Reverse Problem-Based Learning - A Case Study with a Braille Machine

Manuel Carlos Felgueiras, Andre Vaz Fidalgo, Gustavo Ribeiro Alves


Engineering Education includes not only teaching theoretical fundamental concepts but also its verification during practical lessons in laboratories. The usual strategies to carry out this action are frequently based on Problem Based Learning, starting from a given state and proceeding forward to a target state. The possibility or the effectiveness of this procedure depends on previous states and if the present state was caused or resulted from earlier ones. This often happens in engineering education when the achieved results do not match the desired ones, e.g. when programming code is being developed or when the cause of the wrong behavior of an electronic circuit is being identified. It is thus important to also prepare students to proceed in the reverse way, i.e. given a start state generate the explanation or even the principles that underlie it. Later on, this sort of skills will be important. For instance, to a doctor making a patientâ??s story or to an engineer discovering the source of a malfunction. This learning methodology presents pedagogical advantages besides the enhanced preparation of students to their future work.
The work presented on his document describes an automation project developed by a group of students in an engineering polytechnic school laboratory. The main objective was to improve the performance of a Braille machine. However, in a scenario of Reverse Problem-Based learning, students had first to discover and characterize the entire machine's function before being allowed (and being able) to propose a solution for the existing problem.


Engineering education; problem based learning; reverse problem based learning; reverse engineering

Full Text:


International Journal of Engineering Pedagogy (iJEP) – eISSN: 2192-4880
Creative Commons License
Scopus logo ESCI logo DBLP logo EBSCO logo DOAJ logo