
Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

ADM-Based Hybrid Model Transformation for
Obtaining UML Models from PHP Code

https://doi.org/10.3991/ijes.v7i1.10052

Abdelali Elmounadi (*), Naoual Berbiche, Nacer Sefiani
University Mohammed V, Rabat, Morocco

a.elmounadi@gmail.com

Nawfal El Moukhi
University Ibn tofail, Kenitra, Morocco

Abstract—In this paper, we present a hybrid-based model transformation,
according to the Architecture Driven Modernization (ADM) approach, intended
for getting UML (Unified Modeling Language) models from the PHP (Hyper-
text Preprocessor) code. This latter has been done by offering a tool support for
automated generation of UML platform independent models from PHP ASTM
(Abstract Syntax Tree Metamodel) representations, which are specific platform
models. The model transformation rules are expressed in ATL (Atlas Transfor-
mation Language), which is a widely used model transformation language
based on the hybrid approach. This work aims to fill the gap between the web-
based applications maintenance, especially PHP-based implementations, and
the model transformation processes in the ADM context.

Keywords—ADM, model transformation, ATL, UML, PHP

1 Introduction

Among the various web development technologies, PHP language (Hypertext Pre-
processor) [1] is the most popular server-side scripting language especially suited for
web development and dynamic web pages creation. This programming language has
become the basis for many web applications thanks to its ease of use and management
of the development, deployment and integration lifecycle. However, in order to sup-
port the ever-increasing complexity of user needs, the PHP web-based application
maintenance is becoming ever more critical. This challenge becomes more and more
tangible in proportion to the gap that can emerge between the initial documentation (if
any) and the late implementation versions of the PHP web-based application. Thus,
reverse engineering is supposed to solve this kind of problem. However, classical
reverse engineering tasks can also be very complex and incur additional costs.

In this paper, we propose a new model transformation process that aims to perform
reverse engineering of PHP web-based applications in the context of Architecture-
driven Modernization (ADM). The model transformation process aims to provide
model representation in a higher level of abstraction from PHP web-based applica-

32 https://www.i-jes.org

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

tions assets. The obtained models shall be expressed in UML. The model transfor-
mation rules are expressed in ATL [2] (Atlas Transformation Language), which is
based on the hybrid model transformation approach.

The rest of this paper is organized as follow: section 2 presents the research back-
ground. It presents related concepts to the Architecture-driven Modernization (ADM).
Section 3 presents the adopted methodology in this work to achieve the hybrid-based
model transformation. Finally, section 4 concludes this work and gives hints about
future work and perspective.

2 Architecture - Driven Modernization

Architecture Driven Modernization (ADM) is the process of understanding and
evolving existing software assets. According to [3], ADM is an OMG (Object Man-
agement Group) standard which addresses the integration of MDA and reverse engi-
neering.

In fact, MDA encourages the separation of concerns, i.e. it preconizes the model
transformations between different levels of abstraction, beginning with platform inde-
pendent models (PIMs) which do not contain any specific information about the im-
plementation platform, arriving to platform specific models (PSMs) that include spe-
cific information about implementation platforms. Thus, ADM is for MDRE what
represents MDA for MDE. It also preconizes the use of PIM, PSM [4, 5] and model
transformations concepts to facilitate the systematic analysis of existing systems, to
gather their corresponding models.

Fig. 1. Process for evolving existing software assets using ADM/MDA approaches

With the advent of ADM, OMG presented a new set of meta model relatively to
this context: Knowledge Discovery Meta model (KDM) [6] and Software Metrics
Meta model (SMM) [7], which are both platform-independent meta-models, and
ASTM (Abstract Syntax Tree Meta model) [8] which is more platform-specific.

Firstly, KDM is designed as the OMG's foundation for software modernization
and offers a common intermediate representation for existing software systems and
their operating environments, which defines common metadata required for semantic
integration of application lifecycle management tools. It represents a meta model for
knowledge discovery in software and defines a common vocabulary of knowledge

iJES ‒ Vol. 7, No. 1, 2019 33

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

related to software engineering artifacts, regardless of the implementation program-
ming language and runtime platform. KDM is designed to enable knowledge-based
integration between tools and defines an interchange format for those that work with
existing software as well as an abstract programming interface (API) for the next-
generation assurance and modernization tools.

Secondly, SMM defines a meta-model intended for representing software meas-
urement information. Indeed, a standard for the exchange of measures is very im-
portant, given the role that measures play in software engineering and design stage.
SMM is part of the ADM roadmap and fulfills the metric needs of the ADM roadmap
scenarios.

Finally, ASTM is a meta model from the OMG that describes the set of elements
used for composing abstract syntax trees (ASTs) [9]. The main purpose of ASTM
specification is to enable easy interchange of detailed software metadata between
software development and software modernization tools. This specification defines a
meta model for representing information about existing software assets in the form of
abstract syntax trees. Indeed, an AST Meta model describes the elements used for
composing AST models. An AST model is a formal structure that describes the man-
ner how the statements of a software asset are structured, and reflects the grammar of
a particular programming language. Furthermore, the ASTM specification is orga-
nized into three levels of abstraction:

Gastm: Generic Abstract Syntax Tree Meta model is a generic set of language
modeling elements common across numerous languages establishes a common core
for language modeling called the Generic Abstract Syntax Trees. In this specification,
the GASTM model elements are expressed as UML class diagrams.

Sastm: Language Specific Abstract Syntax Tree Meta models constitute a set of
meta models for particular languages such as PHP, C++ or Java. These meta models
are derives from the GASTM along with modeling element extensions sufficient to
capture the language.

Fig. 2. SATSM - GASTM relationship

34 https://www.i-jes.org

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

Pastm: Proprietary Abstract Syntax Tree Meta models express AST representa-
tions for different languages modeled in formats that are not consistent with MOF
(Meta-Object Facility), the GASTM, or SASTM. For such proprietary AST this speci-
fication defines the minimum conformance specifications needed to support model
interchange.

In this article, the KDM and SMM will not be used at this stage. However, we use
ASTM to create a SATSM for the PHP language. The input PSMs will be in compli-
ance with this meta model in the model transformation process.

3 The Hybrid - Based Model Transformation

The model transformation performed takes as input a PSM model (a SASTM PHP
compliant model instance) to provide a PIM model as output conforming to the UML
meta model. Then, the transformation engine is implemented based on the ATL lan-
guage which adopts the hybrid model transformation approach.

Fig. 3. Description of the model transformation process

Through this work, we are seeking to fill the gap between the ADM approach and
web development fields. Indeed, the ADM approach offers better ease of use. Unlike
existing commercial tools, it offers better control of reverse engineering processes, by
offering more visibility, eliminating the black-box effect, and also offering better
traceability for the transformation steps. This latter can be done by offering a tool
support for automated generation of UML platform independent models (PIMs) from
PHP ASTM (Abstract Syntax Tree Meta model) representations, which are specific
platform models (PSMs). In the following, we present in detail the elements of the
model transformation.

iJES ‒ Vol. 7, No. 1, 2019 35

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

3.1 PSM and PIM meta models

We present the different meta-classes that make up the PSM and PIM meta-models
used in our model transformation process. In this work, we focused on the structural
elements of programming on the PHP language side as well as the structural modeling
aspect on the UML Meta model side. Figure 4 illustrates the source meta model
(PSM) that represents the elements of the PHP language. This meta model, which
represents an SASTM for PHP language, was developed on the basis of the PDT
(PHP Development Tools) library [10] of the Eclipse platform, by using ECORE [11]
of the EMF platform (Eclipse Modeling Framework).

Indeed, according to the PDT library, Table 1 provides the definition of each ele-
ment present in Figure 4.

Fig. 4. SASTM for PHP language

Table 1. Overview of the PHP SASTM elements

Name Description
AST Node Abstract meta-superclass of all AST nodes
Program Representation of a PHP script

Statement Notion of abstract statement, the smallest standalone element of programing
languages

Comment Represents comment lines
Block Represents code block type

36 https://www.i-jes.org

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

Type Declaration Type declaration AST node type
Class Declaration Class declaration AST node type

Body Declaration
Abstract base meta-class of all AST nodes that represent body declarations that
may appear in the body of some kind of class or interface declaration as fields
declaration or method declaration

Method Declaration Method declaration AST node type
Function Declaration Function declaration AST node type
Fields Declaration A body declaration AST node type dedicated to fields declaration
Expression Statement A kind of statement AST node type that wraps an expression
Expression Abstract base meta-class of AST nodes that represent expressions
Infix Expression Infix expression AST node type
Variable Base Base meta-class for representing variables
Identifier Identifying element for the AST nodes
Scalar Scalar AST node type
Variable Variable AST node type
Single Field Declaration A single field declaration AST node type
Formal Parameter A formal parameter AST node type
Modifier Access specifier of a body declaration

However, Figure 5 represents the target meta-model (PIM) whose elements consti-
tute the class diagram of the UML modeling language, based on the OMG specifica-
tion in UML-Infrastructure [12]. UML Package describes the concept of UML pack-
age, and is related to the Classifier meta-class. The Classifier meta-class represents
both the concept of UML class and the concept of data type. The Property meta-class
expresses the concept of properties of an UML class. The Operation meta-class de-
scribes the notion of method, which is closely linked to the notion of parameter (Pa-
rameter meta-class). Finally, the meta-model highlights the notion of generalization
that includes aspects of a higher level of abstraction referring to the concerned classi-
fier. In addition, a classifier could have either no generalizations or many generaliza-
tions.

iJES ‒ Vol. 7, No. 1, 2019 37

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

Fig. 5. UML meta model

3.2 Atlas transformation language

Atlas Transformation Language (ATL) [13] is a model transformation language
designed to express model transformations as described by the hybrid approach in an
MDA/ADM context. This language is the result of research by the INRIA Atlas and
the LINA research group in response to the OMG MOF/QVT Request for Proposal.

ATL is specified both as a meta-model and as a concrete textual syntax that relies
on the syntax of OCL (Object Constraint Language) [14] formalism for the expression
of transformation rules. It is a hybrid language that adopts a declarative and impera-
tive approach. The declarative style is recommended for writing the model transfor-
mation. However, mandatory constructs are provided to further specify some trans-
formations that are too complex to be processed in a declarative manner only. The
ATL transformation program consists of a set of rules that define how the elements of
a source model will match the elements of the target model. The implementation of
ATL-based transformations is provided through an integrated plugin into the Eclipse
IDE.

3.3 ATL transformation rules

In this section, we present some of the transformation rules that are involved in
generating the UML model from a SASTM representation of the PHP code. In this
work, we consider structural aspect only. By analogy, an AST will be converted to a
UML model as a first step. Then, each class declaration in the PHP code will be trans-
lated into a UML class with the corresponding fields and methods. Specific order
transformations are then performed to map the remaining elements to complete the
model transformation process as described in Table 2

Table 2. Set of the ATL-based transformations

 Transformation Rule description Transformation Rule in ATL

1 The Abstract syntax tree (AST) is
converted to an UML Model

rule PHPAST2UMLModel {
from a: PHP!AST
tom: UML!Model(
name <- 'default model',
visibility <- #public,
packagedElement<- a.program-
>collect(p | p.statement),
Owned Comment<- a.program->collect(p | p.comment)
)
}

2

Each class declaration becomes an
UML class with the correspondent
attributes, operations and
generalization.

rule PHPClassDeclaration2UMLClass {
from p:PHP!ClassDeclaration
to
u:UML!Class(
name <- p.identifier.name,
visibility <- #public,
isAbstract<- (p.modifier = 'abstract'),

38 https://www.i-jes.org

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

isFinalSpecialization<- (p.modifier = 'final'),
ownedAttribute<- p.body.statement->
select(o | o.oclIsTypeOf(PHP!FieldsDeclaration))->
collect(s | s.field),
ownedOperation<- p.body.statement->select(o |
o.oclIsTypeOf(PHP!MethodDeclaration)),
generalization <- p.superClass
)
}

3
Each single field declaration becomes
an UML property.
(Remaining part of rule number 3)

rule PHPFieldDeclaration2UMLProperty {
from p: PHP!SingleFieldDeclaration
to u: UML!Property(
visibility <- p.refImmediateComposite().getVisibility(
p.refImmediateComposite().modifier),
isStatic<-
p.refImmediateComposite().isStatic(p.refImmediateComposi
te().modifier),

isReadOnly<-
p.refImmediateComposite().isFinal(p.refImmediateComposi
te().modifier),
name <- p.getName,
defaultValue<- p.value,
type <- OclUndefined
)
}

4 Each method declaration is converted
to an UML operation.

rule PHPMethodDeclaration2UMLOperation {
from p: PHP!MethodDeclaration
to u:UML!Operation(
name <- p.function.identifier.name,
type <- OclUndefined,
isAbstract<- p.function.body.oclIsUndefined(),
isStatic<- p.isStatic(p.modifier),
ownedParameter<- p.function.formalParameter
)
}

5
Each formal parameter of a method
declaration becomes an UML opera-
tion parameter.

rule PHPformalparameter2UMLparameter {
from p: PHP!FormalParameter
to u: UML!Parameter(
name <- p.parameterName.name.name,
type <- p.parameterType
)
}

6 A PHP comment is transformed to an
UML comment.

rule PHPComment2UMLComment {
from p: PHP!Comment
to u: UML!Comment(
body <- p.body.trim()
)
}

7
An extended PHP class in a class
declaration becomes an UML general-
ization related to the container class.

rule PHPNamespaceName2UMLGeneralization {
from p: PHP!NamespaceName(p.refImmediateComposite().
oclIsTypeOf(PHP!ClassDeclaration))
to u: UML!Generalization(
general <- UML!Class.allInstancesFrom('OUT')->
select(c | c.name = p.segment->
first().name)->first()
)

iJES ‒ Vol. 7, No. 1, 2019 39

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

}

8 A concrete rule that converts a PHP
scalar to an UML literal string.

rule PHPScalar2UMLLiteralString extends PHPSca-
lar2UMLLiteral {
from p: PHP!Scalar
to u: UML!LiteralString(
value <- p.value

4 Conclusion and Future Work

Thanks to the Eclipse platform, notably via PDT and EMF-Ecore, we were able to
implement a Meta model of the PHP language to be able to manipulate the elements
of this language as part of the ADM approach. We then performed a model transfor-
mation based on the ATL language that allows us to obtain UML models from code
written in PHP language. Through this achievement, we have experienced the strength
of the ASTM Meta model as well as the power of the hybrid approach in the context
of model transformations. Our objective is now to be able to expand this contribution
towards other programming languages to improve the usability of model transfor-
mations using the same approach with further development technologies.

5 References

[1] J. Maras, A. Petričić, and M. Štula, “phpModeler–an approach to Reverse Engineering
legacy Web applications,” in DICES workshop at the 19th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM 2011), 2010.

[2] M. Rahmouni and S. Mbarki, “MDA-Based ATL Transformation To Generate MVC 2
Web Models,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 4, pp. 57–70, Aug. 2011.
https://doi.org/10.5121/ijcsit.2011.3405

[3] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “MoDisco: A model driven reverse
engineering framework,” Inf. Softw. Technol., vol. 56, no. 8, pp. 1012–1032, 2014.
https://doi.org/10.1016/j.infsof.2014.04.007

[4] K. Arrhioui, S. Mbarki, and M. Erramdani, “Applying CIM-to-PIM Model Transfor-
mation for Development of Emotional Intelligence Tests Platform,” Int. J. Online Eng.
IJOE, vol. 14, no. 8, p. 160, Aug. 2018. https://doi.org/10.3991/ijoe.v14i08.8747

[5] O. Betari, S. Filali, A. Azzaoui, and M. A. Boubnad, “Applying a Model Driven Archi-
tecture Approach: Transforming CIM to PIM Using UML,” Int. J. Online Eng. IJOE,
vol. 14, no. 9, p. 170, Sep. 2018. https://doi.org/10.3991/ijoe.v14i09.9137

[6] Object Management Group, “Knowledge Discovery Metamodel (KDM).” [Online].
Available: http://www.omg.org/technology/kdm/. [Accessed: 24-Apr-2018].

[7] Object Management Group, “About the Structured Metrics Metamodel Specification
Version 1.1.1.” [Online]. Available: https://www.omg.org/spec/SMM/1.1.1/. [Ac-
cessed: 24-Apr-2018].

[8] Object Management Group, Architecture-driven Modernization: Abstract Syntax Tree
Metamodel (ASTM). 2011.

[9] A. Elmounadi, N. Berbiche, F. Guerouate, and N. Sefiani, “Eclipse JDT-based method
for dynamic analysis integration in Java code generation process,” J. Theor. Appl. Inf.
Technol., vol. 95, no. 24, 2017.

40 https://www.i-jes.org

Paper—ADM-Based Hybrid Model Transformation for Obtaining UML Models …

[10] Eclipse Foundation, “Eclipse PHP Development Tools.” [Online]. Available:
https://www.eclipse.org/pdt/. [Accessed: 20-Jul-2018].

[11] Eclipse Foundation, “Ecore - Eclipsepedia.” [Online]. Available: http://wiki.eclipse.org
/Ecore. [Accessed: 24-Apr-2018].

[12] Object Management Group, “OMG Unified Modeling Language TM (OMG UML), in-
frastructure.” 2011.

[13] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation tool,”
Sci. Comput. Program., vol. 72, no. 1–2, pp. 31–39, Jun. 2008. https://doi.org/
10.1016/j.scico.2007.08.002

[14] E. Seidewitz and J. Tatibouet, “Tool Paper: Combining Alf and UML in Modeling
Tools–An Example with Papyrus–,” in OCL 2015–15th International Workshop on
OCL and Textual Modeling: Tools and Textual Model Transformations Workshop Pro-
ceedings, 2015, p. 105.

6 Authors

Abdelali Elmounadi was born in Rabat, in 1988. He is a PhD student at Moham-
med V University in Rabat, Morocco. He received a Master’s degree in Computer
Science from Sidi Mohammed Benabdallah University in 2012. His research interests
are Software Engineering, Reverse Engineering, Model-driven Engineering and code
generation.

Naoual Berbiche is a Research professor at LASTIMI laboratory and Professor in
the Department of Computer Sciences at the Superior School of Technologies of Salé,
Mohammed V University in Rabat, Morocco. She is interested in models transfor-
mation, systems interoperability, computer network security and web application
security.

Nacer Sefiani was born in Rabat, Morocco. He received the Master degree and the
Doctorate in instrumentation and measurements from university of Bordeaux, France,
respectively in 1992 and 1995. He received the ability, degree and grade Professor in
the Graduate School of Technology at Salé in the University Mohammed V, Rabat,
Morocco respectively in 2003 and 2011. His research interests include identification
and control of nonlinear systems. He is the author or co-author of many papers in
international journals and conferences.

Nawfal El Moukhi was born in Salé, in 1987. He is a PhD student in computer
science at Ibn Tofail University in Kenitra, Morocco.

Article submitted 2018-12-26. Resubmitted 2019-01-27. Final acceptance 2019-01-27. Final version
published as submitted by the authors.

iJES ‒ Vol. 7, No. 1, 2019 41

