
Paper—An Empirical Study on Factors related to Distributed Pair Programming 

An Empirical Study on Factors related to Distributed 
Pair Programming 

https://doi.org/10.3991/ijep.v9i2.9947 

Despina Tsompanoudi (*), Maya Satratzemi, Stelios Xinogalos 
University of Macedonia, Thessaloniki, Greece 

despinats@uom.edu.gr  

Leonidas Karamitopoulos 
Alexander TEI of Thessaloniki, Thessaloniki, Greece 

Abstract—This paper reports students’ perceptions and experiences attend-
ing an object-oriented programming course in which they developed software 
using the Distributed Pair Programming (DPP) technique. Pair programming 
(PP) is typically performed on one computer, involving two programmers work-
ing collaboratively on the same code or algorithm. DPP on the other hand is 
performed remotely allowing programmers to collaborate from separate loca-
tions. PP started in the software industry as a powerful way to train program-
mers and to improve software quality. Research has shown that PP (and DPP) is 
also a successful approach to teach programming in academic programming 
courses. The main focus of PP and DPP research was PP’s effectiveness with 
respect to student performance and code quality, the investigation of best team 
formation strategies and studies of students’ attitudes. There are still limited 
studies concerning relationships between performance, attitudes and other criti-
cal factors. We have selected some of the most common factors which can be 
found in the literature: academic performance, programming experience, stu-
dent confidence, feelgood factor, partner compatibility and implementation 
time. The main goal of this study was to investigate correlations between these 
attributes, while DPP was used as the main programming technique. 

Keywords—Pair programming, distributed pair programming 

1 Introduction 

Distributed Pair Programming (DPP) is a computer programming technique in 
which programmers develop software remotely using a specialized infrastructure. The 
aim of this technique is not only to make remote collaboration feasible, but also to 
gain the advantages of Pair Programming (PP). PP has its origins in the software in-
dustry as a part of Extreme Programming and is intended to improve software quality 
[1]. Typically, it is performed on one computer, involving two programmers working 
collaboratively on the same code or algorithm. One programmer acts as the “driver” 
and the other one as the “navigator” (also called “observer”). The driver has posses-
sion of keyboard and mouse and types the program code. Τhe navigator reviews the 

iJEP ‒ Vol. 9, No. 2, 2019 65



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

inserted code and gives guidelines to the driver. PP has been extensively used for 
enhancing the learning of programming. Research suggests that PP makes learning of 
programming more pleasant, promotes collaboration and communication between the 
members of pairs, encourages the sharing of knowledge and skills, and even improves 
code quality. 

Nowadays to participate in a team activity does not require a physical presence an-
ymore. Virtual settings allow real-time communication and collaboration across any 
distance and at any time [2]. There is also an increasing demand to prepare students 
for working in interdisciplinary collaborative environments [3]. As an alternative to 
co-located PP, DPP is performed remotely allowing programmers to collaborate from 
separate locations [4]. DPP is considered to maintain all the benefits of PP [5] and in 
addition to allow for the distributed collaboration of pairs from anywhere and at any 
time. However, an appropriate infrastructure is required to facilitate the process of 
remote pair programming. Nowadays various types of DPP systems exist in order to 
cover the different requirements and demands of end-users. 

Anecdotal positive feedback from professional programmers inspired researchers 
to perform educational studies and to incorporate PP in academic courses. As a result, 
many researchers followed this paradigm and numerous studies were published the 
following years [6], [7]. The main focus of them was PP’s effectiveness with respect 
to student performance and code quality. Attention was also given to the investigation 
of best pair formation strategies and studies on students’ attitudes [8]. 

Performance is one of the most investigated factors regarding the effectiveness of 
PP, indicating that PP has a positive effect on students’ grades [8]. Another well-
studied factor is pair compatibility. Research suggests that pairing students with simi-
lar skill levels has positive results on motivation and participation [9], [10]. Therefore, 
in order to achieve greater pair compatibility students should be paired according to 
their programming experience. Similarly, studies showed that pairs’ performance is 
correlated with how comfortable students feel during a PP session (the so-called feel 
good factor) [11]. Implementation time is also a common measure used in PP studies 
to evaluate PP’s effectiveness [8]. Most of them report that PP requires less time to 
complete assignments. Finally, students’ self-rated confidence has been used to evalu-
ate PP satisfaction, although with contradictory results [5], [12]. Concluding, the most 
common factors which can be found in the literature are academic performance, pro-
gramming experience, student confidence, feelgood factor, partner’s compatibility 
and implementation time. The objective of this research was to investigate relation-
ships between these factors that could affect the performance of Computer Science 
students working on their homework assignments in a DPP environment in the con-
text of an object-oriented programming course. 

The remaining article is organized as follows. In the next section follows a presen-
tation of related work in the field. Then, the research questions and the context of the 
study are presented (Section 3). Section 4 contains the results of the statistical tests. A 
discussion and conclusions follow in the last section (Section 5). 

66 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

2 Related Work 

Most research studies conducted by academic and industry researchers conclude 
that PP has positive effects on programmers’ performance and software quality. Wil-
liams et al. [7] studied several years the application of PP in the classroom. They 
found that the collaborative nature of PP helps students to achieve advanced learning 
outcomes, to be more confident and to receive better grades in programming assign-
ments. Other studies indicate that PP leads in higher program quality, continuous 
knowledge transfer and more student enjoyment [6]. Additionally, PP and DPP are 
highly acceptable by students when used as the main programming technique in com-
puter science courses [4], [13].  

Group formation is considered to be a very important factor that affects the effec-
tiveness of PP, and consequently DPP as well. Pairs can be defined by the instructor 
or students themselves. In the former case, group formation is based on students’ 
programming skill level, their personality, or even randomly. Relevant studies suggest 
that pairing students with similar skill levels has positive results on motivation and 
participation. Toll et al. [14] concluded that the outcomes of PP are better when the 
skills of the one partner are slightly better or worse than those of the other partner. 
Williams et al. [9] also concluded that pairs are more compatible if students with 
similar perceived skill level are grouped together. Katira et al. [15] studied relation-
ships between pair compatibility and personality type, skill level and self-esteem. 
Among other results, they found that students’ perception of their partner’s skill level 
has a significant influence on their compatibility. On the other hand, students’ self-
esteem does not appear to be a major contributor to pair compatibility. 

Lui and Chan [16] investigated pair productivity between pairs of varying skills 
and experience, such as between novice–novice and expert–expert. They found that 
novice–novice pairs against novice solos are much more productive than expert–
expert pairs against expert solos. 

The study of Sfetsos et al. [17] aimed to investigate the impact of pair program-
mers’ personality and temperament on pair performance and pair collaboration. The 
results showed better performance and collaboration-viability for pairs with heteroge-
neous personalities and temperaments. 

Students’ self-rated confidence in programming ability has been used to evaluate 
PP satisfaction, although with contradictory results. Thomas et al. [12] report that 
students with less self-confidence seem to enjoy pair programming the most. On the 
other hand, Hanks [5] states that in his study the most confident students liked pair 
programming the most, while the least confident students liked it the least. Μuller and 
Padberg [11] define the feel good factor of a pair as how comfortably the developers 
feel in a pair session. They study correlations between the feelgood factor and pair 
performance, as well as between programming experience and performance. They 
found that pair performance is uncorrelated with a pair’s programming experience and 
that the feelgood factor is a candidate driver for the performance of a pair. 

Studies in the field of DPP aimed to evaluate effectiveness of DPP in student per-
formance, teaching process, DPP vs. solo programming or DPP vs. co-located PP 
[18], [19], [20], [21]. Baheti et al. [18] tested productivity and code quality between 

iJEP ‒ Vol. 9, No. 2, 2019 67



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

DPP and PP and concluded that virtual and co-located teams can produce comparable 
software. Hanks [20] also showed that students who used a DPP tool performed as 
well as co-located students on programming assignments and exams. Duque & Bravo 
[21] compared programmers employing DPP and solo programmers in terms of work 
productivity and code quality. They found that DPP teams usually spend more time to 
complete tasks, but make fewer errors than solo programmers. A recent systematic 
literature review on DPP conducted by da Silva Estácio and Prikladnicki [19] points 
out those more empirical studies on DPP are needed, especially in industry. 

Our previous work in the field lies in the area of DPP. We conducted several eval-
uations in authentic learning conditions in order to investigate the impact of DPP in a 
typical Java course. More recently, our research focused on studying factors that 
might affect student perception and performance while DPP was used as the main 
programming technique [22]. The study reported here compliments this previous 
work. In the present work the research questions are answered based on empirical data 
measured at pair level (pair’s performance, pair’s implementation time, pair’s 
feelgood factor etc.) while in the previous one at the student level. 

As shown, student performance has been extensively studied in the literature using 
various methods and approaches. In our study we investigate correlations between 
performance and other critical factors as performed in the previous studies. The re-
sults are presented in the following sections. 

3 Research Questions and Methodology 

3.1 Context of the study 

The study presented in this paper was carried out in the context of an undergradu-
ate course on Object-Oriented Programming (OOP) during the academic year 2016-
17. The course offers an introduction to the Java programming language and is part of 
the second-year curriculum. It runs over thirteen weeks with a 3-hour lab class per 
week. As homework, students were assigned five Java projects to be solved in pairs 
using a DPP system. Eighty-eight students chose a partner and formed 44 groups. 

In order to solve the assignments students had to utilize a DPP system (SCEPPSys) 
which provides all means for remote collaboration and some logging capabilities [23]. 
SCEPPSys runs as an Eclipse plugin installed by students and a web-based admin-
istration environment used by instructors for monitoring and preparing programming 
assignments. SCEPPSys includes typical features of DPP systems, such as providing a 
shared editor, supporting the roles of the driver and navigator, and a text-based com-
munication tool. However, it also includes some unique features that serve specific 
didactical needs: assignments comprise of small and manageable tasks or steps asso-
ciated with specific didactical goals or else OOP concepts. SCEPPSys’ logging capa-
bilities are related to users’ actions and are accessible via the administration environ-
ment. Instructors are able to retrieve useful statistical information about submitted 
assignments and DPP sessions, such as session duration, role switches, exchanged 
messages and contribution level of each participant. SCEPPSys’ logging feature made 

68 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

it feasible to perform the current and past studies. An overview of the current study is 
provided in Table 1. 

At the end of the course a questionnaire was delivered to the participating students 
in order to obtain their feedback on the DPP assignments. 

Table 1.  Course Outline 

Course Object-Oriented Programming 
Programming Language Java 
Programming Environment Eclipse IDE using the SCEPPSys plugin 
Academic year 2016-17 
Semester 3rd 
Duration 13 weeks, 3 hours per week 
Participants 88 (44 groups) 
Assignments 5 Java projects as homework 
Programming approach Distributed Pair Programming 

3.2 Research Questions 

The study aimed to answer the following research questions: 
RQ1: Is there empirical evidence that pair’s performance is dominated by the pro-

gramming experience of the developers? 
RQ2: Is there empirical evidence that pair’s performance is dominated by the con-

fidence in programming of the developers? 
RQ3: Is there empirical evidence that pairs’ performance is dominated by the 

feelgood factor of the developers? 
RQ4: Is there empirical evidence that pair’s feelgood factor is dominated by the 

programming experience of the developers? 
RQ5: Is there empirical evidence that pair’s feelgood factor is dominated by the 

confidence in programming of the developers? 
RQ6: Is there empirical evidence that pair’s implementation time is dominated by 

the confidence in programming of the developers? 
RQ7: Is there empirical evidence that pair’s performance is dominated by the per-

ceived compatibility of the developers? 
The data used in the study was gathered from three different sources: the log files 

of the DPP system, the questionnaire and students’ grades. The variables are summa-
rized in Table 2. 

The performance is based on the following two measures: the mean grade that 
pairs had received in the final exam of the OOP course (PairJavaExam) and the mean 
overall grade that they had received for their homework assignments (PairJavaAs-
sign). 

In order to evaluate programming experience student’s grades in previous pro-
gramming courses were considered. More specifically, the average grade from two 
courses, “Algorithms” and “Procedural Programming”, was calculated in order to 
specify programming experience for each student. For each pair the mean values of 
prior programming experience was calculated (PairProgExp). In addition to that, we 

iJEP ‒ Vol. 9, No. 2, 2019 69



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

recorded separately the lower value (LowerProgExp) and the higher value (High-
erProgExp) of programming experience for each pair. 

Table 2.  Factors and variables of the study 

Factor Description Variable 
Performance Java exam grade 

Java assignments grade 
PairJavaExam 
PairJavaAssign 

Programming Experience Grades received in previous programming courses PairProgExp 
LowerProgExp 
HigherProgExp 

Confidence Self-perception in programming interest and 
ability 

PairConf 
LowerConf 
HigherConf 

Feelgood factor Degree to which the developers felt comfortable 
during the pair session 

PairFeelGood 
LowerFeelGood 
HigherFeelGood 

Implementation time Total time spent in assignments PairImpTime 
Compatibility Pair’s compatibility degree based on perceived 

compatibility 
PairCompatibility 
LowerCompatibility 
HigherCompatibility 

 
Grades in exams and programming experience were measured on a scale from 0 to 

10 (where 10 is “excellent”), while grades in Java assignments were measured on a 
scale from 0 to 1.5. 

Confidence is typically estimated using students’ self-assessment in a survey. Just 
like in the study of Thomas et al. [12] we asked students to place themselves on a 
scale from 1 (“code-a-phobe”) to 9 (“code-warrior”). This scale ranges between stu-
dents who dislike programming and face difficulties while coding, and students who 
like and find challenging the programming process. For each pair the mean value of 
confidence in programming was calculated (PairConf). In addition to that, we record-
ed separately the lower value (LowerConf) and the higher value (HigherConf) of con-
fidence in programming for each pair. 

The feelgood factor was determined using students’ responses on the question of 
how they evaluate the overall pair programming experience on a scale  

• 1: very bad 
• 2: bad 
• 3: neutral 
• 4: good 
• 5: very good 

The average value for each pair was then calculated (PairFeelGood). In addition to 
that, we recorded separately the lower value (LowerFeelGood) and the higher value 
(HigherFeelGood) of the feelgood factor for each pair. This approach is in accordance 
with the study of Muller and Padberg [11] where the term feelgood factor was first 
introduced.  

The implementation time was calculated by the system, and it indicates the total 
time a pair spent on completing the assignments (PairImpTime).  

70 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

In order to evaluate the impact of pair compatibility (PairCompatibility) three sub-
groups were studied: 

• Non-compatible pairs 
• Compatible pairs 
• Very compatible pairs. 

The compatibility degree was based on the pair’s perceived compatibility. Each 
student evaluated on a scale from 1 (non-compatible) to 3 (very compatible) how 
compatible he felt with his partner regarding his programming ability. A pair was 
defined as non-compatible when both students felt non-compatible with their partner. 
A pair was defined as high compatible when both students felt very compatible with 
their partner. All other pairs are considered as compatible pairs. In addition to that, we 
recorded separately the lower compatibility degree (LowerComp) and the higher com-
patibility degree (HigherComp) for each pair. 

The type of each one of the above variables is either continuous or ordinal. Data 
from the log files and students’ responses were analyzed in order to run the statistical 
tests for this study. To measure correlations between the variables we used the Pear-
son correlation. 

The research questions of the current study investigate meaningful relationships 
between the aforementioned factors. The results are provided in the following section.

4 Results 

In this section we present the results of our research questions. First we provide 
some general results of the studied factors. As presented in Figure 1, the majority of 
students (79%) evaluated the overall experience in distributed and collaborative solu-
tion of assignments as a good (52%) or a very good (27%) experience (feelgood fac-
tor). Only 2 students reported a negative experience and both of them were in the 
same group. 

 
Fig. 1. Overall experience with DPP 

iJEP ‒ Vol. 9, No. 2, 2019 71



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

Figure 2 depicts the distribution of students’ self-confidence in their programming 
skills. Half of the students rated themselves as “code-warriors” (scale 7-9), 40% of 
them rated themselves as 4-6 (“middle”) and only 10% of the students placed them-
selves as 1-3 (“code-phobes”). Finally, Figure 3 depicts the distribution of perceived 
pair compatibility. As shown, students’ vast majority report that they were very com-
patible (49%) or satisfactorily compatible (50%) with their partner. 

 
Fig. 2. Distribution of students self-confidence in Programming 

 
Fig. 3. Perceived Pair Compatibility 

RQ1: Is there empirical evidence that pair’s performance is dominated by the pro-
gramming experience of the developers? 

The first research question studies the correlation between pair’s performance 
(PairJavaExam, PairJavaAssign) and pair’s programming experience (PairProgExp). 
We found that pair’s performance and pair’s programming experience are positively 
correlated (Table 3). The pair with higher programming experience performs better in 
the Java exam and the Java programming assignments. Although the result might 

72 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

seem self-evident, we decided to include it in the study as a sort of sanity check to test 
whether prior programming skills are reflected in the performance of future courses. 

Table 3.  Results summary of RQ1 

RQ1: Results r P 
PairJavaExam is correlated positively with PairProgExp 0.766 <0.001 
PairJavaAssign is correlated positively with PairProgExp 0.511 0.013 

 
Furthermore, we examine whether this correlation is driven by one of the individu-

als in the pair by focusing on the relationship between: 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the programming 
experience of that member of each pair with the lower experience (Lower-
ProgExp); 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the programming 
experience of that member of each pair with the higher experience (High-
erProgExp). 

The results indicate that the Java exam grade of the pair might be driven by both 
members of the team, whereas, the Java assignments grade of the pair might be driven 
by the team member who has the higher programming experience (Table 4). 

Table 4.  Results summary of RQ1 (extended) 

RQ1: Results r p 
PairJavaExam is correlated positively with LowerProgExp 0.722 0.001 
PairJavaExam is correlated positively with HigherProgExp 0.781 <0.001 
PairJavaAssign is not correlated with LowerProgExp 0.387 0.068 
PairJavaAssign is correlated positively with HigherProgExp 0.615 0.002 

 
RQ2: Is there empirical evidence that pair’s performance is dominated by the con-

fidence in programming of the developers? 
This research question studies the relationship between pair’s performance (Pair-

JavaExam, PairJavaAssign) and pair’s confidence (PairConf). We found that pair’s 
performance and pair’s confidence are positively correlated (Table 5). The most con-
fident pair performs better in the Java exam and the Java programming assignments. 

Table 5.  Results summary of RQ2 

RQ2: Results r p 
PairJavaExam is correlated positively with PairConf 0.715 <0.001 
PairJavaAssign is correlated positively with PairConf 0.355 0.031 

 
Furthermore, we examine whether this correlation is driven by one of the individu-

als in the pair by focusing on the relationship between: 

iJEP ‒ Vol. 9, No. 2, 2019 73



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the confidence level 
of that member of each pair with the lower confidence (LowerConf); 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the confidence level 
of that member of each pair with the higher confidence (HigherConf). 

The results indicate that the Java exam grade of the pair might be driven by both 
members of the team, whereas, the Java assignments grade of the pair might be driven 
by the team member who has the higher confidence (Table 6): 

Table 6.  Results summary of RQ2 (extended) 

RQ2: Results r p 
PairJavaExam is correlated positively with LowerConf 0.661 <0.001 
PairJavaExam is correlated positively HigherConf 0.673 <0.001 
PairJavaAssign is not correlated with LowerConf 0.274 0.101 
PairJavaAssign is correlated positively with HigherConf 0.387 0.018 

 
RQ3: Is there empirical evidence that pairs’ performance is dominated by the 

feelgood factor of the developers? 
This research question studies the relationship between pair’s performance (PairJa-

vaExam, PairJavaAssign) and pair’s feelgood factor (PairFeelGood). In our study, 
pair’s performance does not correlate with the feelgood factor of the developers 
(PairFeelGood) (Table 7). 

 

Table 7.  Results summary of RQ3 

RQ3: Results r p 
PairJavaExam is not correlated with PairFeelGood -0.037 0.859 
PairJavaAssign is not correlated with PairFeelGood 0.026 0.885 

 
It is natural to ask whether the same holds for the feelgood factor of the individual 

developers in a pair. We analyzed the relationship between: 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the feelgood factor 
of that member of each pair who felt less comfortable with the pair programming 
situation than the other member (LowerFeelGood); 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the feelgood factor 
of that member of each pair who felt more comfortable with the pair programming 
situation than the other member (HigherFeelGood). 

The results indicate that there is no correlation between these individual feelgood 
factor levels and pair’s performance (Table 8). 

 
 

74 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

Table 8.  Results summary of RQ3 (extended) 

RQ3: Results r p 
PairJavaExam is not correlated with LowerFeelGood -0.022 0.918 
PairJavaExam is not correlated with HigherFeelGood -0.046 0.827 
PairJavaAssign is not correlated with LowerFeelGood 0.047 0.791 
PairJavaAssign is not correlated with HigherFeelGood 0.000 1.000 

 
RQ4: Is there empirical evidence that pair’s feelgood factor is dominated by the 

programming experience of the developers? 
This research question studies the relationship between pair’s feelgood factor 

(PairFeelGood) and pair’s programming experience (PairProgExp). In our study, no 
correlation was found between pair’s feelgood factor and pair’s programming experi-
ence (r=0.034, p=0.897). 

It is natural to ask whether the same holds for the programming experience of the 
individual developers in a pair. We analyzed the relationship between: 

• The pair’s feelgood factor (PairFeelGood) and the programming experience of that 
member of each pair with the lower experience (LowerProgExp); 

• The pair’s feelgood factor (PairFeelGood) and the programming experience of that 
member of each pair with the higher experience (HigherProgExp). 

The results indicate that there is no correlation between these individual levels of 
programming experience and pair’s feelgood factor (Table 9). 

Table 9.  Results summary of RQ4 (extended) 

RQ4: Results r p 
PairFeelGood is not correlated with LowerProgExp 0.163 0.533 
PairFeelGood is not correlated with HigherProgExp -0.191 0.462 

 
RQ5: Is there empirical evidence that pair’s feelgood factor is dominated by the 

confidence in programming of the developers? 
This research question studies the relationship between pair’s feelgood factor 

(PairFeelGood) and pair’s confidence in programming (PairConf). In our study, no 
correlation was found between pair’s feelgood factor and pair’s confidence in pro-
gramming (r=-0.196, p=0.268). 

It is natural to ask whether the same holds for the programming experience of the 
individual developers in a pair. We analyzed the relationship between: 

• The pair’s feelgood factor (PairFeelGood) and the confidence in programming of 
that member of each pair with the lower confidence (LowerConf); 

• The pair’s feelgood factor (PairFeelGood) and the confidence in programming of 
that member of each pair with the higher confidence (HigherConf). 

The results indicate that there is no correlation between these individual levels of 
programming confidence and pair’s feelgood factor (Table 10). 

iJEP ‒ Vol. 9, No. 2, 2019 75



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

Table 10.  Results summary of RQ5 (extended) 

RQ5: Results R p 
PairFeelGood is not correlated with LowerConf -0.226 0.199 
PairFeelGood is not correlated with HigherConf -0.080 0.652 

 
RQ6: Is there empirical evidence that pair’s implementation time is dominated by 

the confidence in programming of the developers? 
This research question studies the relationship between pair’s implementation time 

(PairImpTime) and confidence in programming (PairConf).We found that pair’s im-
plementation time and pair’s confidence in programming (PairConf) are correlated 
negatively (r=-0.359, p=0.029). This means that pairs with a high level of confidence 
on their programming skills needed less time to complete the assignments.  

It is natural to ask whether the same holds for the confidence in programming of 
the individual developers in a pair. We analyzed the relationship between: 

• The pair’s implementation time (PairImpTime) and the confidence in programming 
of that member of each pair with the lower confidence (LowerConf); 

• The pair’s implementation time (PairImpTime) and the confidence in programming 
of that member of each pair with the higher confidence (HigherConf). 

The results indicate that the implementation time of the pair might be driven by the 
team member who has the higher self-confidence in programming (Table 11). 

Table 11.  Results summary of RQ6 (extended) 

RQ6: Results r p 
PairImpTime is not correlated with LowerConf -0.186 0.271 
PairImpTime is correlated with HigherConf -0.549 <0.001 
 

RQ7: Is there empirical evidence that pair’s performance is dominated by the per-
ceived compatibility of the developers? 

This research question studies the relationship between pair’s performance (PairJa-
vaExam, PairJavaAssign) and pair’s compatibility (PairCompatibility). We found that 
pair’s performance in Java exam (PairJavaExam) and pair’s compatibility (PairCom-
patibility) are correlated positively whereas pair’s performance in Java assignments 
(PairJavaAssign) and pair’s compatibility (PairCompatibility) are not correlated (Ta-
ble 12). This means that pairs with higher perceived compatibility performed better in 
Java exam. 

Table 12.  Results summary of RQ7 

RQ7: Results r p 
PairJavaExam is correlated positively with PairCompatibility 0.472 0.011 
PairJavaAssign is not correlated with PairCompatibility 0.251 0.133 

 
It is natural to ask whether the same holds for the perceived compatibility of the 

individual developers in a pair. We analyzed the relationship between: 

76 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the perceived com-
patibility of that member of each pair with the lower compatibility (LowerCompat-
ibility); 

• The pair’s performance (PairJavaExam, PairJavaAssign) and the perceived com-
patibility of that member of each pair with the higher compatibility (HigherCom-
patibility). 

The results indicate that the Java exam grade of the pair might be driven by that 
member of each pair with the lower compatibility, whereas, the Java assignments 
grade is not driven by either one of the members in team (Table 13). 

Table 13.  Results summary of RQ7 (extended) 

RQ7: results r p 
PairJavaExam is correlated positively with LowerCompatibility 0.433 0.021 
PairJavaExam is not correlated with HigherCompatibility 0.368 0.054 
PairJavaAssign is not correlated with LowerCompatibility 0.261 0.119 
PairJavaAssign is not correlated with HigherCompatibility 0.164 0.334 

5 Discussion and Conclusion 

The benefits of PP are numerous and have been extensively recorded in the litera-
ture. Studies on PP are more exhaustive than those on DPP, and many of the factors 
investigated about PP have not yet been examined for DPP. In this paper we investi-
gate correlations between performance, programming experience, student confidence, 
feelgood factor, partner compatibility and implementation time while DPP was used 
as the main programming technique. Based on our findings we can draw some con-
clusions and provide a practical contribution to the literature.  

In this empirical study teamwork in the form of DPP-assignments was once again 
evaluated very positively. The majority of students (79%) evaluated the overall expe-
rience in distributed and collaborative solution of assignments as a good or a very 
good experience. In previous studies DPP has always gained positive feedback from 
students. A similar evaluation result is also presented in the work of Muller and Pad-
berg [11]. 

According to the results pair’s prior programming experience is associated with 
pair’s performance in an OOP course that is supported by DPP assignments. There is 
a statistically significant correlation between previous programming performance and 
overall performance in Java (exam and assignments grade). Since prior knowledge of 
each pair member is a determinant factor for their learning efficiency, students should 
have a deep knowledge on fundamental programming concepts or constructs before 
enrolling in an OOP course. 

The same holds for pair’s performance and pair’s confidence in programming. The 
most confident pair performs better in Java exam and Java programming assignments. 

Concerning pair’ implementation time and pair’s programming confidence these 
two factors are associated.   

iJEP ‒ Vol. 9, No. 2, 2019 77



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

We also found that pair’s Java assignments grade might be driven by the team 
member with the higher confidence and the higher programming experience. The 
same holds for pair’s implementation time. Pair’s implementation time might be driv-
en by the team member who has the higher self-confidence in programming. 

The results concerning feelgood factor show that pair’s performance isn’t dominat-
ed by the feelgood factor. The results also suggest that how comfortably team mem-
bers felt during DPP sessions is not dominated by pair’s prior programming experi-
ence or pair’s programming confidence. Thus, students seem to feel comfortable dur-
ing DPP sessions regardless of their perception in programming competence or their 
prior programming experience. 

Finally we found that only pair’s performance in Java exam is correlated with 
pair’s compatibility.  

Taking into consideration all the above presented results we could conclude that 
the most dominant factors for the pair’s performance is prior programming experience 
and confidence in programming and not how comfortably students feel during the 
DPP sessions. We also have some indication that pair’s Java assignments grade is 
driven by the team member with the higher programming experience and higher con-
fidence whereas pair’s Java exam grade is driven by the team member with the lower 
perceived compatibility.  

Finally we should point out that the fact that a correlation exists is not sufficient to 
conclude that the prior programming experience or the perception on programming 
competence actually drives the pair performance. A valid conclusion is, though, that 
the pair prior programming experience or the perception in programming competence 
are candidate drivers for the performance of a pair. For the same reason a valid con-
clusion is that pair’s compatibility is a candidate driver for the performance of a pair 
on the final exam. 

6 Acknowledgement 

This research is funded by the University of Macedonia Research Committee as 
part of the “Principal Research 2019” funding program. 

7 References 

[1] Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the 
case for pair programming. IEEE software, 17(4), 19-25.  
https://doi.org/10.1109/52.854064  

[2] Dávideková, M., & Hvorecký, J. (2017). ICT Collaboration Tools for Virtual Teams in 
Terms of the SECI Model. In International Journal of Engineering Pedagogy (IJEP), Vol. 
7, No. 1, 2017 https://doi.org/10.3991/ijep.v7i1.6502 

[3] Rodriguez, J., & Esparragoza, I. E. (2017). Motivation of Engineering Students Participat-
ing in Multinational Design Projects – Comparison Based on Gender and Class Status. In 
International Journal of Engineering Pedagogy (IJEP), Vol. 7, No. 4, 2017. 
https://doi.org/10.3991/ijep.v7i4.7516  

78 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

[4] Zacharis, N. (2009). Evaluating the effects of virtual pair programming on students’ 
achievement and satisfaction. International Journal Of Emerging Technologies In Learning 
(IJET), 4(3), 34-39. https://doi.org/10.3991/ijet.v4i3.772 

[5] Hanks, B. (2006). Student attitudes toward pair programming. In ACM SIGCSE Bulletin 
(Vol. 38, No. 3, pp. 113-117). ACM. https://doi.org/10.1145/1140123.1140156 

[6] Faja, S. (2011). Pair Programming as a Team Based Learning Activity: A Review of Re-
search. Issues in Information Systems, XII(2), 207–216. 

[7] Williams, L., McCrickard, D. S., Layman, L., Hussein, K. (2008). Eleven Guidelines for 
Implementing Pair Programming in the Classroom. In Proceedings of the Agile 2008 
(AGILE '08), 445–452. https://doi.org/10.1109/Agile.2008.12 

[8] Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming for 
CS/SE teaching in higher education: A systematic literature review. IEEE Transactions on 
Software Engineering, 37(4), 509-525. https://doi.org/10.1109/TSE.2010.59 

[9] Williams, L., Layman, L., Osborne, J., & Katira, N. (2006). Examining the compatibility 
of student pair programmers. In Agile Conference, 2006. IEEE. 
https://doi.org/10.1109/AGILE.2006.25 

[10] Braught, G., MacCormick, J., & Wahls, T. (2010). The benefits of pairing by ability. In 
Proceedings of the 41st ACM technical symposium on Computer science education (pp. 
249-253). https://doi.org/10.1145/1734263.1734348 

[11] Muller, M. M., & Padberg, F. (2004). An empirical study about the feelgood factor in pair 
programming. In Software Metrics, 2004. Proceedings. 10th International Symposium on 
(pp. 151-158). IEEE. https://doi.org/10.1109/METRIC.2004.1357899 

[12] Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and code-a-phobes: a 
study in attitude and pair programming. In ACM SIGCSE Bulletin (Vol. 35, No. 1, pp. 
363-367). ACM. https://doi.org/10.1145/792548.612007 

[13] Nan, I., Kau, B., & Rugelj, J. (2008). Pair programming as a modern method of teaching 
computer science. International Journal of Emerging Technologies in Learning (IJET), 3, 
45-49. 

[14] Van Toll, T., Lee, R., & Ahlswede, T. (2007). Evaluating the usefulness of pair program-
ming in a classroom setting. In Computer and Information Science, 2007. ICIS 2007. 6th 
IEEE/ACIS International Conference on (pp. 302-308). IEEE. 

[15] Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., & Gehringer, E. (2004). On un-
derstanding compatibility of student pair programmers. In ACM SIGCSE Bulletin (Vol. 
36, No. 1, pp. 7-11). ACM. https://doi.org/10.1145/1028174.971307 

[16] Lui, K. M., & Chan, K. C. (2006). Pair programming productivity: Novice–novice vs. ex-
pert–expert. International Journal of Human-computer studies, 64(9), 915-925. 
https://doi.org/10.1016/j.ijhcs.2006.04.010 

[17] Sfetsos, P., Stamelos, I., Angelis, L., & Deligiannis, I. (2009). An experimental investiga-
tion of personality types impact on pair effectiveness in pair programming. Empirical 
Software Engineering, 14(2), 187. https://doi.org/10.1007/s10664-008-9093-5 

[18] Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of distributed pair 
programming. In Conference on Extreme Programming and Agile Methods (pp. 208-220). 
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45672-4_20 

[19] da Silva Estácio, B. J., & Prikladnicki, R. (2015). Distributed pair programming: A sys-
tematic literature review. Information and Software Technology, 63, 1-10. 
https://doi.org/10.1016/j.infsof.2015.02.011 

[20] Hanks, B. (2008). Empirical evaluation of distributed pair programming. International 
Journal of Human-Computer Studies, 66(7), 530-544. 
https://doi.org/10.1016/j.ijhcs.2007.10.003 

iJEP ‒ Vol. 9, No. 2, 2019 79



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

[21] Duque, R., & Bravo, C. (2008). Analyzing work productivity and program quality in col-
laborative programming. In Software Engineering Advances, 2008. ICSEA'08. The Third 
International Conference on (pp. 270-276). IEEE. https://doi.org/10.1109/ICSEA.2008.82 

[22] Satratzemi, M., Xinogalos, S., Tsompanoudi, D., & Karamitopoulos, L. (2018). Examining 
Student Performance and Attitudes on Distributed Pair Programming. Scientific Program-
ming, 2018. https://doi.org/10.1155/2018/6523538 

[23] Tsompanoudi, D., Satratzemi, M., & Xinogalos, S. (2015). Distributed Pair Programming 
using Collaboration Scripts: An Educational System and initial Results. Informatics in Ed-
ucation, Vol. 14, No. 2, 291–314, 2015. https://doi.org/10.15388/infedu.2015.17 

8 Authors 

Despina Tsompanoudi is member of the Software and Data Engineering Lab, De-
partment of Applied Informatics, University of Macedonia, Egnatia 156, 54006 Thes-
saloniki, Greece. She received a BSc in Informatics from the Aristotle University of 
Thessaloniki in 2003 and an MSc in Information Systems from the University of 
Macedonia in 2006. She holds a PhD degree in Computer Science from University of 
Macedonia, Greece, under the supervision of Professor Maya Satratzemi. She is a 
Computer Science teacher since 2005 and currently teaches in Eleftheroupoli High 
School, Greece. 

Maya Satratzemi is a professor at the Department of Applied Informatics, Univer-
sity of Macedonia, Thessaloniki, Greece. She was awarded the BS degree in Mathe-
matics from the Aristotle University of Thessaloniki in 1980 and the PhD degree in 
Informatics in 1991 from the department of Applied Informatics, University of Mace-
donia. Her current main research interests lie in the area of Educational Programming 
Environments and Techniques, Adaptive and Intelligent Systems, Collaborative 
Learning Systems, and Game-based Learning. She has published a significant number 
of papers in international journals and in International and National conferences. She 
was Conference co-chair of the 8th ITiCSE (ACM). maya@uom.edu.gr 

Stelios Xinogalos is an assistant professor at the Department of Applied Informat-
ics, University of Macedonia, Thessaloniki, Greece. He was awarded the BS degree in 
Applied Informatics from the University of Macedonia in 1998 and the PhD degree in 
Informatics in 2002 from the department of Applied Informatics, University of Mace-
donia. His current main research interests lie in the area of Programming Environ-
ments and Techniques, Object-Oriented Design and Programming, Educational Pro-
gramming Environments, and Serious Games. He has published a significant number 
of papers in International journals and in International and National confer-
ences.stelios@uom.edu.gr 

Leonidas Karamitopoulos is a lecturer at the Department of Information Tech-
nology, Alexander Technological and Educational Institute of Thessaloniki, Greece. 
He was awarded the B.A. degree in Mathematics from the Aristotle University of 
Thessaloniki in 1990, the M.Sc. degree in Operations Research from the George Ma-
son University, U.S.A., and the Ph.D. degree in Data Mining and Knowledge Discov-
ery in Time Series in 2009 from the department of Applied Informatics, University of 
Macedonia. His current main research interests lie in the area of data mining in time 

80 https://www.i-jep.org



Paper—An Empirical Study on Factors related to Distributed Pair Programming 

series and recommendation systems. He has published a number of papers in interna-
tional journals and in International and National conferences. He was member of 
organization committee of the 10th Balkan Conference of Operations Research. 
lkaramit@otenet.gr 

This article is a revised version of a paper presented at the International Conference on Interactive Col-
laborative Learning (ICL2018), held September 2018, in Kos, Greece. Article submitted 2018-11-30. 
Resubmitted 2019-01-30. Final acceptance 2019-01-30. Final version published as submitted by the au-
thors. 

iJEP ‒ Vol. 9, No. 2, 2019 81


