
Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Teaching Concurrent Programming Concepts Using
Scratch in Primary School: Methodology and Evaluation

https://doi.org/10.3991/ijep.v8i4.8216

Eleni Fatourou, Nikolaos C Zygouris!!",
Thanasis Loukopoulos, Georgios I Stamoulis

University of Thessaly, Lamia, Greece
nzygouris@uth.gr

Abstract—Computer programming can help children develop problem solv-
ing and analytical skills. Thus, many countries have included computer science
in the curriculum of primary school. Given differences in culture, available in-
frastructures, as well as the age pupils are introduced to computer science,
forming a computer science curriculum still remains a challenge. Towards this
end, this study focuses on exploring the potential merits of introducing concur-
rent programming concepts early in the learning process. The basic premise is
that although concurrent programming at its full details is a rather advanced
topic even at university level, it is everyday practice to perform two or more
tasks simultaneously that might need (or not) some sort of synchronization.
Therefore, the tutor can capitalize on everyday experience to explain basic con-
cepts on concurrency. Such correlation between life experience and concurrent
programming challenges may expand the cognitive functions of the pupils and
provide them with further background to improve analytical thinking. The pro-
posed curriculum for fifth and sixth grade primary school was adopted in seven
classes in Greece. Results indicate that uninitiated to programming pupils at the
age of ten (fifth grade) were able to comprehend basic concurrency topics,
while pupils at the age of eleven (sixth grade) with some programming familiar-
ity were able to understand more advanced concepts.

Keywords—concurrent programming, computer programming, constructivism,
Scratch, primary school

1 Introduction

Computer programming is considered a basic literacy in the digital age helping
children to develop creative problem solving skills, logical thinking and mental flexi-
bility. As indicated by European Schoolnet in [6], only ten European countries have
fully integrated computer programming in their primary school curriculum, as of
2015. Given differences in culture, available infrastructures, as well as the age pupils
are introduced to computer science, the challenge of forming a computer science
curriculum that not only offers basic background but expands the cognitive horizon
and cultivates the imagination of students, still remains a challenge.

iJEP ‒ Vol. 8, No. 4, 2018 89

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Early computer science courses typically focus on structured programming con-
cepts such as: control/selection constructs and iterations. The primary educational
effort (particularly in the case of Greece) is tailored towards applying these building
blocks into single thread execution scenarios, overlooking scenarios with concurrent
multiple threads. However, concurrency rises more than often in educational pro-
gramming platforms such as Scratch. For instance, when two independent entities,
e.g., sprites, move and act in a labyrinth, it is not uncommon that racing conditions
appear, whenever the entities require simultaneous access to a common resource, e.g.,
some treasure object. As a result, pupils might experience “unexpected” program
behavior and occasional program crashes. The teacher has then two practical options:
(i) either overlook the problem, diminishing its importance, and continue focusing on
single thread correctness criteria, or, (ii) attempt to give a thorough explanation of the
reasons of such “unexpected behavior”, thus, introducing concurrency issues to pu-
pils, albeit in an ad-hoc, unstructured and unplanned manner which might prove dis-
couraging.

Motivated by: (i) the apparent “knowledge gap” concerning concurrency that exists
on many typical early computer programming syllabuses, (ii) the fact that pupils are
accustomed to multitasking in their everyday life and (iii) the importance of multi-
threading and multitasking in modern software and hardware, this study investigates
the enrichment of a typical syllabus with multithreading concurrency issues. The main
aim is to introduce the pupils to the basic challenges of concurrent programming in a
systematic manner, without sacrificing the level of detail contained on a typical sylla-
bus as far as simple single thread structured programming is concerned. The devel-
oped syllabus was tailored and evaluated for the education system of Greece, whereby
pupils are introduced to programming concepts at the age of ten using Scratch.

The rest of the paper is organized as follows. Section 2 presents the related work
from the particular standpoint of the pedagogical approach followed (constructivism).
Section 3 illustrates the methodology together with the proposed syllabuses. Section 4
gives an overlook of the main computer programming pitfalls experienced by students
and the pedagogical approach to tackle them. Section 5 includes the evaluation setup
and discusses results. Finally, Section 6 provides the concluding remarks.

2 Related work

The core approach of the study adheres to the constructionist theory, according to
which the learning process is not only transmitted from teacher to pupil, but rather
constructed in the mind of the pupil in the form of active learning [16], [18]. Con-
structivism theorists such as Piaget and Papert view children as the builders of their
own cognitive tools, as well as their external realities [1]. Moreover, Papert believes
that programming has a tremendous potential to improve classroom teaching [13].
Thus, the dominant theory of learning, supports that knowledge is actively construct-
ed by the pupil and not passively absorbed from text books and lectures [1].

Constructivism has been intensively studied by researchers of science and mathe-
matics education [1]. However, there has been much less work on constructivism in

90 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

computer science education [2]. In 1980 computer programming projects become to
appear with more frequency in schools, but observations of student learning did not
always match the powerful claims. The ideal vision of students’ becoming better due
to hands on Logo learning collided with the documented reality of students’ difficul-
ties to learn even fundamentals of Logo [11]. Nowadays, research has entered into a
new phase of multidisciplinary theory based protocols [5], [11]. The initial vision of
teaching and learning computer programming has been altered. The focus of current
researches is on understanding the conditions under which the skills that are learned
in programming can transfer to cognitive development of learners [3]. For instance in
[10] it was concluded that programming in pairs (a common situation due to laborato-
ry restrictions in schools) has limitations, while in [7] it was pointed out that despite
its original limitations, the newer versions of Logo with enhanced graphics and inter-
face might find applications in pre-school ages.

Visual programming languages such as Scratch have been widely adopted recently
as the means for early introduction to programming concepts. Scratch uses blocks,
which the pupils drag and drop to form their scripts. An avid research interest exists
on how to fine tune the learning process with Scratch in order to achieve the best
pedagogical results in primary schools [8], [12], [17], but also in elementary ones
[14]. Towards, this end the research presented in this paper aims at filling a tutoring
gap that often appears when following a classic introductory syllabus to Scratch pro-
gramming, namely the teaching of concurrency concepts.

3 Methodology

3.1 Educational context and targets

The application of the methodology was performed in the Greek primary school
whereby computer programming is taught at the last two years of the school (ages ten
and eleven). The official curriculum involves a total of 12 weeks of hourly laboratory
lessons per year at each class (fifth and sixth grade). Applying the constructionist
theory in the present study required the design of programming challenges that are
incremental in nature and led after a certain point to concurrency problems that were
self evident. It is straightforward that the proposed syllabuses should adhere to official
curriculum constraints (for evaluation reasons). The rather limited timeframe for the
computer programming courses offered a serious challenge in defining the education-
al goals and design a subsequent plan to achieve them.

The research conducted involved both classes that were already familiar with basic
structured programming concepts and classes with no prior programming experience.
As a result, it was decided that two different projects should be implemented. Instruc-
tional scaffolding was used for the learning process. Each project was split into
equally hourly tasks. Pupils worked on the same file, extending or changing game
functionality. The teaching approach followed, was to introduce the notion of multiple
running threads early on and incrementally build knowledge on concurrency issues
according to the assigned tasks. A Scratch player often executes “simultaneous”

iJEP ‒ Vol. 8, No. 4, 2018 91

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

scripts, so when different scripts are triggered by the same event, pupils must check if
race conditions apply and if so, learn a way to tackle the problem. Building around
this feature, tasks were escalated in order for pupils to achieve the following educa-
tional targets:

T1. Implement concurrent moves of a single sprite;

T2. Implement concurrent moves of two or more sprites;

T3. Synchronize sprites using time primitives;

T4. Synchronize sprites using messages;

T5. Distinguish local, sprite-level variables from global variables;

T6. Synchronize sprites using condition variables.

The first four educational targets concerned both the beginners and the more ad-
vanced classes, while the last two were only attempted for pupils with prior pro-
gramming knowledge. It should be noted that the aforementioned six learning objec-
tives were on top of the classic targets related to basic structural programming con-
structs.

3.2 Beginners’ syllabus

The beginners’ project concerned a maze game whereby a hero sprite tries to cap-
ture a trophy, while chased by enemy sprites. Maze games are very common Scratch
projects and are suitable for beginners. As a testament a google search for “maze”,
performed on 16/5/2017 on the site https://scratch.mit.edu returned roughly 140.000
results. The syllabus presented in Table 1 is designed to incrementally build funda-
mental programming knowledge, while introducing concurrency concepts and solu-
tions, in a gradual self evident manner. It also contains a midterm and a final project
presentation. In the table the intermediate checkpoints for achieving the desired learn-
ing objectives are also shown. Aside from T2 for which two checkpoints exist, one for
handling two sprites and one for more than two, all other learning objectives were
associated with a particular week. On the respective week, the progress of student
projects was evaluated according to the corresponding learning objective by the
teacher and without the students being aware that an evaluation took place. This was
done in order to provide better guidance to students both before and after the midterm
project milestone.

92 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Table 1. Beginners’ syllabus outline

 Plan Objectives Concurrent issues addressed

1
Draw a maze stage.
Make a new sprite (hero).

Draw a maze.
Distinguish sprite
from stage.

N/A

2
Use commands to move the sprite
from the beginning of the maze to the
end.

Execute a se-
quence of blocks.

N/A

3

Make the sprite move using arrow
keys.

Use a trigger event
to start a script.

(T1) Concurrent scripts on a single
sprite.
Pupils explain what happens if acci-
dentally the same key is used for up and
down movement.

4

Draw two or more sprites as enemies.
Use command forever to make the
enemies move around constantly
when green flag is clicked.

Use iteration
(forever)

(T2) Two sprites move at the same time.
But no synchronization issues exist yet.

5

Create trophy sprite for the hero and
use command if to make trophy
disappear when touched by the hero.

Use iteration and
condition.
Use hide com-
mand.

A script loops until a condition applies
but no synchronization issues apply yet.

6

Add a script to the hero, to make it
disappear when touched by an ene-
my.

Use iteration and
condition.
Use hide com-
mand.

(T2) Concurrent scripts of two or more
sprites. Place an enemy on food and
make hero touch them

7 Midterm presentation

8
Make nice guy, enemies and food
appear in certain places when game
starts.

Initialization.
Use show com-
mand.

Concurrent scripts of two or more
sprites. If show command proceeds
move, then race conditions apply.

9

Make stage present an introductory
message.

Use wait com-
mand.

(T3) Synchronize sprites using time
primitives. Upon the game starts all
sprites wait for a few seconds for the
salutation to disappear

10 Make stage present a winning or
losing message.

Use message
passing.

(T4) Synchronize sprites using messag-
es.

11 Add any functionality to the project. Self assessment. Self assessment.
12 Final project presentation

An example screenshot from a final project handed down by an average perform-

ing fifth grade student is shown in Fig. 1.

iJEP ‒ Vol. 8, No. 4, 2018 93

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Fig. 1. Example of a final project by an average performing fifth grade student. Three sprites

and a thesaurus exist (bananas). The hero sprite (elephant) is controlled by 7 scripts. It
can be observed that two scripts execute when green flag is pressed. The initialization
correctly uses time based synchronization (wait 20 secs) but is not completely correct

(the two scripts should have been combined into one).

3.3 Advanced syllabus

The more advanced classes were already introduced (previous year) to basic pro-
gramming concepts with Scratch. However, the syllabus used for the introduction
differed from the one in Table 1, focusing only on structured programming constructs
using a single thread view of the executed scripts. Therefore, it was deemed that
knowledge on concurrency concepts should be built from scratch, albeit at a faster
pace compared to the beginners. Table 2 illustrates the syllabus for the advanced clas-
ses. As it can be observed, apart from the heaviest workload on concurrency topics
(T5 and T6 learning objectives are not included in Table 1), it contains two hours
(instead of one) of free project additions and self-assessment. This served two purpos-
es. Firstly, it encouraged a self-motivation attitude and secondly it served as a means
of equalizing the effects of “missed hours” between classes that completed the 12
hour schedule and those that only completed 11 hours (due to national holidays).

94 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Table 2. Advanced project outline

 Plan Objectives Concurrent issues addressed

1

Create two sprites representing players.
Create a second costume for each one holding
a die.
Make them change costume on space pressed.

Distinguish
sprites and cos-
tumes.

(T2) Concurrent scripts of two
or more sprites.

2 Change in previous game. Make sprites
change costume every 2 seconds.

Use timer. (T3) Synchronize sprites
using time primitives.

3
Delete costumes with the die. Create a die
sprite. On click, the die goes to the other
player. Use a variable to hold the dice owner.

Use variables. N/A

4 When a player receives the die, says “I got it” Use messages.

(T4) Synchronize sprites
using messages.

5 Draw a die and cast it randomly when clicked. Use random
function.

N/A

6

Make the die turn for 2 seconds until it shows
the result when space is pressed.

Use wait. (T1) Concurrent scripts of a
single sprite. When space is
pressed twice within 2 se-
conds the interrupt is ignored

7 Midterm presentation

8

Create a local variable pocket for each player
and a global for the die. Initialize them. Each
time the die is cast, it adds one to the players’
wallet.

Declare and use
local and global
variables.

(T5) Distinguish local, sprite-
level variables from global
variables.

9
Give or take money from the players depend-
ing on the value of the die and the player’s
turn.

 (T6) Synchronize sprites
using condition variables.

10 Add any functionality to the project. Self assessment. Self assessment.
11 Add any functionality to the project. Self assessment. Self assessment.
12 Final project presentation.

An example screenshot from a final project handed down by an average perform-

ing sixth grade student is shown in Fig. 2.

iJEP ‒ Vol. 8, No. 4, 2018 95

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Fig. 2. Example of a final project by an average performing sixth grade student. The die script

involves notifying the two players concerning whose turn it is. Notification was done
by broadcasting and corrected to broadcast and wait by the teacher. This was necessary
in order to block the dice script until players’ scripts finish. Without blocking there is a
risk that the dice script will continue executing and perform the assignment that follows

the broadcast, which changes players’ turn. Thus, a player could miss a turn.

4 Common programming pitfalls

The common programming errors made by students during the study can be cate-
gorized across two dimensions. The first concerns whether the error was related to
concurrency (C) or not. The second is about the difficulty of detecting the error. Er-
rors that proved difficult to be detected by students are denoted by (H) while the easi-
er ones by (E). It should be noted that (E) errors usually led directly to abnormal be-
havior of sprites in the screen. Thus, students asked for teacher’s help before moving
to other aspects of their projects, leading to consolidating knowledge in a stepwise
fashion.

Hard to be detected errors (H) rose from two causes. The first one was due to stu-
dents not checking in a thorough manner the behavior of their programs. For instance
an error that would have otherwise been apparent is hidden because the test runs nev-
er included the corresponding triggering event. The second type of hard to detect
errors concerned the inherent at concurrent programming difficulty of reproducing
errors. Namely, an error that occurs at some run (due to a particular script/thread exe-
cution combination) may prove difficult to repeat as script/thread execution sequence
changes among different runs. This might cultivate a tendency at students of ignoring
a particular faulty run because the remaining ones were correct, presumably attrib-
uting the fault to some system or environment glitch. In order to increase the likeli-
hood of detecting immediately both kinds of (H) errors, the following steps were
taken:

96 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

• A list of test cases was given to students, together with instructions of covering
most or all event triggering cases;

• Students were instructed (especially in lessons where concurrency issues were
involved) not to ignore faulty runs but alert the instructor immediately;

• Students were instructed to run their code repeatedly;
• Before a lab session, students’ projects were checked for errors by the instructor.

The list of common errors follows.

• Wrong order of commands (E). For instance a sprite first moves and then turns
instead of doing the opposite. Such errors occurred mostly at beginner level;

• Incorrect use of iteration (E). Infinite loops as well as lack of loops were a common
mistake both at beginner and at advanced level;

• Wrong structure of events (E). The actions concerning an event, e.g., right arrow
click, are erroneously characterized as belonging to another event, most commonly
green flag click, i.e., program start event;

• Multiple scripts for the same event creating faulty behavior (C, E). This was quite
common among beginners particularly at the initialization event (green flag click).
The essence of the error is that students did not comprehend (at that point) that the
actions invoked for the event should be done in a sequential manner. Instead, by
splitting the actions into two or more scripts the actions’ execution order could be
arbitrary. For instance, consider an initialization script that first places a hero sprite
at a safe position and then shows it. If these two actions are split into two scripts
then it is possible to first show the hero script at an uninitialized position, whereby
a monster sprite is placed ending the game abruptly.

• Incorrect identification of the sprites that need synchronization (C, H). For in-
stance, many students synchronized the thesaurus with the hero sprite, but not with
the enemies. This might create a conflict if the hero and an enemy advance to the
thesaurus “simultaneously”.

• Using conditional global variables for synchronization without proper initialization
(C, E). Variable initialization errors occurred unexpectedly often hence, although
simple in nature are reported here. As a side note it should be mentioned that syn-
chronization using global/shared variables, requires in principle the variables to be
atomic, i.e., no two threads should gain access concurrently. Although in Scratch
atomic variables are not directly supported, the selected game play (die casting)
made it difficult for racing conditions to appear. Thus, given the available time
schedule, a necessary compromise was reached whereby students were not taught
of atomicity issues but were taught of how to use atomic variables for synchroniza-
tion.

• Using broadcast messages instead of broadcast and wait (C, H). The difference
between the two message sending primitives is quite subtle. The second primitive
pauses the script until all the receivers of the message terminate.

Piaget and Vygotsky as constructivists suggest that students bring their prior
knowledge and experiences into any learning process which in turn influence the way
they respond to new information. It is further suggested that students frequently resist

iJEP ‒ Vol. 8, No. 4, 2018 97

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

changing their minds until data to the contrary is overwhelming. [4]. If students’ al-
ready constructed problem solving models cannot be implemented in solving newly
faced problems they (with the appropriate guidance of the tutor) form models that
become plausible and fruitful [9]. Part of what qualifies as good teaching methodolo-
gy discovers what students already believe and creates the required cognitive disa-
greement leading to the hard work of adjusting their conceptual understanding [15].
Such conflicts occurred often in the classroom and learners (with teacher’s guidance)
had to reconstruct their ideas when the desired outcome was not shown in the screen
of their computer.

5 Evaluation

5.1 Participants

The syllabuses described in Sec. 3.2 and 3.3 were evaluated in 7 primary school
classes in Greece. The total number of participating students was 123 of which 66
males (age range 10-11 years old M=10.59, SD=0.495) and 57 females (age range 10-
11 years old M=10.51, SD=0.504). According to age and prior knowledge at comput-
er programming the evaluation group exhibited the following characteristics: (i) 55
students were of fifth grade primary school and completely novice to computer pro-
gramming, (ii) 68 students attended the sixth grade and (iii) among the sixth grade
student only 42 had attended a computer programming lab at fifth grade, while 26
were novices. It should be mentioned that such differences on the knowledge level
among students of the same grade are not uncommon in Greek primary schools since
there is no fixed Computer Science curriculum (just generic guidelines) and there are
no fixed standards concerning lab hardware (many schools experience hardware
shortage).

The basic syllabus presented in Sec. 3.2 was followed by the fifth grade students
and the 26 novice students of sixth grade for a total of 81 students. The advanced
syllabus (Sec. 3.3) was followed by the 42 sixth grade students that had some prior
experience with programming in Scratch. Of the 123 participants, 83 had a personal
computer station, while 40 students had to share a computer at groups of two and
sometimes three. The implementation of the curriculum took place during school time
in the class of Informatics. Additionally, all children that participated in the present
study did not have a history of major medical illness, psychiatric disorder, develop-
mental disorder or significant visual or auditory impairments according to their medi-
cal reports available at their schools.

Table 3. Performance in the first four objectives of Sec. 3.1 (123 total students)

Learning Objectives Students Achieving Objective Ratio (%)
T1 105 85.4%
T2 108 87.8%
T3 67 54.5%
T4 26 21.1%

98 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

5.2 Comprehension of learning objectives

First, results are presented concerning the evaluation of the learning objectives and
how many students managed to accomplish them. The evaluation was done over the
final project. Table 3 summarizes the performance of the students on the first four
learning objectives which were common in both the beginner and advanced syllabus.

From the results, it is clear that the first two objectives that concerned the concur-
rent movement of single and multiple sprites were achievable by the vast majority of
the students. It is also moderately encouraging that more than half of the students
managed to successfully implement sprite synchronization using time primitives (T3).
This is presumably due to the fact that time based synchronization is closer to real life
experiences rather than message based (T4) which was only successfully incorporated
in the projects of roughly 1 out of 5 students. Delving more on the results, Table 4
characterizes students’ performance based on age. It also includes results from one
way ANOVA between the performance of the two age groups.

Table 4. Performance according to age (fifth grade: age 10, sixth grade: age 11, **p<0.01)

Learning
Objectives

Fifth grade students
(55 total)

Sixth grade students
(68 total)

ANOVA

Students

Achieving
Objective

Ratio
(%)

Students
Achieving
Objective

Ratio
(%)

F

T1 41 74.5% 64 94.1% 9.491**
T2 46 83.6% 62 91.2% 1.121
T3 32 58.2% 35 51.5% 0.443
T4 4 7.3% 22 32.4% 12.742**

As it is apparent, the majority of students successfully comprehending synchroni-

zation using messages belong to age group of eleven years old (sixth grade). This is
an indication that T4 topic was not taught at fifth grade to a sufficient extend (only at
week 10 according to syllabus) and at least one more lecture was needed. Given the
tight constraints on primary school schedule in Greece it might be worth considering
removing the topic of T4 from fifth grade and use the extra slot to further improve
comprehension of T3. Similarly, the especially high ratios for T1 and T2 in sixth
grade reveal a possible option of adapting the advanced syllabus so that T1 and T2
context occupies one instead of two weeks, leaving the extra slot to be used for deep-
ening the comprehension of T4.

Table 5. Performance in the last two objectives of Sec. 3.1 (42 students)

Learning Objectives Students Achieving Objective Ratio (%)
T5 17 40.5%
T6 20 47.6%

iJEP ‒ Vol. 8, No. 4, 2018 99

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Evaluation according to learning objectives T5 and T6 is presented in Table 5. Re-
call, that the advanced syllabus containing T5 and T6 related topics was only fol-
lowed by sixth grade students that had some prior experience with Scratch. The re-
sults show that a portion (in the mid-range) of students, managed to acquire the extra
background offered by T5 and T6 successfully.

5.3 Statistical analysis

Analysis according to gender revealed that aside from T2 there were no other sta-
tistically significant performance differences between male and female participants.
In T2 male students achieved a better understanding (M=1.06, SD=0.24) compared to
female students (M=1.19, SD=0.40), while ANOVA gave F=5.113 with p=0.025.
This result is somehow surprising since T2, i.e., concurrent move of multiple sprites is
an easier topic when compared for instance against T3 which involves time based
synchronization.

Subsequently, a one way ANOVA was performed in order to identify differences
between the group of children that did not have to share their computer station and
those who did. Results are presented in Table 6. As it can be observed, sharing a
computer has a detrimental effect on performance that is statistically significant for all
but the first and easiest to comprehend task.

Table 6. Differences between children that had their own computer and children that were
required to share a computer (* p<0.05, ** p<0.01)

Learning
Objectives

One child per
computer station

(83 students)

Shared computer
stations (40 stu-

dents)
ANOVA

 Mean SD Mean SD F
T1 1.13 0.34 1.18 0.39 0.38
T2 1.07 0.26 1.23 0.42 6.073**
T3 1.37 0.49 1.63 0.49 7.174**
T4 1.73 0.44 1.90 0.31 4.501*

Next, correlation analysis was done in order to identify possible connections

among the learning objectives and provide with further hindsight as to the strengths
and weaknesses of the syllabuses. Table 7 presents the analysis for the basic syllabus
while Table 8 for the advanced one.

Table 7. Correlation analysis for the basic syllabus (* p<0.05, ** p<0.01)

 T1 T2 T3 T4
T1 1 0.646** 0.515** 0.159
T2 0.646** 1 0.445** 0.024
T3 0.515** 0.445** 1 0.275*
T4 0.159 0.024 0.275* 1

100 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Table 8. Correlation analysis for the advanced syllabus (* p<0.05, ** p<0.01)

 T1 T2 T3 T4 T5 T6
T1 1 0.513** 0.08 0.05 0.12 0.27
T2 0.513** 1 0.20 0.06 0.09 0.03
T3 0.08 0.20 1 0.11 0.07 0.25
T4 0.05 0.06 0.11 1 0.42** 0.47**
T5 0.12 0.09 0.07 0.42** 1 0.38*
T6 0.27 0.03 0.25 0.47** 0.38* 1

In the basic syllabus T1, T2 and T3 are correlated with each other and these corre-

lations are statistically significant. On the other hand T4 exhibits a weak correlation
only with T3. These results further indicate that the first three learning objectives are
well organized and sufficiently covered within the basic syllabus. They also suggest
that T4 as a learning objective is rather well placed in the syllabus (after T3). Judging
from the fact that T4 is not correlated with T2 a possible change in the syllabus to
ameliorate results on T4 could involve shrinking the time devoted to T2 from 3 lec-
tures (week 4 to 6) to 2 and increasing by 1 the lectures related to T4.

As far as the advanced syllabus is concerned (Table 8) results show that T1 and T2
exhibit the strongest correlation (similarly to the basic syllabus), but also T4, T5 and
T6 are correlated or moderately correlated with each other. This can be viewed as a
further testament that the advanced syllabus is well structured regarding the more
complex topics it tackles. It also suggests (together with the high scores on T1 and T2
at Table 4) that T1 and T2 could be shrunk in length (1 week each in the advanced
syllabus) and/or their teaching being merged with T3.

5.4 Summary of results

The main findings of the evaluation are summarized as follows:

• The first two learning objectives i.e., concurrent scripts on a single sprite (T1) and
concurrent movement of multiple sprites (T2), were achievable by the vast majori-
ty of students both at the basic and at the advanced levels;

• Tackling simple racing conditions that occur during concurrent sprite movement
using time based synchronization (T3) was achievable by roughly half of the stu-
dents (both at basic and at advanced level);

• Message based synchronization (T4) proved to be a tough concept for beginners,
while at the advanced level roughly one third of the students mastered it;

• Distinguishing between local (per sprite) variables and global ones (T5) and con-
sequently using conditional variables for synchronization (T6) were mastered by
roughly 4 out of 10 students that followed the advanced syllabus;

• As a general rule gender did not affect performance;
• Lab infrastructure played a significant role (it is favorable to have one working

station per student);

iJEP ‒ Vol. 8, No. 4, 2018 101

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

• The following main correlations between learning objectives exist: (i) T1 and T2
have significant positive correlation in both syllabuses, (ii) T4, T5, and T6 have
significant positive correlation in the advanced syllabus and (iii) T3 is correlated
with all the remaining objectives in the basic syllabus, but is independent in the
advanced.

It should be mentioned that the 6 learning objectives related to concurrency were
incorporated to the syllabuses in addition to the classic topics taught such as: sequen-
tial programming structures and user interface concepts. Thus, the success ratios on
the objectives should be viewed as extra gains. From this standpoint, both perfor-
mance and correlation results indicate that both syllabuses are well structured overall,
given the 12-hour timeframe that should be followed. Nevertheless, room for im-
provement exists and can be summarized as:

• Message based synchronization (T4) proved too complex to successfully convey it
to beginners within one hourly lecture. Thus, unless the curriculum length is offi-
cially expanded, within the current 12 hours time limitation two options are availa-
ble: (i) increase T4 lectures by one (possibly shrinking the T2 related lectures) or
(ii) remove T4 objective from fifth grade and use the time slot for deepening the
understanding of the first three objectives (particularly T3). Based on results from
Table 4, it seems that T4 is better suited for more mature audience (sixth grade)
making option (ii) more attractive;

• Based on the high success ratio on T1 and T2 at the advanced syllabus, a valid
option would be to shrink their cover by one lecture devoting the extra time slot to
T3 or T4.

6 Conclusions

The main purpose of this study was to investigate the introduction of concurrent
programming concepts into a typical early computer programming syllabus using
Scratch as a learning tool. Synchronization issues (race conditions) typically rise
when building games with multiple interacting sprites, something that is a common
approach to learning computer programming with Scratch. Instead of resorting to ad-
hoc explanations when such errors inevitably occur that are difficult to understand by
students only properly introduced to sequential program execution, this work advo-
cates the systematic incorporation of concurrency issues in the followed syllabus. For
this reason, learning tasks were built in a structured approach so that pupils incremen-
tally build knowledge on concurrency issues, while also acquiring knowledge on
classic structured programming topics and not missing the fun of game design. With
the exception of only one objective at fifth grade, by the end of the 12-week course a
large portion of the pupils achieved the 6 extra educational targets with ratios varying
from 32.4% to 94.1% depending on the objective and students’ ages. More important-
ly, pupils demonstrated for the largest part an ability to “think concurrently”. This was
also manifested by the fact that no “unexplained” program behavior was reported as
such at the end demonstration, but was rather attributed correctly to racing conditions.

102 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Summarizing, we can state that the results of the study illustrate the usefulness of
introducing concurrent programming concepts in a structured way in primary school
education. On the other hand, not all educational targets were successfully accom-
plished by all pupils, with timetable restrictions and infrastructure shortages playing
role. Thus, suitable fine tuning of the presented syllabuses can bear further merits to
the proposed approach.

7 References

[1] Ackermann, E.: Piaget’s constructivism, Papert’s constructionism: What’s the difference.
Future of Learning Group Publication 5(3), 438 (2001).

[2] Allen, J.P., Pianta, R.C., Gregory, A., Mikami, A.Y., Lun, J.: An interaction-based ap-
proach to enhancing secondary school instruction and student achievement. Science
333(6045), 1034-1037 AAAS (2011).

[3] Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking. In: Proceedings of the 2012 annual meeting of the American Edu-
cational Research Association, pp. 1–25, Vancouver, Canada (2012).

[4] Chinn, C.A., Brewer, W.F.: The Role of Anomalous Data in Knowledge Acquisition: A
Theoretical Framework and Implications for Science Instruction. Review of Educational
Research 63(1): 1-49 (1993). https://doi.org/10.3102/00346543063001001

[5] Clements, D. H., Sarama, J.: Research on Logo: A decade of progress. Computers in the
Schools 14(1-2), 9-46 (1997). https://doi.org/10.1300/J025v14n01_02

[6] European Schoolnet, Computing our future Computer programming and coding - Priori-
ties, school curricula and initiatives across Europe,
http://www.eun.org/c/document_library/get_file?uuid=3596b121-941c-4296-a760-
0f4e4795d6fa&groupId=43887, last accessed 2017/05/10.

[7] Fessakis, G., Gouli, E., Mavroudi, E.: Problem solving by 5-6 years old kindergarten chil-
dren in a computer programming environment: A case study. Computers & Education 63,
87-97 (2013). https://doi.org/10.1016/j.compedu.2012.11.016

[8] Franklin, D., Hill, C., Dwyer, H.A., Hansen, A.K., Iveland, A., Harlow, D.B.: Initialization
in Scratch: Seeking Knowledge Transfer. In: SIGCSE 2016, 217-222. ACM (2016).

[9] Jonassen, D., Strobel, J., Gottdenker, J.: Model Building for Conceptual Change. Interac-
tive Learning Environments 13(1-2): 15-37 (2005). https://doi.org/10.1080/1049482
0500173292

[10] Lewis, C.M.: Is pair programming more effective than other forms of collaboration for
young students?. Computer Science Education 21(2), 105-134 (2011).
https://doi.org/10.1080/08993408.2011.579805

[11] Mayer, R.E.: Teaching and learning computer programming: Multiple research perspec-
tives. Routledge (1988).

[12] Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning Computer Science Concepts
with Scratch. Computer Science Education 23(3), 239-264 (2013). https://doi.org/10.1080/
08993408.2013.832022

[13] Papert, S.: Mindstorms: Children, computers, and powerful ideas. 2nd ed., New York, NY:
Basic Books, (1993).

[14] Sáez-López, J.-M., Román-González, M., Vázquez-Cano, E.: Visual programming lan-
guages integrated across the curriculum in elementary school: A two year case study using
"Scratch" in five schools. Computers & Education 97: 129-141 (2016).
https://doi.org/10.1016/j.compedu.2016.03.003

iJEP ‒ Vol. 8, No. 4, 2018 103

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

[15] Hyslop-Margison, E. J., & Strobel, J. (2007). Constructivism and education: Misunder-
standings and pedagogical implications. The Teacher Educator, 43(1), 72-86.
https://doi.org/10.1080/08878730701728945

[16] Tsihouridis, C., Vavougios, D., Ioannidis, G.: The Effect of Switching the Order of Exper-
imental Teaching in the Study of Simple Gravity Pendulum-A Study with Junior High-
School Learners. In: International Conference on Interactive Collaborative Learning, pp.
501-514, Springer, Cham (2016).

[17] Wilson, A., Moffatt, D.C.: Evaluating Scratch to Introduce Younger Schoolchildren to
Programming. In: 22nd Annual Workshop of the Psychology of Programming Interest
Group, pp. 64-74, (2010).

[18] Zygouris, N.C., Vlachos, F., Dadaliaris, A.N., Oikonomou, P., Stamoulis, G.I., Vavougios,
D. et al.: The Implementation of a Web Application for Screening Children with Dyslexia.
In: 19th International Conference on Interactive Collaborative Learning, pp. 415-423,
Springer, Cham (2016).

8 Authors

Eleni Fatourou is a PhD candidate at the University of Thessaly, department of
Computer Science and an ICT and Computer Science teacher at 1st and 3rd primary
schools of Perama. Previously, Eleni Fatourou has worked as a Computer Science
teacher at Secondary education, Vocational training and as distance learning trainer of
trainers. She has also been a java developer. She graduated from Electronic and Com-
puter Engineering, University of Crete and was awarded a Master's Degree in e-
Learning by the Department of Digital Systems, University of Piraeus. Email: efato-
urou@sch.gr

Nikolaos C. Zygouris received his Ph.D in Clinical Neuropsychology from the
Department of Special Education. He is adjunct Lecturer at Department of Computer
Science of University of Thessaly, Lamia, Greece. His main research domain is in
electrophysiological assessment, learning disabilities, web applications, clinical neu-
ropsychology, anxiety, depression, cognitive psychology and educational psychology.
He has authored more than 50 papers in journals, book chapters and major confer-
ences. Email: nzygouris@uth.gr

Thanasis Loukopoulos received his Ph.D. degree in Computer Science from the
Hong Kong University of Science and Technology. He is currently an Assistant Pro-
fessor at the Department of Computer Science and Biomedical Informatics of the
University of Thessaly, Greece. His main research domain is in parallel and distribut-
ed systems with interests including: green computing, cloud computing, WSNs,
scheduling, load balancing, video coding parallelization and educational aspects of
parallels systems. His work appeared in over 60 publications. Email: luke@dib.uth.gr

Georgios (George) Stamoulis was born in Lamia, Greece in 1966. He got his Di-
ploma from the Department of Electrical and Computer Engineering at the National
Technical University of Athens in 1989. He continued his studies at the Department
of Electrical and Computer Engineering at the University of Illinois at Urbana-
Champaign where he was awarded the M.S. (1991) and Ph.D. (1994) degrees. After
one year as a Visiting Assistant Professor at the University of Iowa, he joined Intel
Corp. working on CAD tools for power analysis and optimization as a senior CAD

104 http://www.i-jep.org

Paper—Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology …

Engineer (1995-1996), as lead of the PowerCAD group (1996-1998), as Manager of
the Santa Clara Annex of the Strategic CAD Laboratories (1998-1999) and as power
manager of the Pentium M project, which became the Centrino platform (1999-2001).
In 2001 he was elected Assistant Professor at the Department of Electronic and Com-
puter Engineering at the Technical University of Crete. In 2003 he became an Associ-
ate Professor at the Department of Computer and Telecommunications Engineering at
the University of Thessaly. In 2009 he became Professor. From 2003 to 2007 he was
elected Associate Head and from 2007 to 2011 Head of the Department. Since 2013
he is the Head of the newly formed Computer Science Department. His research in-
terests focus on the analysis and optimization of average and maximum power of
integrated circuits, the analysis and optimization of the maximum voltage drop on the
power supply lines of integrated circuits, low power design, reliability analysis and
optimization, and the application of massively parallel and deep-learning techniques
to the aforementioned problems. He has authored more than 100 papers in journals
and major conferences, claims three US patents and has more than 800 references to
his work. He has also founded two startups in the high-tech area. He is a member of
the IEEE and the Technical Chamber of Greece and participates in the program and
technical committees of several international conferences. Email: georges@uth.gr

This article is a revised version of a paper presented at the International Conference on Interactive Col-
laborative Learning (ICL2017), held September 2017, in Budapest, Hungary. Article submitted 20 Decem-
ber 2017. Resubmitted 10 January 2018. Final acceptance 18 February 2018. Final version published as
submitted by the authors.

iJEP ‒ Vol. 8, No. 4, 2018 105

	iJEP – Vol. 8, No. 4, 2018
	Teaching Concurrent Programming Concepts Using Scratch in Primary School: Methodology and Evaluation

