
PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

Object-Oriented Programming for non-IT
Students: Starting from Scratch

http://dx.doi.org/10.3991/ijep.v5i4.4734

O. Mironova, I. Amitan, J. Vendelin, J. Vilipõld and M. Saar
Tallinn University of Technology, Tallinn, Estonia

Abstract—The present paper demonstrates a teaching
approach in general programming course for the first year
non-IT students at Tallinn University of Technology,
Estonia. The authors suggest some ways for achieving better
results in programming issues that are usually complicated
for the beginners.

Index Terms—object-oriented programming, Scratch, VBA,
Python.

I. INTRODUCTION
Information technology and programmable systems,

such as computers, smartphones and other devices, are
playing an increasingly greater role in our lives today,
both at home and at work. We can see growing demand
for information technology professionals and escalating
need for the knowledge about computer technology for
other specialists. "Computational thinking" is a skill that
all students must learn to be ready for the workplace and
able to participate effectively in the digital world.

Basic computer education topics have been included
into all the curricula at Tallinn University of Technology,
Estonia, and have been integrated into a course named
“Informatics”.

The Informatics lasts two semesters and number of
weekly study hours is two. Group size is 20-30 students.
During the course we apply classic face-to-face classroom
methods, group work and learning in the Moodle e-
environment.

The main learning outcomes in the Informatics course
are listed below. Students who complete the course:
• Acquires the foundations of problem analysis

and system modelling.
• Can analyse relations between objects and

provide rationale for the algorithms and methods
applied.

• Is familiar with the nature of data and objects and
can specify them and use them in programs.

• Is familiar with and can describe using
VBA/Python and UML activity diagrams main
activities occurring in programs and algorithms.

• Is familiar with the nature and main concepts of
object-oriented programming.

• Can compose programs consisting of multiple
procedures and organize data flow between
them.

• Can use graphical objects in programs; develop
scaled drawings and schemes, movements, and
animation in VBA.

The course starts with application development in the
environment of general-purpose application software such
as document and spreadsheet processing. The second part
is devoted to building algorithms and programming. The
aim of this part is to develop logical, analytical and
algorithmic reasoning skills as well as the ability to
investigate problems and tasks in a systematic way.

The course aims at reaching the results in two different
but tightly linked ways: learning to understand the object-
oriented approach in the description of different concepts
and getting necessary skills in building algorithms. Both
skills have to be implemented in simple applications.

It should be mentioned that the Informatics course
seems to be rather sophisticated for most of the non-IT
students. The main issues in teaching the subject have
been delineated and systemized in [1], [2]. However, we
still face some problems. Consequently, we try to improve
the course content from year to year and from speciality to
speciality to find the best methods to achieve the goals.

After several years’ experience two main algorithmic
languages were chosen for creating applications. These
are Python and Visual Basic for Applications (VBA). We
have different reasons why we prefer one or the other, but
there are a lot of things that should be considered and
mastered beforehand.

II. THE REVIEW OF THE CURRENT SITUATION IN THE
COMPUTING TEACHING

In recent years, several countries have carried out
thorough investigations of the use of information
technology and courses on computer science in different
schools. Analyses have shown that most of the courses do
not meet the needs. As a result, several new curricula have
been proposed to improve the situation.

In 2011 the new CS standard, "CSTA K-12 Computer
Science Standards" was created [3]. It sets out the basic
requirements for the various areas and levels of the
curricula. A number of courses and subject syllabuses
were created on this basis. One of the most outstanding is
the new CS syllabus “AP Computer Science Principles”
[4] created under the support of US National Science
Foundation (NSF). The work started in 2011 and the
course is planned to be completed in 2016.

The documents mentioned above are based on the
notion of "Computational Thinking", which defines
general principles for describing the problems and solving
them by means of software systems, including such
concepts as abstraction and modelling, algorithms, data
and information, programming, communicating and
collaborating. A large part of the concepts is related to
algorithms and programming [5].

22 http://www.i-jep.org

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

In 2012 a comprehensive study "Shut down or restart?"
was published by The Royal Society UK [6]. The research
brought out significant shortcomings and offered ways to
solve them. "Computer Science: A Curriculum for
Schools" [7] was set up and published, where
"Computational Thinking" is the main idea. Starting from
September 2014 the course Computing (Computer
Science + Information Technology + Digital Literacy) is
included in the UK school curricula.

In our teaching approach to the programming course we
use the principles introduced above and try to implement
them in the best possible ways.

The current situation of teaching computer sciences at
our country schools is quite discrepant. Some schools do
not have informatics lessons at all, in some schools it is
taught only for two or three years, which is a very short
period to prepare students for the university level. This
drawback is associated with two main reasons. The first
one being that there is no nationwide Informatics
curriculum in our country. The second one is that
Informatics subjects are not mandatory in our schools. A
logical consequence of these reasons is the situation where
each school teacher introduces learners to the material at
his own discretion: certain pupils draw in Paint, others
learn the computer hardware in theory, etc. In connection
with this, the level of PC skills among non-IT learners
falls every year and reduces to commonplace Facebook
usage. In our course we have to take these facts into
account and build the curricula accordingly.

III. MODELLING
During the Informatics course students have to create

simple applications. After the task is set, we go to the next
step: modelling. There are two main aspects to learn:
defining the data objects and building algorithms.

The object-oriented approach is the main technique in
building and developing software applications and
information systems. Its essence is in describing the
properties and the behaviour of real and abstract subjects
by means of software objects.

The software object is a collection of connected data
and programs. The computer system and application
software uses object-oriented approach to define
documents, user forms, windows, toolbars, etc. The newer
programming languages are object-oriented, where the
basic concepts are classes, properties, methods and events.
The relationships between the objects are used as well.

Aspects containing the description of objects make up a
significant part of the application model.

Another part of the modelling process is the description
of algorithms used mostly as object methods.

The algorithm is often built step-by-step, starting with
general description and becoming more specific later.
Finally, we come to a level, where it is easy to transform
the outcome into a program code.

UML (Unified Modelling Language) supports building
models for applications with a set of diagrams. It helps the
learners to reach a solution without reference to any of the
programming languages. It is widely used not only in the
general programming course, but also later in courses on
information systems, databases and several others.
However, UML diagrams provide static views and are not
always the best to keep track of the process.

IV. VISUAL PROGRAMMING WITH SCRATCH
A new trend in teaching programming skills is the

development of an environment created especially for
learning. These are graphical tools, such as Scratch [8],
Snap! [9], Blockly [10], which make the learning process
much easier for the beginners especially for non-IT, who
have not any experience in programming.

In our course we use Scratch as the supporting tool
before creating applications in VBA or Python. After a
few years of practice, we came to the conclusion that a
graphical environment, such as Scratch, is an effective
introductory tool to understand both the object-oriented
approach and the functionality of a program.

In addition, syntax errors are impossible in Scratch,
which is a great help for students. It is easy to discover
and correct run-time errors as well, because Scratch works
as an interpreter.

Graphical command blocks give a visual picture of the
different controls (selections, loops), used in the program.
They create the necessary associations when students start
coding in a text-based programming language.

Scratch is not designed to solve complicated tasks, but
it is simple, very expressive, and makes understanding the
behaviour of objects easier.

It should be mentioned that according the annual
students’ feedback Scratch is the most popular module in
the course.

Creation of objects is solved by importing or drawing
graphics. Combining the blocks for each object creates the
methods. Some of the blocks are used to show the reaction
of the object to some events. We see here the main aspects
of object-oriented programming resulting in an attractive
animation.

Further, we will briefly review the main programming
concepts that are usually complicated for non-IT learners.

A. Objects and their properties
Each Scratch object (Sprite) has properties like the

name, coordinates, direction, rotation style, etc. (Fig. 1).

Figure 1. A Scratch object and its properties

Most of such properties can change their values by

some method (script) or may be changed manually by a
user.

Fig. 2 shows some blocks used to change properties of
an object.

iJEP ‒ Volume 5, Issue 4, 2015 23

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

Figure 2. Blocks for changing the properties of an object

These blocks make it quite easy to understand the
property concept.

B. Building scripts with conditional statements and
iterations

Using Scratch blocks makes it easy to show students
how cycles and if-operators work (Fig. 3).

Figure 3. The cycles and branching realization

C. Events
There is a rather long list of pre-defined events that can

be handled by Scratch scripts. An event is handled by a
script (method) starting with a special block. Some of the
event blocks are shown in Fig. 4.

Figure 4. Some blocks to start the event handling script

D. Parallel processing
Running each script is considered a separate process.

Scripts that handle the same event will be running in
parallel after the event occurs. For example, scripts in Fig.
5 are performing in parallel and they implement the
reaction on the “click” event. The first of them is
responsible for moving the object, the second for changing
its appearance.

Figure 5. Realization of the parallel processes

Using Scratch scripts, students quickly obtain the
concepts of parallel and coherent processing.

E. Sending and receiving messages
The message system provides communication and

synchronization of the objects’ behaviour.
Special command blocks broadcast a message from a

script and any other script in the project can pick it up.
Each object can send the message to other objects or to
itself. The last instance is used to define the structure of an
application.

There are two different blocks - one is for broadcasting
and continuing, the other for broadcasting and waiting.
The latter allows the process to continue only when all
processes that picked the message have finished.

Scratch solves reactions to messages in the same way as
handling other events. The script reacts to the message if it
starts with a special block. (Fig. 6).

Figure 6. Blocks for sending and receiving messages

F. Data
Variable is one of the basic concepts in all

programming languages. Its meaning in programming
differs from its use in mathematics, which learners know
from school. Scratch supports clarity in understanding the
meaning of a variable concept as a named place in the
computer memory. All variables have to be created
manually before using them in a program code. Figure 7
shows the command “Make a Variable” in the Data group
of the blocks.

Figure 7. Commands of the Data group

The approach is very useful and worth considering in
further programming activities.

Furthermore, the users have to define the scope of the
created variable, which leads them to understanding the
meanings of global and local variables and demonstrates
the difference between these two (Fig. 8).

24 http://www.i-jep.org

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

Figure 8. A variable declaration in Scratch

For example, if a sprite is active, only global and (its
own) local variables can be used. Thereby students obtain
the concept of the variable scope.

G. Structured programming
Structured programming is the most preferred approach

in building programs. Students are encouraged to create a
clear and structured program code. The ability to split a
big task into smaller pieces plays an important role.

The majority of algorithmic languages support the
definition of subroutines and functions, used in creating
the code for the pieces of the project. One of the main
methods of transferring data to subroutines is using the
parameters. Experience shows that this is the most
confusing topic for a beginner.

The new version of Scratch – Scratch 2.0 provides us
with a perfect opportunity to make this issue easier.
Learners can create and use their own Scratch blocks,
where the definition of parameters is included (Fig. 9).

Figure 9. The user’s block creation

Students learn to create a clear structure in their project.
They divide their task into logical parts and create
necessary user blocks, providing them with parameters.
Now the main script can use standard and user-defined
blocks, transferring the necessary data by means of
parameters. Figure 10 shows the definition and calling of
the user-defined blocks.

The issues reviewed here are very useful in the process
of understanding modern concepts in building software
applications and, hopefully, help students in their future
study and professional work.

The next step is to proceed with more complicated tasks
in other programming systems. Practicing with Scratch
tools makes this function easier.

Figure 10. The main script and the user-defined block

V. SCRATCH + PYTHON
Python supports structured programming and

procedural styles. In addition, Python does not require
declaration of simple variables, which makes work with it
easier for the beginners. It has a large and comprehensive
standard library. Python interpreters are available for
installation on many operating systems, allowing the
Python code to be executed on a majority of systems. It is
an open source and is available to all students. The
language is a high-level language and its syntax allows
programmers to express concepts in fewer lines of code
than would be possible in some other languages. There are
a lot of tutorials and visualized debugging tools available.
It makes it possible to provide learning support in
different ways and everyone can find the most suitable
one for themselves. On the other hand, this huge amount
of information is often confusing and students need
detailed guidelines from the instructor.

Python supports the object-oriented approach, but a lot
of work can be done without it. It seems to be rather
complicated for the beginner to orient in the
documentation of the built-in classes and classes from
different libraries. In our introductory course, we usually
do not include the creation of classes and use only some of
the existing objects. Therefore, the object-oriented
approach is not taught and is limited to the possibilities
provided by Scratch only.

VI. SCRATCH + VISUAL BASIC FOR APPLICATIONS
According to our approach, Visual Basic For

Applications (VBA) in MS Office applications and
Scratch have a lot in common. An Excel worksheet is a
big canvas, onto which a number of graphical objects can
be placed. There are a number of VBA methods and
functions which have unambiguous equivalents in the
form of Scratch blocks (e.g. set colour). We provide
beginners with ready-made procedures, to be used as
“black-boxes”. For example, we have procedures, that
correspond to Scratch blocks such as “wait”, “move”,
“glide”, “touching” etc. The primary control statements of
VBA and Scratch are closely akin. All this enables a faster
transition to more sophisticated tasks we undertake in
VBA.

VBA, as well as Python, supports structured
programming and provides the programmer with many
built-in facilities. The text editing and debugging tools for
the program code are visual and well observable.

However, using VBA cannot go far without introducing
objects. There are many classes in the standard
environment that can be used with their properties and
methods.

iJEP ‒ Volume 5, Issue 4, 2015 25

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

VBA procedures are attached to the applications, so
there are no interface problems (as the interface is
included in the application itself). On the other hand, one
has to use the object classes of the application for any
input or output. However, some of the objects have a
complicated structure and relationships with other classes,
which is confusing for the majority of the beginners.

It was found out that using MS Excel for application
creation is the easiest and most understandable way to
practice the usage of classes. This is one of the reasons
why MS Excel has been chosen as an environment for
creating applications with VBA. The classes of
worksheets and cells are comparatively easily applied.
The expressions and many of the built-in functions in
VBA have similar names and arguments with those in
Excel. These topics are covered in the textbooks [11],
[12].

VII. THE TEACHING METHODOLOGY
As mentioned above, we build UML (Unified

Modelling Language) activity diagrams to describe
algorithms in complicated tasks. We have been using a
verbal description and pseudo code as well. Now, when
we create Scratch projects as an introduction to
programming, we can also use its scripts to visualize,
formulate and describe the problem.

At the beginning, the teacher provides the students with
a prepared model, which is analysed in a group. The
analysis is followed by writing the program code
according to the diagrams. Later on, students have to
create the models themselves.

It has to be mentioned that according to tests [13] most
of our students are visual learners [14], [15]. For them it is
very important to see “how it works”. Scratch, with its
elements of attractiveness, helps those students to
understand the main idea of creating an application.

VBA already has a built-in visualising tool: students
can follow the code execution using the Locals Window
(Fig.11).

It automatically displays all the names of the declared
variables in the current procedure, their types and their
values. When the Locals Window is visible, it is
automatically updated every time – students can see and
check each step and its result in their program.

Figure 11. The Locals Window in VBA

Python does not have such an opportunity, but still
needs to be visualised. We show students the Online
Python Tutor [16]. Using the visualizing tool, the students
can follow each step of their code and check the values
and types of the variables, as well as the order of the
operators during the execution. It has to be noted that this
tool has some drawbacks, as it does not support the
Python graphics, time functions and work with files.
However, for the beginners in programming it gives the
understanding of the code execution (Fig. 12)

Moreover, for our students we create short videos about
the main terms, such as iterations, branching and the
execution of the processes. It should be mentioned that we
surely use sound and voice records in these videos to
explain the complicated moments. In our work with
educational visions we follow the ideas of Khan Academy
[17].

In addition, we always try to provide students´
applications with a similar content. If a student has created
a model in UML and the same application in Scratch, it is
easier for him to "translate" it into the VBA or Python.
Thus, if a learner understands the content of the model and
the algorithm, it is easier also to understand the syntax of
any language.

Figure 12. Python online visualizing tool

26 http://www.i-jep.org

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

The following example is about solving a typical
textbook task where the program generates a random
number and asks the user to guess it. Here we see the steps
of solving the task: UML activity diagram (Fig. 13), the
script from Scratch project implementing the behaviour of
the cat (Fig. 14) and finally the program code in Python
(Fig. 15) and VBA (Fig. 16).

Figure. 13. UML Activity diagram

Figure. 14. Scratch project

Figure. 15. Python code

Figure. 16. VBA code

VIII. CONCLUSIONS
Based on the above said, it should be concluded that in

the Informatics course for the first year non-IT students
we focus mostly on the model and algorithm, rather than
teaching syntax and coding techniques. Visualized tools
like Scratch are a good possibility to understand the main
concepts of object-oriented approach and make it easier to
write a programming code in any language when these
concepts are clear. Similar ideas about Scratch and Python
can be observed in [18].

In our course development, we try to keep up with the
times and trends in computer education as [19], [20].

REFERENCES
[1] A. Robins, J. Rountree, & N. Rountree, 2003. Learning and

Teaching Programming: A Review and Discussion. Computer
Science Education, 13(2), pp. 137-172.
http://dx.doi.org/10.1076/csed.13.2.137.14200

[2] A. Kak, 2014. Teaching Programming. Available at:
https://engineering.purdue.edu/kak/TeachingProgramming.pdf

[3] CSTA K–12 Computer Science Standards. 2011. Available at:
http://csta.acm.org/Curriculum/sub/K12Standards.html

[4] AP Computer Science Principles, 2011-2016. Available at:
https://advancesinap.collegeboard.org/stem/computer-science-
principles

[5] CSTA Computational Thinking Task Force. Available at:
http://csta.acm.org/Curriculum/sub/CompThinking.html

[6] UK. The Royal Society. „ Shut down or restart? “ The way
forward for computing in UK schools. Retrieved from:
https://royalsociety.org/~/media/Royal_Society_Content/education
/policy/computing-in-schools/2012-01-12-Computing-in-
Schools.pdf

[7] UK. Computing in the national curriculum: a guide for secondary
teachers. Retrieved from:
http://www.computingatschool.org.uk/data/uploads/cas_secondary
.pdf

[8] MIT Media Lab, 2013. Scratch. Available at:
http://scratch.mit.edu/

[9] Snap! Available at: https://snap.berkeley.edu/
[10] Blocky. Google Developers. Available at:

https://developers.google.com/blockly/
[11] I. Amitan, J. Vilipõld, MS Excel rakenduste põhielemendid.

Tallinn: Tallinna Tehnikaülikooli Kirjastus, 2000
[12] J. Vilipõld, MS Excel arendussüsteem Visual Basic. Tallinn:

Tallinna Tehnikaülikooli Kirjastus, 2000
[13] B. A. Soloman, and R. M. Felder, (n. d.). Index of Learning Styles

Questionnaire. Retrieved from:
http://www.engr.ncsu.edu/learningstyles/ilsweb.html

[14] O. Mironova, T. Rüütmann, I. Amitan, J. Vilipõld, M. Saar,
”Computer Science E-Courses for Students with Different
Learning Styles”, in: Annals of Computer Science and Information

iJEP ‒ Volume 5, Issue 4, 2015 27

PAPER
OBJECT-ORIENTED PROGRAMMING FOR NON-IT STUDENTS: STARTING FROM SCRATCH

Systems: Federated Conference on Computer Science and
Information System, Kraków, 2013, pp. 735 - 738.

[15] O. Mironova, I. Amitan, J. Vendelin, M. Saar, T. Rüütmann,
“Strategies for the Individualization of an Informatics Course”, in:
Annals of Computer Science and Information Systems: Federated
Conference on Computer Science and Information Systems,
Warsaw, 2014, pp. 835 - 840. http://dx.doi.org/10.15439/2014f259

[16] Ph. Guo. Online Python Tutor. Available at:
http://www.pythontutor.com/

[17] Khan Academy. Available at: https://www.khanacademy.org
[18] C. Vorderman, Computer Coding for Kids - A Unique Step-by-

step Visual Guide, From Binary Code to Building Games.
London, DK Children, 2014.

[19] Exploring Computer Science. Retrieved from:
http://www.exploringcs.org/

[20] National Science Foundation. Retrieved from: http://www.nsf.gov/

AUTHORS
O. Mironova is with the Tallinn University of

Technology, Tallinn, Estonia as a lecturer (e-mail:
olga.mironova@ttu.ee).

I. Amitan is with the Tallinn University of Technology,
Tallinn, Estonia (e-mail: irina.amitan@ttu.ee).

J. Vendelin is with the Tallinn University of
Technology, Tallinn, Estonia as a lecturer (e-mail:
jelena.vendelin@ttu.ee).

J. Vilipõld is with the Tallinn University of
Technology, Tallinn, Estonia as an associate professor
emeritus (e-mail: juri.vilipold@ttu.ee).

M. Saar is with the Tallinn University of Technology,
Tallinn, Estonia as an educational technologist (e-mail:
merike.saar@ttu.ee).
Submitted, 19 May 2015. Published as resubmitted by the authors on 08
October 2015.

28 http://www.i-jep.org

	iJEP – Vol. 5, No. 4, 2015
	Object-Oriented Programming for non-IT Students: Starting from Scratch

