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Abstract—The purpose of this study to analyze genetic algorithm (GA) and 

simulated annealing (SA) based approaches applied to well-known Traveling 

Salesman Problem (TSP). As a NP-Hard problem, the goal of TSP is to find the 

shortest route possible to travel all the cities, given a set of cities and distances 

between cities. In order to solve the problem and achieve the optimal solution, 

all permutations need to be checked, which gets exponentially large as more cit-

ies are added. Our aim in this study is to provide comprehensive analysis of 

TSP solutions based on two methods, GA and SA, in order to find a near opti-

mal solution for TSP. The results of the simulations show that although the SA 

executed with faster completion times comparing to GA, it took more iterations 

to find a solution. Additionally, GA solutions are significantly more accurate 

than SA solutions, where GA found a solution in relatively less iterations. The 

original contribution of this study is that GA based solution as well as SA based 

solution are developed to perform comprehensive parameter analysis. Further, a 

quantifiable comparison is provided for the results from each parameter analysis 

of GA and SA in terms of performance of solving TSP. 

Keywords—Traveling Salesman Problem; Genetic Algorithm; Simulated An-

nealing 

1 Introduction 

In recent years, the importance of Artificial intelligence (AI) keeps increasing, and 

there is a new application of AI arises every day. AI based application can be found in 

the agriculture, education, finance, government, military, and entertainment indus-

tries, and many examples of optimization techniques used in AI can be found in the 

literature [1-3]. Considering all the advances in AI and increasing applications in our 

daily lives, the objective of this study is to explore a highly real-world applicable AI 

problem, the Traveling Salesman Problem (TSP), and provide a comprehensive look 

at adaptation of genetic algorithm (GA) and simulated annealing (SA) for TSP solu-

tion. As popular algorithms, the GA and SA are used in wide range of application 

areas, such as Bayesian inference links to particle methods in Bayesian statistics and 

hidden Markov chain models, electronic circuit design, learning fuzzy rule base, to 

train neural networks, and more. 
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There are many methodologies that have been introduced to tackle the TSP, and 

algorithms for solving the TSP can be divided into two classes; exact algorithms and 

heuristic algorithms [4]. The exact algorithms are guaranteed to find the optimal solu-

tion, in which number of iterations needed increases exponentially. Our study, how-

ever, focuses on the second of the two classes, the heuristic algorithms. There are 

several studies in the literature on heuristic algorithm-based TSP solution, some of 

them worth mentioning here. Chen presented a list of some of the methods that have 

been used on the TSP [5]. The approach presented contains most of the heuristic algo-

rithms used to test TSP, including greedy algorithm, minimum-cost spanning tree, and 

local search. Additionally, modern optimization methods were also included such as 

SA, GA, ant algorithm, particle swarm optimization, tabu search algorithm, Hopefield 

neural networks [5]. 

One of these approaches is the Ant Colony Optimization (ACO), and it is studied 

for TSP by Fejzagic and Oputic [6]. In their approach, each node of the ACO graph 

represents a city, and each arc represents a connection between two cities. In each step 

of solution construction, an ant arriving in node (city) i chooses the next city to move 

to as a function of the pheromone values and function of the heuristic values on the 

arcs connecting city i to the cities the ant has not visited yet until all cities have been 

visited [6]. The most important drawback of ACO for TSP approach is that it can be 

easily trapped into local optima [7]. One solution to that drawback was presented 

where it forces ants to expand their search space considering only the distances of all 

unvisited paths connected to the current city [7]. Takahashi took a different approach 

and combined ACO and SA algorithms, where elitist ants periodically increase or 

decrease the quantity of pheromone with the number of tours increment [8]. 

Another approach presented in the literature for solution of TSP is Particle Swarm 

Optimization (PSO). PSO is described as the algorithm for finding optimal regions of 

complex search spaces through the interaction of individuals in a population of parti-

cles [9]. Basically, PSO is a population-based optimization technique on metaphor of 

social behavior of flocks of birds and/or schools of fish [9]. Moreover, in PSO, at 

every step, each particle changes position based on its velocity that depends on its 

previous best position and the best one among all the particles in the population [10]. 

Although all these studies are presented in the literature, little focus has been given 

on analysis of GA based solution to TSP. In this study, the goal is (i) to develop evo-

lutionary algorithm (GA) based solution to TSP as well as SA based solution (ii) to 

perform comprehensive parameter analysis (iii) to present results comparing GA and 

SA based TSP solutions. 

The rest of the paper is organized as follows: next section describes the basics of 

GA developed as a solution of TSP, followed by the section that describes SA based 

approach. The Simulation Results and Discussion section provides information about 

simulation design, results, and discussions. In the final section, conclusions are pre-

sented. 
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2 Genetic Algorithm Based Approach for TSP Solution 

Genetic algorithm, which simulates Darwinian genetic selection and biological 

evolution, is widely studied in the literature [5, 11–16]. GA is described as adaptive 

search technique based on the principles and mechanisms of natural selection and the 

survival of the fittest concept of natural evolution [11]. GA simply operates by an 

iterative procedure on a fixed size population or pool of candidate solutions [11]. The 

candidate solutions represent an encoding of the problem in a form that is analogous 

to the chromosomes of biological systems. GA includes chromosomes that are typi-

cally represented as a string of bits. Each chromosome in the GA represents a possible 

solution for a given objective function. Associated with each chromosome is a fitness 

value, which is found by evaluating the chromosome with the objective function [11]. 

It is the fitness of a chromosome, which determines its ability to survive and produce 

offspring. Selecting organisms based on fitness value is a major factor in GA, and the 

success of algorithms lies in the propagation of the fittest scheme [17].  

GA relies on three genetic operators: selection, crossover, and mutation [11, 22]. In 

our study, we use the distance of the route as the evaluation criteria, and the definition 

of the fitness function is given as the inverse of the total distance of the route, i.e. the 

shorter the route, the better the fitness. The fitness can be calculated by an equation 

similar to the following equation [5]. 

 𝐹(𝑡) = max −(∑ 𝐷(𝑖, 𝑗) + 𝐷(0, 𝑛 − 1)𝑛−2
𝑖=0 ) (1) 

where max is the longest path length in the present generation. In this approach, it is 

first needed to calculate the total distance of all the cities in the sequence, then com-

putes the maximum total distance of the present generation [5]. Population diversity 

and selection are other important parts of the GA method. Initial population should be 

scattered randomly in the search space for achieving the global optimum [16]. Diver-

sity of the routes can be achieved by random generation, however that can significant-

ly affect the convergence speed. There are four main types of selection, Roulette 

Wheel Selection, Rank Selection, Steady State Selection, and Tournament Selection 

[15]. These are not competing methods but can be used interchangeably as well as in 

unison with each other. In our study, we adapted the Roulette Wheel Selection [18]. 

The principle of roulette selection follows a linear search through a roulette wheel 

with the slots in the wheel weighted in proportion to the individual’s fitness values 

[19]. The probability of an individual being selected as a parent for crossover is given 

by the following equation [20]. 

 𝑝(𝑖) =  
𝑓(𝑖)

∑ 𝑓(𝑗)𝑛
𝑗=1

 (2) 

In addition to use of the roulette wheel selection method, we also implement a way 

to keep the best route found during a particular selection sequence, Elitism [8]. Elitist 

strategy performs two important steps; carrying the individual with the best fitness 

result to the next generation, and removing the individual with the worst result from 

the population [16]. Furthermore, the elitist strategy can also avoid losing individual 
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with best fitness result by mutation or crossover, and can help keeping that individual 

in the population [21]. 

Another operator in GA is crossover, which is the recombination of two individuals 

to create new ones that might have a better performance or better route lengths [15]. 

However, erroneous implementations of crossover can be problematic in a GA when 

applied on TSP. If crossover operation is performed repeatedly, it leads to loss of 

diversity of the population and can speed up the false convergence, which most likely 

result in local optimal and not global optimal [8]. There are many common crossover 

operators introduced in the literature, such as Edge Assembly Crossover (EAX) [8], 

sub-tour exchange crossover (CSE-X) [11], modified ordered crossover (MOX) [22], 

partially matched crossover (PMX) [23]. But none of them consider the relation be-

tween edges in TSP. So they may not accelerate the speed of the algorithm. All these 

variations help us to see that the crossover method should be chosen carefully based 

on the application. 

Finally, last part of the GA framework is mutation. It has important aspect in im-

proving local search capability and maintaining population variability, while prevent-

ing premature solutions [16]. Mutation operator induces changes in a small number of 

chromosomes units [15]. Its purpose is to maintain the population diverse enough 

during the optimization process. Again, just as with the other GA operators, there are 

many different mutation methods. The most common ones are shift mutation, inser-

tion mutation, inverted mutation [5]. 

3 Simulated Annealing Based Approach for TSP Solution 

In broader context, annealing is a process in material science that involves heating 

and cooling metals. It is the process of heating a material to a particular temperature, 

maintaining it at that temperature for a certain amount of time, and then cooling. An-

nealing is used to reduce hardness, increase ductility, and help eliminating internal 

stresses of metal. Simulated annealing (SA) is a probabilistic technique that uses the 

heating and cooling concept to help with approximating global optimum of a given 

function [24, 25]. SA is ideal for solving the traveling salesman problem (TSP). 

SA uses randomness in its dataset in order to achieve satisfactory performance. SA 

has an initial system temperature, which is set to high, to allow the algorithm to trav-

erse several different possible solutions. The algorithm accepts good and bad solution 

sets, at higher temperatures; as the temperature cools, the algorithm accepts less and 

less solutions with the designed aim that an optimal solution is found. SA fundamen-

tally determines to what degree a solution is worse than another solution as it relates 

to the temperature of the system. 

SA is applied to TSP in such a way that highlights its features. Routes in TSP are 

slightly, but randomly rearranged. At first, when the temperature is high, any solution 

is an acceptable solution; however, as the temperature of the system begins to cool, 

only the best solutions will remain. Key terms of SA can be listed as follows: temper-

ature, cooling rate, and acceptance probability. The temperature is utilized to set and 

measure the overall system temperature. The cooling rate is the rate at which the tem-
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perature of the system is decreased. The acceptance probability is the probability in 

which a new solution is accepted over the previous solution. The function used to 

calculate the acceptance probability is given as [25]. 

 𝑃(𝑎) = 𝐶 ∙ exp (
−𝐸𝑐𝑜𝑛𝑓

𝑇
) (3) 

where T is the temperature, C is constant of normalization, and Econf is the configura-

tion energy. 

4 Simulation Results and Discussion 

The task of solving TSP is to find the shortest possible route between groups of cit-

ies. The salesman is to traverse all possible city locations only once in the shortest 

number of steps possible depending on the amount of cites visited, which could take a 

significantly long amount of time to find an optimal solution. We implemented two 

algorithms in this study, GA and SA, and their solutions were tested in simulation 

environment. It would be prudent to define an aspect of this test that is shared among 

GA and SA for simulation experiments. Since these algorithms have been adapted to 

be utilized by TSP, some terms that have been adapted have more to do with TSP than 

the actual algorithm being leveraged upon. Route, is one such term. Route is not a 

standard word in the GA or SA vocabulary, but it is equivalent to chromosomes in 

GA and it is the solution being manipulated in SA. The routes are calculated random-

ly in both GA and SA. 

 

Fig. 1. Simulation results 

When comparing the solutions of GA and SA search algorithms, there is very little 

difference as it concerns the particulars of the best route. When given a set of cities 

with a known solution, route the SA and GA solutions are identical, except for start-

ing cities (Fig. 1). 

Both the GA and the SA require tuning the input parameters of the environment. 

However, the constraints for both the SA and the GA are different. The list of the 

a) Group of cities 

 

b) GA solution c) SA solution 
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required parameters for GA is as follows: number of randomly generated routes, 

number of elites to keep, the mutation rates, and the number of generations to execute 

the experiment. The SA required a starting temperature and a cooling rate for the 

system. The system executed until the temperature was less than 1 degree. 

Trying to find a one-to-one correlation of these parameters provided is a substantial 

challenge. Given that the number of cities was the same for each algorithm, it was 

known that changing any one parameter in either processes would cause a different 

result. We started our analysis with GA focusing on number of randomly generated 

routes. The simulation parameters were set as 20 cities, 100 elites, 0.01 mutation rate, 

and 2000 generations. The following generated route numbers were implemented; 

100, 200, 500, 1000, 1500. Figure 2 depicts the resulting plot showing routes generat-

ed vs distance. As the number of generated routes increases, the total distance be-

tween cities decreases. The best results were obtained with 1500 generated routes. 

 

Fig. 2. Route Best Distances Compared to Number of Routes Generated 

The next parameter we analyzed is number of elites to keep. The simulation pa-

rameters were set as 20 cities, 200 generated routes, 0.01 mutation rate, and 2000 

generations. The parameters of elites used were selected as; 1, 10, 25, 75, 100, 130, 

160, 185 and 199. The result is depicted in Fig. 3. The elite number of 10 provided 

best results in terms of total distance between cities. 
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Fig. 3. Route Best Distances Compared to Size of Elite Group 

We also analyzed the mutation rate in GA approach. The simulation parameters 

were set as 20 cities, 200 generated routes, 100 elites to keep, and 2000 generations. 

The values of 0.0001, 0.001, 0.01, 0.06, 0.09, 0.25, 0.55, 0.85, and 0.99 were used for 

mutation rates. Figure 4 depicts the results. The best results were obtained with mini-

mum mutation rate values. 

 

Fig. 4. Route Best Distances Compared to Mutation Rate 

Finally, number of generations is analyzed. The simulation parameters were set as 

20 cities, 200 generated routes, 2000 mutation rate, and 100 elites to keep. The num-

ber of generations used were selected as; 1, 10, 100, 1000, and 10000. The resulting 

plot is depicted in Fig. 5. The highest generation number led to best distance results. 
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Fig. 5. Route Best Distances Compared to Number of Route Generations 

In the analysis with SA, there were two parameters used; temperature and cooling 

rate. The results of temperature analysis are depicted in Fig. 6, where cooling rate was 

set to 0.00001, and values of 1, 10, 100, 1000, 10000, and 100000 were used for tem-

perature. The best distance is not changed after temperature equals to 100. Figure 7 

shows the results of cooling rate analysis, where temperature was set to 10000, and 

values of 0.99, 0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001 were used for cooling 

rate. 

 

Fig. 6. Route Best Distances Compared to Temperature 
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Fig. 7. Route Best Distances Compared to Cooling Rate 

According to results, increasing the number of elites did not allow for much route 

diversification. Meanwhile increasing the mutation rate in the GA resulted in too 

much diversification in the selection pool. Therefore, there must be a balance as it 

pertains to those two parameters of the GA. The number of generations affected the 

total outcome only when the number of cities and/or the number of routes were in-

crease. It is known that the increase in cities will increase the number of possible 

routes and thus the number of solutions; so, by increasing the number of generations, 

one could, increase the probability of finding a solution when presented with higher 

city and route totals. However, the more generations, the longer it took complete the 

algorithm. The significant part was that an optimal solution could be found early on 

and was not influenced by how long the algorithm ran (Fig. 8). 

 

Fig. 8. Time vs Number of cities generated - GA 

The SA only had two parameters, but both had a profound effect on how long it 

took to run the algorithm. This, however, did not affect its ability to find a solution 
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early in the process. It was determined however, higher initial temperatures and lower 

cooling rates yielded better results. Thus, computingting time may indeed be a factor 

in finding an appropriate solution (Fig. 9). 

 

Fig. 9. Time vs Number of cities generated - SA 

It was challenging to one-to-one compare the two algorithms, since they had dif-

ferent input parameters. The only parameters that have a one-to-one correlation were 

the number of cities generated, number of iterations, and time to find an optimal solu-

tion. There were still challenges even with these similarities. The time it took the SA 

and GA did not correlate to a better solution. Consequently, it was concluded to com-

pare the algorithms by how many iterations it took to find an optimal solution. In 

Figs. 10 and 11, it will be plain to see that the GA ran considerably less iterations than 

the SA. This is mainly because an iteration in the GA is equivalent to a generation. 

 

Fig. 10.  GA Iteration Number 
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Fig. 11.  SA Iteration Number 

5 Conclusion 

This paper presents a comprehensive analysis of GA and SA based solution meth-

ods for traveling salesman problem (TSP). Analysis of the GA based TSP solution 

provides four main classes: number of routes, number of elites to keep, mutation rate, 

and number of generations to execute the simulation, on the other hand, analysis of 

the SA based TSP provides for two main classes: temperature and cooling rate. Ac-

cording to the simulation results, it was determined that although the SA executed 

with faster completion times, it took more iterations to find a solution. Moreover, the 

found solutions were not always as accurate as the GA. The GA took longer time to 

run but found a solution with less iterations. 
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