA.

Submitted 01 August 2014. Published as resubmitted by the authors
on 14 February 2015.

32 http://www.i-jep.org

	iJEP – Vol. 5, No. 1, 2015
	Embedding Topical Elements of Parallel Programming, Computer Graphics, and Artificial Intelligence across the Undergraduate CS Required Courses

