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Abstract—Computational thinking sits at the core of every engineering and 
computing related discipline. It has increasingly emerged as its own subject in 
all levels of education. It is a powerful cornerstone for cognitive development, 
creative problem solving, algorithmic thinking and designs, and programming. 
How to effectively teach computational thinking skills poses real challenges 
and creates opportunities. Targeting entering computer science and engineering 
undergraduates, we resourcefully integrate elements from artificial intelligence 
(AI) into introductory computing courses. In addition to comprehension of the 
essence of computational thinking, practical exercises in AI enable inspirations 
of collaborative problem solving beyond abstraction, logical reasoning, critical 
and analytical thinking. Problems in machine intelligence systems intrinsically 
connect students to algorithmic oriented computing and essential mathematical 
foundations. Beyond knowledge representation, AI fosters a gentle introduction 
to data structures and algorithms. Focused on engaging mental tool, a computer 
is never a necessity. Neither coding nor programming is ever required. Instead, 
students enjoy constructivist classrooms designed to always be active, flexible, 
and highly dynamic. Learning to learn and reflecting on cognitive experiences, 
they rigorously construct knowledge from collectively solving exciting puzzles, 
competing in strategic games, and participating in intellectual discussions. 

Keywords—computational thinking; artificial intelligence; collaborative prob-
lem solving; active learning; constructivism in college classrooms 

1 Introduction and related works 

Teaching and learning computational thinking or CT, were originally realized over 
three and a half decades ago [1]. It is marked by Seymour Papert’s revolutionary book 
Mindstorms: Children, Computers, and Powerful Ideas [2] that was first published in 
1980. It brought computer literacy into primary education. The aim was to draw out 
constructionism in every child and to leverage cognitive development, intellectual and 
mental abilities to acquire, transform, and consolidate knowledge. Papert discussed 
his decade-long experience with the Logo programming language he helped design at 
Massachusetts Institute of Technology in the 70s. Logo is linked back to Jean Piaget’s 
psychological theory of constructivism [3] and a predecessor of today’s popular Lego 
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Mindstorms series [4]. Logo, a Greek name for thought, is a language for learning that 
is graphic and logic oriented. Learning to program hands-on, Logo enables preschool-
aged children to create visual graphics by commanding and controlling of a pixelated 
turtle robot. A turtle moves forward, turns left or right, relative to its own position. As 
a turtle is instructed to move, a pen that is attached to it draws onscreen line graphics 
and complex geometric shapes. Thence, understanding of the underlying mathematics 
is genuinely embodied. Moreover, Logo features a body-syntonic reasoning. Children 
determine the outcomes of their turtle graphics by imagining themselves as a turtle 
being programmed and imitating what happens. 

Computational thinking resurfaced in a 2006 communication of ACM (Association 
for Computing Machinery) by Wing [5] and has since been gaining strong momentum 
worldwide. CT has much influence on several aspects of curriculum designs from 
primary and secondary educations to undergraduate courses. Wing states: 

“Computational thinking involves solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamental to computer sci-
ence. Computational thinking includes a range of mental tools that reflect the breadth 
of the field of computer science.” 

Wing highlighted the richness of abstract thinking in computing and computer sci-
ence or CS. She placed an emphasis on the complexity of information when it is en-
coded in multiple layers, including both intra- and inter-relations between and across 
layers [6]. These mental abstractions are automated by computing machinery. 

Designing a course on computational thinking often reflects on computer science 
and programming. The three terms, though strikingly related, bear different messages 
and interpretations. CT emerged in mathematics and CS but CS is certainly not the 
only discipline CT is practiced in, is applied to, or has impact on [1]. Computational 
thinking is a skill whilst computer science is an academic subject. Programming for 
computer scientists and engineers is analogous to constructing proofs in mathematics. 
Programming is neither necessary nor required to develop computational thinking, but 
mastery of CT skills is vitally crucial for effective learning of programming [7]. 

Computational thinking has actively been installed into a large number of schools 
and universities worldwide. Despite variation in details, the fundamental principles of 
the concepts of CT curriculum remain the same. Wing [5] kicked it off with solving a 
complex problem by reducing it to simple ones where we already know a solution or 
an approach. She underscored abstractions, recursive procedures, heuristic methods, 
parallel processing, and conceptions of scales. Lu [7] focused on vocabularies and 
notations comprising CT. Barr [8], on bringing CT to K12, asserted the capabilities of 
data collection, analysis, and representation. The International Society for Technology 
in Education and the Computer Science Teachers Association put more emphasis on 
operational definitions [9]. The College Board for Advanced Placement (AP) in CS 
underlined communications and collaborations [10]. From the United States to the 
United Kingdom, Computing at School, the forefront of the new Computing National 
Curriculum, described not only the conceptual framework of CT but also pedagogic 
techniques that demonstrate CT skills: reflecting, coding, designing, analyzing, and 
applying. These constitute the scientific methods for computer scientists [11]. 
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Not only have schools incorporated computational thinking into their curriculums, 
but universities have also added CT as an introductory CS and engineering course or 
as a general education for other disciplines. Genuine implementations of CT classes, 
nevertheless, are still largely varied. There is not yet a universally adopted syllabus or 
a comprehensive textbook. Instead, the community relies on shared resources as the 
field rapidly evolves. There is an excellent mix of old-time mathematical games, logic 
puzzles, and a decent number of creative activities to learn basic sorting techniques. 
The CS Unplugged Project of New Zealand is infamous for learning computer science 
without a computer [12]. It provides free indoor and outdoor learning activities to 
engage learners of all ages to computational thinking. Those who prefer undertaking it 
with block programming environment are familiar with Scratch [13], which allows 
creators to create interactive arts, animations, stories, and games. Providing a stepping 
stone, embarking on an intensive track, computational thinking can be rigidly coupled 
with conventional high-level programming languages such as Python, Java, or C++. 

Approaching CT from a different perspective, we present pedagogical benefits and 
designs of an integration of classical and contemporary elements from AI – artificial 
intelligence into an introductory course for CS and engineering undergraduates. We 
propose a comprehensive module on CT comprising a series of carefully selected AI 
puzzles and games that have been deliberately organized by not only the levels of CT 
skills required to solve the problems but also coherence, continuity, and cohesion of 
the underlying fundamentals in data structures and algorithms. Student performance is 
compared with the same course offered a year earlier before AI was blended in. 

In what follows, rationale behind our choice of AI for CT is provided in Section 2. 
Sections 3-6 describe the structure of our classrooms. We primarily focus on an active 
learning environment, involving collaborative problem solving (CPS) strategies. How 
characteristics of AI problems uniquely foster students’ motivations and engagements 
are discussed. AI effectively captures student attention and encourage their cognitive 
reasoning. Following in Sections 7-10 are the different constituent components of CT. 
We demonstrate how they are complemented by a mix of problems from intelligent 
systems and computational intelligence. Drawing a path toward machine automation 
with inspiration from ordinary applications, our course goes from the art of problem 
solving to data structures and algorithms while a computer or a source code is never a 
requirement. We discuss results and give a concluding remark in Section 11 and 12. 

2 Rationale for integrating AI into CT for introductory 
engineering and computing courses 

A major challenge in designing an active and collaborative problem solving class is 
an exhaustive selection of intellectual activities and exercises, that not only promotes 
computational thinking but is also practically interesting and pleasantly enjoyable. We 
conjecture that problem solving alone is too broad when targeting computer science 
and engineering entering undergraduate students. Algorithmic-oriented constructivist 
activities efficaciously offer much greater benefits, involving the fundamental control 
flow structures in programming: sequential, selection, and repetition. 
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We embrace artificial intelligence because AI continues on a rise, dominating the 
field of computer science and influencing interdisciplinary research. Not only has AI 
become a core requirement for most third and fourth year undergraduates in CS, but 
students can also easily relate to intelligent systems, from everyday board games to 
embedded features in familiar online and mobile applications. Being connected to a 
domain at hand naturally gains attention. Consequently, maintaining the momentum 
becomes painless. Problems in AI are hard but they can be neatly broken down into 
multiple levels of difficulties and complexities for diverse groups of students. Settings 
can be standalone sessions or a small series. More importantly, solving problems in 
artificial intelligence is comprehensively completed with various components that are 
perfectly aligned with computational thinking skills. Elementary ingredients comprise 
logical reasoning, critical and analytical thinking, foundations of mathematics, and 
decision-making. Lateral thinking and creativity are indispensable in designing state 
representations. An intermediate level of systematic planning process is a necessity to 
analyze flows of control. Abstraction and abstract thinking are chiefly imperative to a 
visualization of both data structures and algorithms. Details of these computational 
thinking aspects that are embedded in AI problems are presented in Sections 7-10. 

3 Structuring an introductory course on computational 
thinking for entering CS and engineering undergraduates 

Regardless of its specific name, the underlying principles of a CT course remain 
unchanged. A course on computational thinking is designed to connect learners with 
computing, to build logical and analytical skills necessary to efficaciously formulate a 
problem from its specification, and to develop algorithmic thinking. Computational 
thinking is crucial to programming. Without a practice on computational thinking, for 
many even an introduction to programming is awfully difficult. A computer can be 
programed to turn a complex task into a simple one. Struggling to work out a problem 
computationally in the first place, how could one devise and solve it using syntax and 
semantics of a never seen before programming language? We design and structure our 
computational thinking course as a prerequisite to programming. Primarily focused on 
evolving mental tools and developing metacognitive skills, no computing machine is 
ever required. Key elements of our lesson plan are summarized in Table 1. Our active 
constructivist college classrooms are described in Section 4, student motivations and 
engagements in Section 5, and the realization of computational thinking in Section 6. 

Table 1.  Keys to facilitate collaborative computational thinking in active learning classrooms 

Learning 
Environment 

Encourage 
Engagements 

Unlock Unforeseen 
Usages of CT 

Teach less, learn more 
Structured activities 

Student centered 
Highly dynamic 

Tangible and relatable 
Challenge with a twist 

Competitive games 
Enjoyable and fun 

Reinforced exercises 
Interactive simulations 

Focus on a specific goal 
Demo of advanced courses 
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4 The classroom environment uses active learning approaches 
with a focus on collaborative problem solving strategies 

Designing any skill-based subject always poses a challenge. Neither lecture-based 
teaching nor rote learning approaches are appropriate or beneficial. Developing a skill 
requires significant amount of hands-on experiences on several practical exercises. As 
Bonwell and Eison [14] summarized, exclusively and passively receiving information 
from lecture constrains student learning. Students learn more being active. They must 
be engaged and devoted physical and psychological energy into academic experience. 
Students should be doing things besides listening. College classroom discussions are 
preferable to lectures when the learning objectives involve developing thinking skills 
and applying knowledge to new circumstances [15]. Discussion, reflection, as well as 
attitude play a major role in active teaching and learning models, especially to invoke 
higher-order thinking, including analysis, synthesis, and evaluation [16]. 

We have setup active classrooms where students spend most of their class-time on 
learning-by-doing. We provide large open space for everyone to learn, to express their 
thoughts and ideas, and to argue or to criticize contrasting viewpoints. Students can 
gradually construct their own intellectual knowledge; instructors are there to facilitate, 
to coach, to guide, and to provide a network of support system. Learning environment 
is generally friendly and largely dynamic. Student performances are constantly being 
observed and evaluated on an individual basis, considering academic achievements as 
well as efforts. Being learner-centric, while the objectives and the outcomes of every 
class are rigidly maintained, detailed implementations are adjusted in accordance with 
the needs and the desires of the entire class. 

No classes are passive. Chalk-and-talk lectures are used only when instructions are 
given. They are kept short, delivered concisely in no more than ten-to-fifteen minutes 
block of time. This is in alignment with a short attention span of today’s digital native 
students. A new challenge is presented in every session. Problems are meticulously 
selected and carefully sequenced by their relative difficulties and in accordance with 
Bloom’s taxonomy of cognitive learning domain that is remembering, understanding, 
applying, analyzing, evaluating, and creating [16]. Though some are individual tasks, 
most assignments require collective teamwork and good team effort. In the following, 
we highlight three peer-elements that flawlessly complement our active constructivist 
classroom experience. They are peer discussion, peer teaching, and peer reflection. 

4.1 Peer discussion 

Students work in small groups, usually groups of three, four, or five. Everyone is 
strongly encouraged to get involved and to fully engage in every step of solving every 
problem. A group works collaboratively to figure out a solution to a problem at hand. 
Intellectual discussions are key to success. Group members are constantly discussing 
with one another. As facilitators and coaches, instructors have to monitor and listen to 
their conversations. We join them not only when there are questions, but also when 
they accomplish a milestone or when they unfortunately take a turn off the right track. 
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Encouragement is of primary vitality. When a group is stuck, bogging down, feeling 
regrettably discouraged, instructors must be there to guide them through. We provide 
hints, give clues, pointers, and suggestions, but never give out a complete solution. 
Time and again we keep reminding students that their experience of solving problems 
and their ability to think computationally is our ultimate goal. Catching their feeling 
at the very second they arrive at a hard-earned solution is beyond rewarding; allowing 
students to reflect on their moments of success effectively build self-motivation and 
encouragement to overcome any obstacle and solve another problem with confidence. 

4.2 Peer teaching 

Learning by teaching others is placed at the top of the pyramid [17], exhibiting the 
maximum retention rate above every other learning approaches. Peer-teaching can be 
effectively and efficiently incorporated into any active classrooms. This is especially 
well suited for first-year undergraduates who may have entirely different high-school 
backgrounds. Some may be able to solve a particular problem easily, but have a hard 
time on another. Some may learn quickly, while others need a bit more time. Instead 
of reckoning on these as an issue in a classroom, we turn it around and have students 
assist one another. Teaching others allows them to reconsider details that they may 
have overlooked either accidentally or intentionally. Those who teach typically gain 
deeper understanding of the problem, the solution, and, more importantly, the process. 
The ones who learn gets to express their viewpoint and to find out how a friend solves 
it. A peer-teaching exercise remains a win-win situation so long as it does not turn to 
be an unconstructive competition (i.e. to aim at overtaking each other for better scores 
and grades). This is where a coach must always encourage and maintain constructive 
collaborative efforts, ensuring every student to learn together and to succeed together. 

4.3 Peer reflection 

Thinking about one’s own thinking process and learning experience is fundamental 
to metacognition and transformative learning. Engaged higher-order thinking process, 
students reflect on their cognitive knowledge and regulation. Along with a reflection, 
they were asked to comment about the class: anything good or bad, anything they like 
or dislike; related to the contents, teaching or learning approaches, or even friends or 
instructors. Social factors or cultural traits may hinder some to express comments and 
criticisms. We relaxed it and made it easier by announcing a reflection as optional and 
anonymous. We intentionally and openly paid no attention to who wrote each note 
and allowed a friend to drop it off in a shared box. Student reflections are invaluable, 
mirroring and recognizing their unique perspectives. As it turned out, the quicker we 
respond to the class, either verbally or in action, the more they speak up the next time. 
This echoes how their every voice is listened to and respected. Before long, students 
adjust. They become comfortable enough to reflect face-to-face on the spot. Particular 
attention is paid to students’ spontaneous reactions and negative feedback, so changes 
toward improvements could be made. Students truly appreciate it when their opinions 
matter; their participations subsequently increase; they start learning with happiness. 
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5 AI problems are tangible and genuinely practical; naturally 
and effectively fostering student motivation and engagement 

George Polya brilliantly summarized a process of finding a solution to any problem 
in four simple but powerful steps, none of which should be overlooked. He described 
it in his exceptionally wonderful book, “How to Solve It,” published in 1945 [18]: 

“First, we have to understand the problem; we have to see clearly what is re-
quired. Second, we have to see how the various items are connected, how the un-
known is linked to the data, in order to obtain the idea of the solution, to make a plan. 
Third, we carry out our plan. Fourth, we look back at the completed solution, we 
review and discuss it.” 

Problems in artificial intelligence possess unparalleled characteristics that tailor to 
these four phrases of Polya. A number of AI problems are naturally tangible, which 
significantly aids in understanding of the various constituent components, conditions, 
data, and the unknowns. Having background knowledge or prior involvements makes 
things easier. It provides an insight and creates a connection; enabling individuals to 
imagine it deeper and clearer. These can be things we have seen before with an added 
twist, considering an old task from an unexpectedly different angle. With little or no 
confusion on what is required, the focus is fully attended to the challenges of creative 
thinking. Examples of AI-related problems that incorporate machine intelligence into 
age-old board games are tic-tac-toe, checker, chess, or the game of Go; most of which 
involve search strategies and analysis of an enormously large and difficult to evaluate 
search space. Observing how a computer plays and wins the game automatically draw 
out individual interests, engagements, and motivations to seek solutions. 

Another preeminent feature of problems in AI domain is that they typically appear 
complicated at first glance but the underlying implementation is surprisingly simple. 
For example, it sounds rather difficult and complicated, especially to novice engineers 
and programmers, to write an application for a computer to play a perfect game of tic-
tac-toe against a human. A 2D game-board, nonetheless, can simply be modeled using 
either one- or two-dimensional arrays and a gameplay can easily be simulated through 
a series of selection procedures. Being assigned a seemingly difficult task, students 
frequently display a frantic look, calling out that it is unfair. It is not only challenging 
but simply beyond their capabilities and the scope of the class. We patiently wait until 
their experience would turn them around after they have arrived at a solution in a fair 
amount of time. Instead of being discouraged or intimidated, this learning experience 
genuinely enhances the joy of accomplishment. They proudly and successfully solve 
the problem that they originally imagined to be rather impossible. This further triggers 
inspiration and motivation. Students become excited about their next challenges in the 
upcoming classes. They look forward to getting their hands dirty on another problem. 

Looking back at the process of figuring out such an AI problem, although it is not 
extremely demanding, good planning is without a doubt required (i.e. Polya’s second 
principle). Recollecting from their past experience, students discover how a computer 
must move its game pieces in order to win against a human who may play optimally. 
They guess and check, try trial and error, eliminate possibilities, look for patterns or 
special cases, or devise a rule or a heuristic method. In carrying out a plan, instead of 
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working on a real computer application (this is a computational thinking course with 
no programming required), students undertake roleplaying. One team acts as a robot, 
the computer they have designed, and the others are just being themselves, humans. 
This energetically creates a lively, cheerfully entertaining, and stimulating classroom, 
in which students are unlikely to be asleep. The ability to transparently incorporate a 
variety of competitions into problem solving and computational thinking activities is 
another favorable peculiarity intrinsic to puzzles and games in artificial intelligence. 
Structurally constructive tournaments are practically powerful in college educations; 
they effectively gain and maintain students’ attention and engagement [19]. 

During the fourth and last phase, different solutions are compared, commented, and 
analyzed. Together with the class, we reflect on pros and cons of varying approaches, 
flaws or drawbacks, and plausible improvements. Student performances and efforts 
are assessed and evaluated. The next activities are then selected accordingly, filling-in 
student curiosities and those skills that appear lacking. To this end, AI offers not only 
a wide range of diverse problems, but also variations of similar problems and distinct 
problems that employ similar procedures. As an example in connection with tic-tac-
toe, a two-dimensional lattice mesh can be customized, creating contrasting AI search 
problems. Constraints can be mixed and matched, forcing different search strategies. 
These practicable exercises not only reinforce the previously learnt concepts but also 
allow knowledge building from something students already know. 

6 Simulations and live-demonstrations unlock the unforeseen 
necessities and uses of computational thinking skills 

Especially early on in their undergraduate studies, students often question lessons 
being delivered: what they are for and why they have to do seemingly useless works. 
Courses with abstract contents, computational thinking clearly included, fall into the 
high-risk, if not dangerous, zone in this particular aspect. Importance of these skills is 
often not realized until they are inevitably needed; worse yet it is generally difficult to 
convince students of things they cannot foresee. Realistic realizations of applications 
in artificial intelligence persuasively relax these constrains. Students are able to focus 
on an unambiguous objective such as reaching a goal state or winning the game. A 
live-demonstration of a complete and interactive AI program after every CPS session 
effectively boosts the tangibility of a problem (in some occasions, a demonstration is 
advantageous in the beginning of the activity when a problem is introduced). Students 
are thrilled to see a working system, being convinced that it is indeed plausible. We 
let students test the program first-handed. Just providing them space to learn, explore, 
experiment, and discover, many have come up with several ingenious questions and 
innovative ideas. An intellectual discussion then continues. Furthermore, they enjoy 
peeking at its constituent parts that will be covered in advanced courses later in their 
curriculum. It firmly reassures them that what they are studying today will be useful 
in a near future and provides better realization of what they are preparing for. 
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7 Solving AI problems is a comprehensive exercise for crafting 
computational thinking toward machine automation 

We designed our course by aligning several problems in AI with fundamental CT 
skills. Creative CPS classroom activities were carefully planned in ascending order of 
their complexity (following Bloom’s taxonomy of cognitive learning domain [16]). In 
Table 2, we organize the core essences of CT into conceptual understanding, practical 
skills, and operational approaches, each divided into a problem solving phase, a path 
toward automation (data structures and algorithms without coding nor programming), 
and everyday innovative applications in social functions. Implementations of these 
computational thinking aspects using artificial intelligence problems and exercises are 
described below: elementary problem solving in Section 8, intermediate algorithmic 
thinking in Sections 9, and 10. We discuss results and conclude in Section 11 and 12. 

Table 2.  Essences of CT are organized into conceptual foundations, compulsory skill sets, and 
how to approach them hands-on. Learning of these CT skills are divided into three suc-
cessive phases: elementary problem solving, intermediate algorithmic thinking toward 

automation, and their everyday functions in innovative applications. 

Conceptual 
Understanding 

Skills and Practical 
Implementations 

Hands-on 
Approaches 

Problem solving 
! Problem formulation 
! Problem decomposition 
! Representation of states 

Recognizing patterns 
Mathematical modeling 
Logical and lateral thinking 
Multiple layers of abstraction 

Tinkering 
Exploration 
Creative designs 
Trials and errors 

Toward automation 
! Data structures 
! Flows of controls 
! Recursive procedures 

Data virtualization 
Systematic thinking 
Algorithmic insights 
Step-by-step instructions 

Tracing 
Debugging 
Simulation 
Perseverance 

Innovative applications 
! CT is for everyone 
! CT is everywhere 

Computer programming 
Evaluations and analysis 
Scales and parallel computing 

Teamwork 
Collaboration 
Communication 

8 AI problems instinctively promote problem solving skills 

Solving problems in artificial intelligence requires computational and systematic 
thinking. Each involves several problem solving paradigms: guess and check, drawing 
diagrams, creating tables, looking for patterns, using variables, or working backward 
[18]. AI problems typically have not one, but multiple correct solutions. This allows 
students to actively brainstorm in groups, to explore various designs, to defend and to 
debate their ideas, to compare and contrast pros and cons of different methodologies. 
Through discussions, not only is their critical and analytical reasoning reinforced but 
their communication skill is also challenged. They need to figure out a way to clearly 
and completely express their thoughts either verbally or in writing to let their friends 
understand. Describing logical reasoning is not as simple as it may appear; practicing 
it is key. Individually or collaboratively, students search for a solution by playing and 
tinkering. Through trials and errors, they succeed in one step and fail in another. Once 
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one solution is found, attempting to find another may trigger them to think outside the 
box, to approach the same problem from a different angle. Ultimately, arriving at the 
best possible answer is second to developing their computational thinking skills. 

A number of steps are expected in figuring out most AI problems. Spontaneously 
and automatically, this force one to write down his or her solution in smaller steps. It 
is, however, rarely a straightforward task to write down a state, i.e. a snapshot in time 
of the environment and the agents in it. Students instinctively draw out their creative 
side, applying lateral thinking skill. Without formal lessons, they are literally learning 
knowledge representation and reasoning in both computational thinking and artificial 
intelligence. They formulate a problem, defining and parsing their own computational 
language. Solving it, they break a problem down into smaller, more manageable sub-
problems that are easier and simpler to solve. In effect, the essence of abstraction is 
implicitly being employed; indispensable specifics are highlighted whereas irrelevant 
and minor details are discarded. All these aforementioned skills comprise an integral 
component in both problem solving and computational thinking. 

As a concrete example, we successfully conducted a lively class utilizing a classic 
AI missionaries and cannibals puzzle [20], often referred to as river-crossing problem. 
Using only one two-person boat, the goal is to transport three missionaries and three 
cannibals from one side of the river to the other without any missionaries being eaten. 
Missionaries remain safe on either river bank so long as they are not outnumbered by 
cannibals. We provided six stone pieces, three white and three black. These supplies 
not only got them started, but also made it much more enjoyable. Some groups folded 
a boat origami; others used their pencil case as a boat. After a few trials and errors, 
most were quick to find some solution. Then, we revealed the real challenge: asking 
students to present their solution step-by-step on a piece of A4 paper. Showing off 
their beautiful artistic skills, most immediately opted for drawing a pictorial diagram. 

At this stage, students had completed a problem solving step. We now guided them 
to the next phase of thinking computationally – how to formulate and represent this 
river crossing puzzle in such a way that it can later be programmed on a computer. 
The representation of the problem is always crucial. A bad representation could make 
it significantly more difficult to solve. Taking into account conditional constraints, we 
gently blended in the use of numerical tuples and ordered pairs for representation of 
states, leading to a concise solution proposed by Amarel in 1971 [21]: 
 
!!" ! !"# ! !"# ! !"" ! !"" ! !!" ! !!" ! !"! ! !"# ! !"! ! !"# ! !!! 
 
where each state consists of three numbers. It describes the number of missionaries, 
followed by the number of cannibals, both on the initial river bank. The last number 
indicates the side of the river the boat is on: 1 for the initial bank and 0 for the other. 

It is worth reminding ourselves that students are naively solving problems assigned 
to them. Their approaches are derived solely from authentically practical viewpoints. 
Though relevant, their strategies are not based on any theoretical basis in AI. After all, 
this is a computational thinking module, not an artificial intelligence course. Formal 
conceptions of intelligent systems are neither taught nor expected. A large number of 
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student solutions may not be well-structured but they do accomplish the objectives of 
the course that is to first-hand experience CT and to involve their metacognition. 

9 AI problems neatly feature control flow structures 

Control flows: sequential, selection, and repetition, are next to tackle. Once agreed 
on a representation (and a solution) of the river crossing puzzle, we questioned how 
students would program a computer so it performs the same or similar logical steps to 
search for solutions. Instead of a solution path, they sketch a search space. Lines were 
drawn, linking successive states. Arrows were used to signal a valid transition from 
one state to another. These basically reciprocate sequential flows. Constraints validate 
possible moves resulting in a number of states not drawn. Omitted states are either 
unreachable or invalid (containing more cannibals than missionaries or having a boat 
crossing the river without anyone rowing it). This process: sequentially enumerating 
all possible next states and selecting only states that are valid based on the constraints, 
iterates. It repeats until the goal state is reached, i.e. everyone safely crosses the river. 

This exercise is the first installment of the fundamentals of control flow structures. 
Control flow stands at the core of computing concepts and programming routines. It is 
generally embedded in an assorted set of interesting problems and puzzles involving 
computational thinking and analysis. Its extensively broad range of applications does 
provide an excellent opportunity to revisit the ideas many times later in the course, 
reinforcing the cores and preparing students for their advanced computing courses. 

Besides, at a completion of this activity, every student has a more or less complete 
but unstructured flowchart, i.e. a workflow or a diagram that represents an algorithmic 
process. This lays out the groundwork for their following lessons on flowchart and 
unified modeling language commonly covered in programming courses. By then, the 
topic will not be surprisingly new to students, making it easier for them to understand. 
They have seen it and have done it. Essentially, they got an entire blueprint. An added 
component will only be how to write it formally using proper standardized symbols. 

10 AI problems allow practical explorations of fundamental data 
structures, algorithmic thinking and design, and recursion 

Contents in many intelligence systems have strong linkage with data structures and 
algorithms. Designing and implementing a computer program to simulate an AI agent 
requires a solid comprehension of data representation, data processing, data stores, 
data flows, and algorithmic procedures. Although this is also undeniably true for most 
if not all programming projects in other disciplines, the field of AI uniquely offers 
superior variations in computational complexity both space and time. It covers a wide 
range: from basic to intermediate and advanced levels. As a result, an excellent mix of 
class activities can be designed to match with student interests and their abilities. 
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10.1 AI and games: revisiting state representations, followed by a practice in 
data and memory virtualization of one-dimensional structures 

Arrays are the first data structures usually introduced after primitive data type, e.g. 
a character, integer, floating-point number, and boolean. Accomplished programmers 
have mastery over array indexing and manipulation, for instance, slicing or extracting 
subarrays, addition and subtraction of elements in arrays, comparison and non-linear 
operations on arrays. A familiar puzzle such as tic-tac-toe is a fine starting point for a 
one-dimensional array structure. Even though the physical board is a two-dimensional 
planar structure, implementing it with a nine-cell one-dimensional array is common in 
practice (illustrated in Fig.1a and Fig.1b). This exercise handily incorporates not only 
array indexing but also modular arithmetic. Mapping from one- to two- dimensional 
indexes, the column number in 2D is equal to its corresponding index in 1D modulo 
by 3, which is the number of elements in each row. Going further, one may formulate 
a binary representation of the state of the game and involve bitwise operations, all of 
which are mandatory in CT for computer science and engineering studies. 

 

!!! ! !!! ! !!! ! ! !! !! !! ! !!! !! ! !!!! ! !!!! !
!!! ! !!! ! !!! ! ! !! !! !! ! !! !! ! !!! ! !!! !
!!! ! !!! ! !!! ! ! !! !! !! ! !! !! ! !!! ! !!! !

 

(a) 2D array indexing! ! (b) 1D array indexing! ! (c) changes of indexing for traversal!
 

Fig. 1. Array indexing in one- and two-dimension 

Aho and Ullman defined the field of computer science as “the mechanization of 
abstraction… computer science is a science of abstraction – creating the right model 
for thinking about a problem and devising the appropriate mechanizable techniques 
to solve it” [22]. By the same token, computational thinking involves automation of 
abstraction through computing [6]. Thenceforth, the significance of abstractions and 
data abstractions cannot be overstated. Proficiency in CT requires virtual visualization 
of data structures and memory allocations. We have found that it is never too early to 
introduce it to every computer science and engineering student; as a matter of fact, the 
earlier the better. Without further delay, abstraction of data structures can be promptly 
integrated into this part of our computational thinking sessions. 

After students have informally learned the concepts of arrays (again, this is CT; it 
is not Data Structures), the class is divided into two teams to compete against each 
other. Any game that utilizes a simple one- or two-dimensional array structure can be 
installed. Familiar board games are good choices; tic-tac-toe is one example. Gaining 
a momentum by reckoning on natural competitiveness in college students, the game 
starts with a normal play. Challenges are gradually added as a competition continues. 
Our ultimate goal is to facilitate a gameplay that implicitly drives or even forces every 
student to construct his or her own virtual game pieces and board and virtually carry 
out moves on it. Notes, papers, pens, pencils, and all stationaries are disallowed. Each 
team instantaneously realizes that they need to agree on some representation on which 
their communications are based. Knowledge and state representation is reinforced and 
put to use. Effectiveness of their representation model is then right away tested. 
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Picking up the pace, talking and discussion among team members are not permitted 
and every member of the team must in turn call out a move. An instinctive desire to 
win, coupled with peer pressure not to make a false move, forces everyone to focus on 
data virtualization as the game progresses. Essentially, students are playing as a team 
while practicing virtualization skills as an individual. Our outcome of this activity was 
nothing less than impressive. Students energetically dove in; they had fun. Thinking it 
was easy they quickly sensed the barriers. Playing a familiar game in an unusual way 
was confusing at times, however, once they get the knack of it, the game advanced 
quite rapidly. Most importantly, it highlights the power of their mental tools. Tools of 
the mind is a concept attributed to Vygotsky [23]. He affirmed that cognitive learning 
and behavior in small children remain largely limited until they learn to use their own 
mental tools. Instructional strategies should aggressively foster cognitive functions, 
extending and transforming not only students’ physical but also their mental abilities. 
Utilizing the tools of the mind to help us think logically and computationally, to solve 
problems, and to create solutions is a noticeably challenging task that requires a lot of 
experience and practice. It is an essential skill mastered by experienced programmers. 

10.2 AI and search: traversing two-dimensional grid structures, implementing 
breath first search and depth first search strategies 

The field of AI contains a large collection of logical problems on 2D grids that are 
fundamentally associated with graph or tree data structures. Intellectually entertaining 
puzzles and games keep students engaged while they are inevitably learning. We look 
at Wumpus World, an infamous toy example originally named Hunt the Wumpus and 
published in the Best of Creative Computing [24]. On a 4-by-4 square grid of a pitch-
dark cave, an agent plays hide-and-seek to search for a pile of gold while avoid being 
killed by the Wumpus, a mysterious dangerous monster, and falling into a bottomless 
pit trap. Unable to directly see what lies ahead, the agent must strategically analyze 
and thoroughly plan its path based on clues it can perceived. A stench is present in the 
four cells neighboring the Wumpus and there is a breeze surrounding a pit. 

Another intensive assignment, this fun puzzle excellently combines knowledge or 
state representation, critical thinking and logical reasoning, planning, plus axioms and 
situation calculus. To avoid dangers, a player, acting as an AI agent, needs to examine 
multiple sequential and conditional control flows all at once. Algorithmically, hunting 
the Wumpus entails exploration and search on two-dimensional arrays. An attempt 
not to overlook any cell during a search and not to visit any cell more than once leads 
to a systematic traversal on a two-dimensional grid. Ordinarily by intuition, students 
wind up performing either a breadth first search (BFS) or a depth first search (DFS). 
Both are common floodfill path finding routines on a 2D mesh or lattice structure. A 
live-demonstration of these search techniques on a computerized Wumpus World not 
only enhances their understanding, but also boosts their motivation and engagement. 
Connecting it to greater, more realistic applications that literally employ the same or 
similar search methods is an inspiration, providing insight into how far these simple 
strategies can go. Further extensions to queue and stack abstract data types for BFS 
and DFS, respectively, are optional, depending upon the dynamic of the entire class. 
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Attending to details on data structures and algorithms, programming how an agent 
makes a move on a 2D grid pushes the context of CT towards another aspect of array 
indexing. Illustrated in Fig.1c, visiting a neighboring cell involves a shift-by-one of an 
index in either the horizontal or the vertical direction. This is practically very useful in 
coding of an iterative or repetitive loop. An introduction of such concept for students 
is of particular interest. It makes the picture more complete and it is not at all difficult. 

10.3 AI and recursion: recursive programming concepts, no coding required 

Touching on DFS, recursion is practically around the corner. There are no reasons 
to pass up an opportunity to introduce it. One of the most challenging lessons thus far, 
tackling recursion for the first time is rather daunting and quite confusing. Beginners 
can get lost quickly after only a few steps. In spite of the dilemma, a careful tracing of 
a recursive routine is unavoidably the key to understanding it. An old-schooled pencil 
and paper practice goes a long way. Convincing a digital native to write this step-by-
step, nonetheless, is a tougher concern. The work requires a willingly strong ambition, 
perseverance, and persistence to iteratively trace it through deeper steps and back. It 
appears repetitively tedious and painstaking. Any small mistake can potentially break 
the entire sequence and backtracking to find errors is even harder; this sounds scary. 
We pulled this off by making it a high stake but highly flexible and enjoyable project. 
Each student picks his own problem. Overlaying a photo or a drawing of interest onto 
a 2D grid, they recursively run DFS to flood-fill the area covered by their image. Each 
is free to decide how big or small of the image, with which they are willing to work. 
They make their own choice on the amount of details around the edges, the borders of 
the image, and to which level to carry out DFS. With a lot of encouragement, students 
gradually responded. The reward of this rigorous exercise was worthwhile. Students 
were not only extremely proud of their hard work but also indeed mastered recursion. 

11 Results and discussions 

Evaluating our design of CT with AI module, we tracked student performance in a 
required introductory computing course, Problem Solving Techniques, during two 
consecutive years at the Faculty of ICT, Mahidol Univ. The original course with 241 
students focused on the traditional problem solving style. In the second year with 269 
students, elements from AI were blended in. Table 3 details grade distributions of the 
entire class. With CT and an integration of AI in place of problem solving alone, the 
percentage of students achieving the highest grade was significantly greater and that 
of the lowest grades was significantly lower. Changing the course design necessitated 
us to reshape a performance evaluation rubric. Students has made every effort to think 
computationally to overcome unseen challenges in solving AI problems in every class 
rather than passively listen to chalk-and-talk lectures or follow recipe-style exercises. 
Emphasizing on the process, efforts contribute to a score; a grade is not solely based 
on answers in exams and physical attendance. Keeping it well balanced, however, no 
free lunch was handed out – the grade still reflects the student’s grasp of the material. 
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Table 3.  Grade distribution of a problem solving techniques course. Listed is the percentage of 
students getting grades: A, B, C, D or below. We compared two consecutive years: one 
followed a traditional problem solving style, the other is our approach with CT and AI. 

 A B C D or below 
Our CT with AI course design 37.918 37.175 19.331 5.576 
The traditional problem solving 19.087 55.187 16.598 9.129 

12 Concluding remarks 

We discussed and demonstrated how solving problems in artificial intelligence is 
an effective pedagogical approach and instructional design of computational thinking 
for entering undergraduates in engineering and computing fields of studies. Elements 
from AI align excellently with the foundations of CT skills and strongly engage every 
student in active exploration and discovery, constructing their own understanding and 
knowledge from hands-on experiences. Besides developing technical competence, AI 
activities spontaneously invite learners to communicate efficiently and effectively and 
to work collaboratively as a team. Every problem in artificial intelligence is unique; 
making it an exciting challenge. Each carries a decent amount of complexities that is 
moderately demanding and difficult for an average freshman to solve alone, whilst it 
is particularly suited for a small group. Moreover, AI computing can be methodically 
decomposed into multiple parts, enhancing the understanding of scales and extending 
to the realization of hierarchical and parallel processing. Beyond college classroom, a 
number of intelligent agents are repeatedly linked with common everyday application 
innovations, from frontend functions to behind the scene operations. This familiarity 
neatly provides continuously insight and creates endless inspiration. 
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