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REPORT

Assessing Difficulty Levels of Mathematical Tasks 
through Subjective and Behavioral Criteria

ABSTRACT
This paper aims to assess the difficulty levels of mathematical tasks in relation to the 
appearance of unconscious patterns of thinking in students’ cognitive processes that play a 
role in learning. The data analyzed using a mixed-methods approach was collected from a 
population of undergraduate engineering and science students enrolled in Calculus courses 
at the university while answering three questionnaires as part of their online class activities. 
Two criteria were used to find categories of difficulty levels: one subjective, given by an eval-
uation carried out by the subjects, and another behavioral, related to obtaining the correct 
answers. The relationships of these criteria with the appearance of these unconscious pat-
terns of thinking were identified: a significant and strong correlation was noticed between 
the number of erroneous unconscious patterns detected and task difficulty levels determined 
by the percentage of correct answers, as well as a significant and strong correlation between 
task difficulty levels determined by the subjective evaluation and the number of these pat-
terns recognized. Based on the results obtained, it can be stated that these unconscious erro-
neous patterns in students’ reasoning about a mathematical concept are related to the index 
of the difficulty of a task and could be considered indicators of mental effort according to 
the cognitive load theory. The analysis showed the recognition of these unconscious patterns 
in students’ cognitive mechanisms is relevant when solving mathematical tasks that require 
information processing at a higher level and could play a role in assessing the difficulty levels 
of a task related to the study of mathematical concepts in Calculus courses, which constitutes 
the main novelty of this study.

KEYWORDS
cognitive load theory, implicit learning, difficulty assessment, advanced engineering 
mathematics, Calculus

1	 INTRODUCTION

Although the role of conscious and unconscious cognitive mechanisms that 
develop in the learning processes of any subject has been studied in psychology, it 
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remains one of the most challenging problems in educational studies [1]. Several 
studies show that unconscious cognitive mechanisms can lead to unconscious knowl-
edge acquisition [2–6]. Furthermore, these unconscious cognitive mechanisms could 
be structurally and functionally more complex than conscious ones and could freely 
affect conscious learning processes [2]. Thus, many of the difficulties engineering 
and science students encounter while learning different mathematical concepts at 
university are due to unconscious models that act without awareness and control in 
their reasoning processes [5].

Some researchers state that in the context of mathematics in higher education, 
specifically in Calculus courses for engineering and science, students are not pre-
pared to handle concepts not derived from experience [7, 8]. Consequently, when 
trying to understand an abstract mathematical concept, students may unconsciously 
produce schemas or models derived from their experiences, giving some practical 
and unifying meaning to this concept, which later tends to substitute the original 
one in their reasoning processes unconsciously. In most cases, those models are 
suggested by the initial schemas formed through the empirical reality from which 
the mathematical concept has been abstracted and which are automatically and 
unconsciously relied upon for subsequent abstract mathematical constructions, long 
after they should have been replaced for more complex, elaborated, and adequate 
schemas [6].

Related to the above and based on Polanyi’s tacit knowledge [9], Fischbein [6] 
claims that some types of these intuitive, unconscious patterns of thinking (that he 
calls tacit models) appear when students deal with too abstract, difficult, or complex 
mathematical concepts. In these cases, he argues, they automatically resort to these 
elementary mental models or schemes that help them represent these complex con-
cepts in a simplified way. According to him, these schemas formed at the beginning 
of the learning process sometimes become implicit or tacit, unconsciously affecting 
the learner’s subsequent comprehension and resolution strategies, most of the time 
in misleading or erroneous ways.

In the present paper, we consider tacit models defined by Fischbein related to 
the study of infinity and the limit concept in the context of undergraduate Calculus 
courses for engineering and science students. More explicitly, we consider some 
unconscious representations of these mathematical abstract notions that constitute 
obstacles to their proper understanding [6].

On the other hand, some authors affirm that the study of these unconscious 
patterns of reasoning is a key to understanding difficulties that arise in this case 
in terms of the cognitive effort required [10]. In this setting, the difficulty levels of 
a task, which correspond to the mental effort exerted to solve it, can be measured 
using subjective criteria that consider the subjects’ perception of the complexity of 
the activity performed and behavioral criteria related to the objective performance 
in that activity [11]. In this work, these criteria are used to assess the difficulty levels 
of the tasks being solved in relation to the tacit models appearing in engineering and 
science students’ cognitive processes related to the study of infinity and the limit 
concept in the context of Calculus courses.

Although tacit models have been examined before in different contexts and from 
diverse perspectives [6, 12, 13], they have never been considered for the assess-
ment of difficulty levels of mathematical tasks relevant to Calculus courses in under-
graduate engineering and science programs. Thus, to address this research gap, the 
following research questions arise:
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1.	 What correlations can be found between the tacit models observed, the subjec-
tive evaluation of the tasks’ difficulty levels, and the percentage of the correct 
answers given by undergraduate engineering and science students?

2.	 Can these models be used to assess the difficulty levels present in a task related to 
the study of these concepts?

2	 BACKGROUND

Mathematics at the undergraduate level for engineering and science students is 
highly abstract; in this context, substantial mental activity is required to solve math-
ematical tasks [14]. Many factors influence task-solving processes and their diffi-
culty levels in mathematics, and some of these factors are related to cognitive load 
theory [15]. This theory encompasses all widely accepted theories about how the 
human brain processes and stores information [16].

In general, the difficulty of a task could be assessed in terms of the cognitive effort 
needed to solve it. More precisely, the concept of cognitive load is related to the cog-
nitive mechanisms that develop and could indicate difficulty levels during the res-
olution of a task. Cognitive load theory states that knowledge accumulated through 
learning processes is stored in long-term memory through schemas that orga-
nize it in a way that allows it to be remembered and used later in future learning 
processes [15]. According to this theory, learning develops through transforming and 
combining different schemas, leading to increasingly complex schemas. These pro-
cesses of transformation into higher-level schemas occur continuously during the 
development of the cognitive processes. Automation becomes an important process 
during the construction of these increasingly complicated schemes, through which 
information is processed automatically with minimal conscious effort [17]. Thus, 
according to this theory, automatic processing of information is mostly unconscious, 
which is verified by the empirical evidence indicating that we are unaware of how 
the brain organizes information [1].

3	 MATERIALS AND METHODS

3.1	 Sampling

The data analyzed was collected in a time interval of approximately six months 
during the academic year 2021, from different samples of a population of 304 
undergraduate science and engineering students enrolled in eight different Calculus 
courses at the university who gave their written consent to participate in the study. 
Students were aged between 18 and 25 years old. These participants were attained 
randomly based on the convenience sampling technique [18]. This form of sampling 
allows researchers to distribute and collect questionnaires according to both parties’ 
convenience.

3.2	 Survey instruments

The three questionnaires used to collect the data (see Figures 1, 2, and 3) were 
designed considering tacit models according to Belmonte and Sierra [12] and 
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validated according to the usual criteria set by the current bibliography [19]. For this 
analysis, we consider tacit models associated with infinity and the limit concepts [20]. 
Table 1 shows the models considered.

Table 1. Tacit models considered in the analysis

Tacit Model Erroneous Assumption

Undefined An infinite sum cannot be calculated due to the undefined number of terms.

Divergence The result of the infinite sum of finite quantities cannot be finite.

Unreachable The limit is a value that cannot be reached.

Inexhaustible An infinite sum cannot be calculated because it is always possible to continue 
adding terms.

Point-mark Points can be identified with marks in the geometric line.

Dependency Convergence depends on numerical distances that can be identified with 
segments viewed as geometric spaces.

Squeezing All infinite sets are of the same size.

Inclusion A part of an infinite set must be smaller than the whole of the set.

Slipping There is no one-to-one correspondence between an infinite set and its 
proper subset.

Infinite-unbounded An infinite set must be unbounded.

Bounded-finite A bounded set must have a finite number of elements.

Bounded-unbounded An unbounded set must have more elements than a bounded set.

Questionnaires were individually answered as part of the online classes’ activi-
ties in the context of the COVID-19 health emergency.

To gather more information that would allow us to observe these models in stu-
dents’ cognitive mechanisms, in each question they were asked to explain their 
answers (see Figures 1, 2, and 3).
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Fig. 1. Questionnaire on Achilles and the tortoise
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Fig. 2. Questionnaire on Cantor set
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Fig. 3. Questionnaire on Sierpinski triangle

3.3	 Data analysis

A mixed research approach was used [21]. For each questionnaire, the data was 
analyzed using two criteria: one subjective, given by the evaluation of the difficulty 
level of the questions given by the students; and a behavioral one, given by the 
percentage of correct solutions.

Finally, relevant correlations were sought between the difficulty levels given by 
the subjective evaluation of students for each question, the percentage of correct 
solutions obtained, and the number of these tacit models observed in their arguments 
by the qualitative analysis.

3.4	 Difficulty category levels: A subjective evaluation

After answering each question, students evaluated the difficulty level encoun-
tered by answering a survey with the following statement: “Evaluate on a scale from 
0 to 10 (where 0 – very easy, 10 – very difficult) to what extent the question was easy 
– difficult.” The difficulty level was measured using the eleven-point Likert scale, and 
on its basis, the categories were determined (refer to Table 2).

Table 2. Categories for difficulty levels (subjective criterion)

Range of Points Difficulty Levels

0–2 very easy (1)

3–4 easy (2)

5–6 moderately difficult (3)

7–8 difficult (4)

9–10 very difficult (5)
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3.5	 Difficulty category levels: A behavioral criterion

To objectively determine the difficulty levels of the questions, the percentage of 
correct answers was used (behavioral criterion). Table 3 shows the scale used in 
this case.

Table 3. Categories for difficulty levels (objective criterion)

% Correct Answers Difficulty Levels

0–19 very difficult (5)

20–39 difficult (4)

40–59 moderately difficult (3)

60–79 easy (2)

80–100 very easy (1)

4	 RESULTS

This section shows the results of the analyses carried out for each of the three 
questionnaires considering the two criteria mentioned above.

4.1	 Questionnaire Achilles and the tortoise

The subjective evaluation of difficulty levels given by students in this case is 
shown in Table 4. Among the questions presented in this questionnaire, none were 
categorized as “very easy” or “very difficult.” Note that question No. 7 was the only 
one considered “difficult” and that it was perceived as having a higher level of 
difficulty than the rest.

Table 4. Difficulty levels given by students (N = 156)

Question Mean S.D. Difficulty Levels

No. 1 2,84 2,00 easy (2)

No. 2 3,41 1,88 easy (2)

No. 3 3,8 2,2 easy (2)

No. 4 4,35 2,00 moderately difficult (3)

No. 5 3,97 2,15 easy (2)

No. 6 3,95 2,16 easy (2)

No. 7 6,51 2,1 difficult (4)

No. 8 5,93 2,41 moderately difficult (3)

The percentage of correct answers obtained (behavioral criterion) is shown in 
Table 5. The lowest percentage of correct answers was obtained for questions No. 8 
(16.02%) and No. 7 (16.67%), while the highest percentage of correct answers was 
found in question No. 1 (65.38%).
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Table 5. Percentage of correct answers as a criterion of difficulty level (N = 156)

Question % Correct Answers Difficulty Level

No. 8 16,02
very difficult (5)

No. 7 16,67

No. 6 30,77
difficult (4)

No. 4 28,21

No. 5 41,03

moderately difficult (3)No. 3 44,23

No. 2 43,59

No. 1 65,38 easy (2)

The qualitative analysis of students’ arguments and explanations shows the tacit 
models adopted: inexhaustible as an infinite number “cannot be calculated”; undefined 
due to the lack of definition that an infinite number supposes; divergence because 
“it always adds up” or “it keeps on adding up.” In close relation to these three previ-
ous models, the model unreachable is observed too, as well as dependency, when the 
segment is associated as a geometric space with a numerical distance. In the same 
way, due to geometric limitations, the bounded-finite model appears. The distribution 
of tacit models throughout the questionnaire is shown in Table 6.

Table 6. Tacit models (Achilles and the tortoise) (N = 156)

Question Tacit Models

No. 1 –

No. 2 –

No. 3 –

No. 4 inexhaustible, dependency, divergence, undefined

No. 5 inexhaustible, divergence, undefined, unreachable

No. 6 inexhaustible, divergence, undefined, unreachable

No. 7 inexhaustible, divergence, undefined, unreachable

No. 8 inexhaustible, dependency, divergence, undefined, bounded-finite

Next, a comparison of difficulty levels (according to the two criteria) and the 
number of tacit models observed is presented in Figure 4.

Fig. 4. Difficulty levels according to the two criteria, in comparison to the difficulty level indicated  
by the number of tacit models (Achilles and the tortoise) (N = 156)
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Let us recall that criterion 1 refers to the subjective evaluation of difficulty levels 
given by the students, while criterion 2 refers to difficulty levels according to the 
percentage of correct answers obtained in each question.

The results obtained based on the percentage of correct answers consistently show 
that students perceive the questions as easier than they are, according to the percentage 
of correct answers obtained. The biggest differences occurred for questions No. 6 and 
No. 8. Question No. 6 was “easy” according to the perception of the students, although 
it obtained a low indicator of correct answers, according to which it is categorized 
as “difficult.” A similar contradiction occurred in the case of question No. 8, which 
according to the percentage of correct answers was considered “very difficult,” but 
according to the perception of the students, it is only a “moderately difficult” question.

Question No. 7, evaluated as the most “difficult” according to the subjective cri-
terion, presents four tacit models showing that students perceive the complexity of 
the question. Something similar occurs with the questions evaluated as “moderately 
difficult” (No. 4 and No. 8), where four and five (respectively) of these models are 
observed. Let us also note that in this case the “easy” questions (No. 1, No. 2, and 
No. 3) are not conducive to the appearance of any model.

Thus, it is observed that the correlation between the mean difficulty level given 
by the students and the number of tacit models present in their reasoning for each 
question is strong and significant (r = 0.70, p < 0.05), showing that students actu-
ally perceived the complexity of the question in each case, which is precisely what 
makes them resort to these simplified models of reasoning.

On the other hand, the distribution of the results obtained according to the percent-
age of correct answers also reflects difficulty levels of the questions by the number 
of tacit models observed. Indeed, the correlation between the percentage of correct 
answers and the number of these models present in each question is strong and sig-
nificant (r = −0.80, p < 0.05). Thus, the greater the number of tacit models that appear 
in the reasoning of the students in a question, the lower the percentage of correct 
answers obtained, corroborating in this way that the use of these models represents 
obstacles in the proper understanding of the mathematical concept under study.

The correlation between the mean difficulty levels given by the students and the 
percentage of correct answers is strong and significant (r = −0.90, p < 0.05), which 
implies that students actually find these questions more difficult when they make 
the most mistakes.

4.2	 Questionnaire Cantor set

The subjective evaluation of difficulty levels (mean values) given by the students 
for this questionnaire is shown in Table 7. Based on the values shown, it can be 
affirmed that, among the questions presented, none were categorized into the two 
extreme categories: “very easy” or “very difficult,” nor in the “easy” category. Note 
that students generally found this questionnaire more difficult than the first.

Table 7. Difficulty levels given by students (N = 131)

Question Mean S.D. Difficulty Levels

No. 1 4,94 2,56 moderately difficult (3)

No. 2 6,3 2,32 difficult (4)

No. 3 6,3 2,43 difficult (4)

No. 4 5,24 2,76 moderately difficult (3)

No. 5 6,05 2,91 difficult (4)
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According to the results presented in Table 8, question No. 2 showed the lowest 
percentage of correct answers (24.43%), while the highest percentage was found for 
question No. 1 (77.1%).

Table 8. Percentage of correct answers as a criterion of difficulty level (N = 131)

Question % Correct Answers Difficulty Level

No. 1 77,1 easy (2)

No. 2 24,43 difficult (4)

No. 3 45,04 moderately difficult (3)

No. 4 35,11 difficult (4)

No. 5 34,35 difficult (4)

Below, in Table 9, are the tacit models observed in the student’s reasoning in each 
question posed. Let us note that this questionnaire turned out to be unusually rich 
in terms of the number of models that appeared during the analysis.

Table 9. Tacit models (Cantor set) (N = 131)

Question Tacit Models

No. 1 inexhaustible, divergence, undefined, unreachable

No. 2 dependency, bounded-finite, undefined, point-mark, inexhaustible

No. 3 dependency, infinite-unbounded, undefined, point-mark, inexhaustible

No. 4 squeezing, dependency, inclusion, undefined, point-mark

No. 5 squeezing, dependency, inclusion, undefined, slipping

Next, in the following Figure 5, a comparison of difficulty levels (according to the 
two criteria) with the number of tacit models observed for each question is presented, 
according to the qualitative analysis carried out.

Fig. 5. Difficulty levels according to the two criteria, in comparison to the difficulty level indicated  
by the number of tacit models (Cantor set) (N = 131)

Let us recall again that criterion 1 refers to the subjective evaluation of the dif-
ficulty level given by the students, while criterion 2 refers to the difficulty level 
according to the percentage of correct answers obtained in each question.
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In this case, the results obtained based on the percentage of correct answers 
are generally consistent with those obtained according to the subjective evaluation 
criteria. Except in the case of questions No. 1 and No. 3, the difficulty level of the 
questions is perceived as equal to/or less than the level of difficulty indicated by the 
percentage of correct answers. Indeed, the correlation between the difficulty level 
given by the students and the percentage of correct answers is strong (r = −0.67).

In this case, we find that students, in general, detect the complexity of the ques-
tions, which supports the appearance of these simplified models in their arguments. 
The correlation between the mean difficulty level given by the students and the 
number of tacit models observed in their reasoning is strong and significant (r = 0.80, 
p < 0.05), showing that indeed students perceive the complexity of the question in 
each case, which is precisely what induced them to resort to these simplified models.

On the other hand, the correlation between the percentage of correct answers 
and the number of these models observed in the reasoning of students for each 
question is strong and significant (r = −0.93, p < 0.05). In general, low percentages 
of correct answers were observed in all the questions (except perhaps in question 
No. 1), which also shows the high level of difficulty of this questionnaire.

4.3	 Questionnaire Sierpinski triangle

The following Table 10 shows the subjective evaluation of difficulty levels (mean 
values) given by students in this case. In this questionnaire, no question was cate-
gorized into the two extreme categories, nor in the “easy” category. Questions No. 2 
(mean = 6.35), No. 3 (mean = 6.43), No. 4 (mean = 4.88), and No. 1 (mean = 4.03) were 
categorized as “moderately difficult.”

Table 10. Difficulty levels given by students (N = 77)

Question Mean S.D. Difficulty Levels

No. 1 4,03 2,74 moderately difficult (3)

No. 2 6,35 2,04 difficult (4)

No. 3 6,43 2,08 difficult (4)

No. 4 4,92 3,02 moderately difficult (3)

The difficulty levels of the questions given by the percentage of correct answers 
for this questionnaire are shown in Table 11. The lowest percentage of correct 
answers was obtained for question No. 3 (32.47%), while questions No. 2 (53.25%) 
and No. 4 (54.55%) followed him in order. The highest percentage of correct answers 
was found for question No. 1 (93.51%).

Table 11. Percentage of correct answers as a criterion of difficulty level (N = 77)

Question % Correct Answers Difficulty Level

No. 1 93,51 very easy (1)

No. 2 53,25 moderately difficult (3)

No. 3 32,47 difficult (4)

No. 4 54,55 moderately difficult (3)
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It is observed that the percentage of correct answers in question No. 1 is much 
higher than all the others, even though it was perceived by the students as having 
the same level of difficulty as the rest (as can be seen in Table 10). Table 12 pre-
sented below shows the tacit models detected for each of the questions posed in 
this case.

Table 12. Tacit models (Sierpinski triangle) (N = 77)

Question Tacit Models

No. 1 inexhaustible, divergence, undefined, unreachable

No. 2 dependency, bounded-finite, divergence, point-mark

No. 3 unreachable, infinite-unbounded, undefined, point-mark dependency, 
inexhaustible, squeezing, divergence

No. 4 point-mark, dependency, undefined, bounded-unbounded divergence, 
inexhaustible

In Figure 6, a comparison of the difficulty levels of each question is presented 
(according to the two criteria) with the number of tacit models detected. In this 
case, the results obtained based on the percentage of correct answers are gener-
ally consistent with those obtained according to the subjective evaluation criteria. 
Their correlation is strong (r = −0.69) but it is not significant. The higher the level of 
difficulty of the question is evaluated, the lower the percentage of correct answers 
obtained, which is consistent with the other questionnaires. The greatest differences 
occurred in questions No. 1 and No. 2, where the level of difficulty of the ques-
tions is perceived as greater than the level of difficulty indicated by the objective 
measurement of the percentage of correct answers.

Fig. 6. Difficulty levels according to the two criteria, in comparison to the difficulty level indicated  
by the number of tacit models (Sierpinski triangle) (N = 77)

The correlation between the percentage of correct answers and the num-
ber of these models observed for each question could be considered relatively 
strong (r = −0.76), although it is not significant. Also, a positive correlation 
(r = 0.63) (neither significant) was observed between the mean difficulty levels 
given by the subjective evaluation of the students and the number of these 
tacit models observed.
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5	 DISCUSSION

The analysis carried out showed strong correlations between difficulty levels of 
the questions (measured through a subjective criterion by the students and a behav-
ioral one, given by the percentage of correct answers) and compared them with the 
presence of tacit models for the three questionnaires.

The correlation between the mean difficulty levels given by the students and the 
percentage of correct answers was strong and negative, although it was only sig-
nificant for the Achilles and the tortoise questionnaires. The values of the Pearson 
correlation coefficient were r = −0.90 (p < 0.05) for the Achilles and the tortoise ques-
tionnaire, r = −0.67 for the Cantor set questionnaire, and r = −0.69 in the case of the 
Sierpinski triangle questionnaire. Thus, as was expected, it is found that the higher 
the difficulty level given by students, the lower the percentage of correct answers 
obtained for a question.

However, the analysis identified that students perceived the difficulty levels of 
the questions above the difficulty levels indicated by the objective measurement 
of the percentage of correct answers for some questions in the Cantor set and the 
Sierpinski triangle questionnaires, which indicates that a higher complexity level was 
consciously perceived by them in those cases. Furthermore, according to their eval-
uation, students found the Cantor set and the Sierpinski triangle questionnaires more 
difficult than the Achilles and the tortoise questionnaires (Achilles and the tortoise, 
mean = 4.35, Cantor set, mean = 5.77, Sierpinski triangle, mean = 5.43).

The subjective assessment of the difficulty levels of a question is related to the 
perception of the students and could be affected by many factors. Nevertheless, the 
greater number of tacit models observed in the Cantor set and the Sierpinski trian-
gle questionnaires than in the Achilles and the tortoise questionnaires could be the 
reason for this difference in perception. The fact that this subjective evaluation con-
sciously recognizes a higher level of difficulty present in a task makes the emergence 
of these models natural, corroborating that these constitute ways of thinking in a 
simplified form that are used to facilitate de-resolution tasks.

Indeed, there was a strong positive (and significant, except in the case of the 
Sierpinski triangle) correlation between the difficulty level given by the students and 
the number of tacit models observed in their reasoning, showing that students actu-
ally perceived the complexity level of the question in each case, which is precisely 
what induces them to resort to these simplified models. Specifically, the values of the 
Pearson correlation coefficient were r = 0.70 (p < 0.05) for the Achilles and the tortoise 
questionnaire, r = 0.8 (p < 0.05) for the Cantor set questionnaire, and r = 0.63 in 
the case of the Sierpinski triangle questionnaire. Thus, it can be said that these models 
could be taken as an index of the difficulty level present in the task being solved.

On the other hand, the objective percentage of correct answers for each question 
verified this subjective perception of the students and the presence of these mod-
els in students’ reasoning, and according to the analysis, it was the most objective 
measure of the actual level of difficulty.

There was a strong negative correlation (and significant, except in the case of the 
Sierpinski triangle) between the percentage of correct answers and the number of 
these tacit models observed in students’ reasoning, thus confirming that these mod-
els constitute obstacles in the proper understanding of students and can be taken 
as an index of the difficulty level of the task. In particular, the values of the Pearson 
correlation coefficient were r = −0.80 (p < 0.05) for the Achilles and the tortoise ques-
tionnaire, r = −0.93 (p < 0.05) for the Cantor set questionnaire, and r = −0.76 in the 
case of the Sierpinski triangle questionnaire.
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In general, the percentage of correct answers in the Sierpinski triangle question-
naire was relatively high (mean = 58.45%), compared to the Cantor set questionnaire 
(mean = 43.21%) and to the Achilles and the tortoise questionnaire (mean = 35.74%), 
even though ten of the twelve tacit models were found in this case. It may indi-
cate that when students were answering this last questionnaire, some of them were 
already aware, at least, to some extent, of their use of these erroneous models, and 
they were already learning to deal with them. In other words, they were able to 
replace them with more appropriate schemes that allowed them to arrive at the cor-
rect answers. These divergences are similar to results obtained from other studies on 
which subjective and behavioral criteria have been used (for example, see [22, 23]).

These results are also relevant when selecting proper instructional strate-
gies for Calculus courses and specific learning outcomes in teaching engineering. 
Nevertheless, our study does not consider other important factors such as a weak 
background in mathematics and the lack of motivation influencing the cognitive 
processes of engineering students, which have been considered in some research 
conducted before [24, 25], therefore it has some limitations.

6	 CONCLUSION

Based on the results previously discussed, it is concluded that there are strong 
and significant correlations between the numbers of tacit models observed in stu-
dents’ cognitive processes and the task difficulty level categories established by both 
types of criteria (a subjective one, through an evaluation made by the subjects, and 
a behavioral one, through the obtention of the correct solution).

Thus, the analysis showed the recognition of these unconscious patterns in 
students’ cognitive mechanisms is relevant when solving mathematical tasks that 
require information processing at a higher level and could play a role in assess-
ing the difficulty levels of a task related to the study of mathematical concepts in 
Calculus courses, which constitutes the main novelty of this study. Based on the 
results obtained, it can also be affirmed that the use of these models by students 
could be considered an indicator of mental effort according to the cognitive load the-
ory and could be instrumental in the design of didactic strategies for the classroom.

More specifically, these results could allow us to improve our teaching practice 
by using them to develop didactic activities to identify these models and guide stu-
dents to overcome these difficulties. From a metacognitive point of view, it could 
help to stimulate students to become aware and to reflect on their thoughts and 
intuitions regarding certain mathematical concepts and the incoherences associated 
with them. At the same time, it could show them the validity of these incoherences 
by revealing constraints and limitations imposed by our intuitions and previous 
experiences on our learning processes. All of this could also be meaningful in the 
enhancement of mathematical conceptual understanding in the context of a conven-
tional university classroom or more unconventional settings, as suggested in [26].

Furthermore, establishing difficulty levels considering these models can help 
in the construction of scales and grading criteria for certain tasks, which is one of 
the issues usually examined in educational studies [27]. This is especially import-
ant when solving problems that involve processing information at a higher level, 
requiring the use of different cognitive mechanisms at once, and in this case, the 
unconscious ones.

Nevertheless, our work has some limitations: the role of these unconscious 
models and their automatic processes of formation must be further investigated 
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concerning the difficulty levels of mathematical tasks and proper instructional strat-
egies for Calculus courses from the point of view of the cognitive load theory [10], 
especially in the context of undergraduate education for engineering and science 
students. Also, further research is recommended; a more detailed analysis is needed 
to evaluate each of these tacit models specifically, considering their levels of difficulty 
and their influence and persistence in students’ cognitive mechanisms.
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