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Abstract—Homomorphic encryption is the Swiss army of cryptography. It 
allows to perform computations on encrypted data. this conjecture of processing 
on encrypted data was stated by [13]. Until Gentry breakthrough in 2009, only 
partial solutions were offered. They deal with encrypted data with bounded func-
tions in operations. Gentry raised the bound of number of operations by intro-
ducing a new method called the bootstrapping. This method allows to reduce 
the noise in the ciphertext and to perform more computing on it. Since Gentry’s 
breakthrough, several improvements and several alternatives to the bootstrapping 
technique have been proposed to improve execution time and reduce resource 
consumption. This article studies the growth of noise and the noise management 
strategy in homomorphic encryption. It also presents the trend of hoping strategy 
from 2009 to 2016. Through the DGHV, it shows the management of noise on a 
one-bit encrypted message. 

Keywords—noise, encryption homomorphic, bootstrapping, modulus 
switching, noise management

1	 Introduction

Homomorphic encryption is based on noise cryptography. The ciphertext is obtained 
by masking the plaintext by a value called noise. To decrypt, it suffices only to remove 
this value in the cyphertexts to retrieve the original plaintext. But, in computations  
on the ciphertexts, this value may exceed the threshold and the immediate consequence 
is the decryption fails. The management of noise in homomorphic operations is 
a bottleneck in the practicability of these encryption in everyday applications.  
A bitter observation is that the noise increases with the depth of the circuit to be 
evaluated. Several techniques have been proposed by different authors during the 
period 2009 to 2016. Among these techniques, bootstrapping which makes it possi-
ble to reduce the size of the noise in the ciphertext by a homomorphic evaluation of  
the decryption circuit is the most used. The following lines describe the types of 
increasing noise in ciphertexts during homomorphic operations and present the most 
commonly used noise management strategies.
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2	 Homomorphic encryption scheme

When the encrypted data is stored on cloud [20,21], all kinds of computations [19] 
such as analyzing data, the calculation of variance, data mining, … are performed after 
prior decryption. The prior decryption brings an additional cost in terms of resources 
and time and introduces a possibility of loss of confidentiality and privacy. Homomor-
phic encryption offers an alternative to traditional cryptography by offering the power 
of performing operations on encrypted data without any prior conditions.

2.1	 Definitions [10]

Definition 1. Public key encryption. A public key encryption is a triplet of 
polynomial time algorithms keygen, encrypt and decrypt. Keygen is an algorithm which 
takes as input the parameter λ and outputs a couple of keys (sk, pk) where pk is public 
key and sk is private key. The space of plaintext M is defined by public key pk and 
space of ciphertext C is defined by private key sk. Encrypt is a probabilistic algorithm 
which takes as inputs public key pk, the plaintext m and random value r. It outputs c C∈ . 
It is noted as follows: c Encrypt m rpk← ( ), . Decrypt is deterministic algorithm which 
takes as inputs the private key sk and the ciphertext c. It outputs the plaintext m. It is 
evaluated as follows: ) ( skm Decrypt c← .

Definition 2. Homomorphic encryption. A homomorphic encryption scheme 
is a public encryption scheme which includes three in polynomial time keygen, 
encrypt, decrypt as described above to which added a fourth algorithm, the evaluate. 
The definition of which is given below: Evaluate is an algorithm which takes as 
inputs the public key pk, ciphertext vector ci of size n and a function F. It outputs 

1 2( , , , ) nF c c c C……………… ∈ .
Axiome 1: free from error of homomorphic evaluation. Consider a set of  

ciphertexts c c c ci n� ����{ , , , }1 2  and correspondents decrypted plaintexts 
m m m mi n� �����{ , , , }1 2 . The evaluation is said free from error if 

(( ,  , )) ( )i iDecrypt F c pk F m= .

2.2	 Types of homomorphic encryption

There are four types of homomorphic encryption:
The partial homomorphic encryption. The partial homomorphic encryption 

is which the encrypt cannot that evaluating a limited number of operations defined 
in functions f. There is talk of an additive homomorphic it encrypt evaluates only 
additions [16] [15] while multiplicative homomorphic, it evaluates multiplications 
[16] on encrypted data. In some use cases, these schemes have proven to be useful 
primitives in constructing secure voting protocols.

The somewhat homomorphic encryption. The somewhat homomorphic encryption 
is which the said algorithm evaluates functions or polynomials of bounded degree, the 
latter being set by the parameters of the scheme used. It has a computational bounded 
capacity, but unlike partial homomorphic encryption, the polynomials or functions 
evaluated include additions and multiplications [18] [10]. [18] is an exception which 
allows to process encrypted messages with multiple additions and a single multiplication. 
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The leveled homomorphic encryption. The Leveled Homomorphic Encryption 
allows to algorithm encrypt to evaluate restrictive functions or polynomials. This 
evaluation deals with functions or polynomials setted by L which allows to evaluate 
polynomials or functions of degree L – 1. The size of used parameter increases linearly 
with L [4] [9].

The fully homomorphic encryption. The Fully homomorphic Encryption is in 
which the algorithm encrypt evaluate polynomial or function whose degree is arbitrary 
on the encrypted data [2]. The full Homomorphic Encryption is built from two previous 
ones using Gentry’s technique [11] [12] or the alternative method [6] [8]. To date, no 
Pure Homomorphic Encryption has been discovered. 

2.3	 Properties of homomorphic encryption [10]

1.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is defined correct 
for any t inputs in circuit C if, for all generated couple of key (sk, pk) by 
keygen(λ), any plaintext t bits ( , , )m mt1 …………………  and any vector 
ciphertext c c ct� ����( , , )1  with c encrypt pk mi i� � ( ), , it is clear that  
decrypt ( , ( , , )) ( , , )sk evaluate pk C c C m mt



� �����1
2.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is homomorphic for a class of 

circuit if it is correct for all C C, ε is homomorphic for all Boolean circuit.
3.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is compact if there is fixed bound 

b(λ) such that for any generated key (sk, pk) by keygen(λ), any circuit C and any sequence 
of ciphertexts c c ct� ���( , , )1  which generated with respect of pk, the size of cipher-
text evaluate pk C c( , , )  is less than b(λ) bits (regardless the size of circuit C).

4.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is homomorphic encryption 
where the decryption is implemented by a circuit which depends only on the security 
parameter.

5.	 The scheme (keygen, encrypt, decrypt, evaluate) is homomorphic encryption, and 
for any security value λ be set C� ( )�  a set of circuits with which ε is correct. We say 
ε is bootstrappable if  ( ) ( )Decrypt Cε ελ λ⊆  if is valid for each value of λ. It is clear 
that it is evaluating his own decryption algorithm.

3	 The noise management

3.1	 Definition of noise

Noise is a hazard introduced into the encryption and aims to destroy the determinism 
existing between the plaintext and the encrypted message “it is not obvious to know 
whether posteriori an encrypted message encrypts a given plaintext.” It is a concept that 
was introduced by GoldWasser-Micali in 1982 [14]. 

(1)	 Axiom of the determinism of encryption: “An encrypted message corresponds pos-
teriori to a plaintext.” 

(2)	 Axiom of the probabilism of encryption: “Several encrypted messages can corre-
spond posteriori to a same plaintext.”
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The DGHV and the noise [11] 
Algorithm of DGHV. Given security parameter λ, Keygen (λ) takes as input the  

security parameter λ and generates a key p which is an integer P bits size. The parameters 
N, P, Q respectively sets by 2 5,    andλ λ λ .

Encrypt(p,m) takes as inputs the key p and a plaintext   {0,1}m ∈ . To encrypt m, 
choose a random r of N–bits such that 2 2r p�� <  and choose randomly an integer q of 
Q–bits. It outputs a fresh ciphertext c = m + 2r + pq where r is pattern noise that masks 
an actual plaintext m.

Decrypt(p,c) takes as inputs the key p and the ciphertext c. It outputs 

  (   )  2mf c mod p mod= . Here,   (   )c c mod p=  is in interval ��
��

�
��

p p
2 2
,  with the prerequisite 

that p divides c c� ��  without remainder.
Evaluate( f,c) takes as inputs a Boolean function f and a set of ciphertexts 

S c cc n� ����{ , , }1 . f is represented by a circuit C composed by NAND and XOR 
gates.

Given a circuit C+ a copy of circuit C which the NAND and XOR are replaced 
respectively from addition and multiplication on integers. 

Let be f + a multivariate polynomial which corresponds to circuit C+. It outputs 
c f c cn� ���� ( , , )1  or the evaluation of the function f + on ciphertexts ci.

Homomorphic encryption operation and the noise in the DGHV. A homomorphic 
encryption performs arithmetic operations which are addition and multiplication.  
Let be two ciphertexts c q p r m1 1 1 12� � �  and c q p r m2 2 2 22� � � . 

Let’s calculate: 1 2 1 1 1 2 2 2 1 22 2 ( )c c q p r m q p r m p q q+ = + + + + + = + + 1 22( )  r r+ +
1 2m m+ . The evaluation of c c1 2+  produce a valid decryption of m m1 2+  if r r p1 2 2� � . 

The increase in noise in the addition of ciphertext is equivalent to 2
1
rii

n

��  with n ≥ 2. 
As long as r pii

n

�� �
1

2 the decryption of homomorphic addition of ciphertext 
1

 
n

ii
c

=∑  
produce the sum of valid plaintext mii

n

�� 1
.

1 2 1 1 1 2 2 2 1 2 2 1 1 2 1 2 1 2( 2 ) ( 2 ) 2 2  4c c q p r m q p r m q q p r q p q m p r q p r r× = + + × + + = + + + +

1 2 1 2 2 1 1 22 2r m m q p r m m m+ + + + . The evaluation of c c1 2×  produce a decryption m m1 2 
if 1 2 1 2 2 12   2r r r m r m p+ + < . The increase in noise in the homomorphic multiplication 

of ciphertexts 2 1
1
i

ii

n
r�

��  with n ≥ 2. If the approximation of p t2 2= �  with a positive 
integer t, then t – 1 multiplications can be performed on ciphertexts before the decryp-
tion fails.

3.2	 Noise management strategies in homomorphic encryption

Given two ciphertexts c1 and c2 which respectively contain 10 and 20 as noise value. 
The noise threshold in this encryption scheme for retrieving a valid plaintext after 
decryption is 300. Beyond this value, the decryption fails. 

The homomorphic encryption of ( )c c c1 2 2� �  (1) gives a noise with value of 600. 
The resulted ciphertext c3 from expression (1) contains a resulting noise greather than 
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threshold value which is 300. The decryption of c3 fails by providing a different value 
of result of evaluation of (1). 

Indeed, the homomorphic encryption in expression (1) add a noise at level of 30. 
Said value is less than the threshold of 300. The decryption of c1 + c2 produce a plain-
text which worth the sum of m1 + m2. Subsequently, this result is homomorphically 
multiplied by c2. This operation brings a noise at level of 600 which is greater than 
the threshold. From this example, each typical operation introduces a specific type of 
increasing noise in ciphertext.

For a ciphertext with noise beyond the threshold, its decryption violates the correct 
property. Thus, to reduce noise in the ciphertext, several management strategies noise 
were proposed whose commonly used are defined below.

Growth of noise in homomorphic encryption. Noise in ciphertext can increase 
in several ways in homomorphic encryption. The growth of noise is the value which 
is added to the initial noise after one or several homomorphic operations between two 
or more ciphertexts. Thus, a growth of noise can be described as a: exponential noise, 
polynomial noise, linear noise, constant noise and logarithmic noise.

Exponential noise. [10,11]. Given two ciphertexts c1 and c2. Let be op, an arbitrary 
homomorphic operation on two or more plaintexts. 

A noise is said exponential if there exists a value ′′b  in c3 such that �� �b bn2  where  
b is the initial noise contain in c1 and c2 and 3 1 2( , , )c op c c n= .

The growth in [10,11] is illustrated as follow: the homomorphic multiplication of 
two ciphertexts mod – p messages chiffrés with noise at level ρ results a ciphertext with 
noise at level 2ρ; after second level of same operation the noise becomes 22ρ, then 23ρ 
and so on; the noise exponentially increases with number of multiplications. The mod-
ulus is threshold value before decryption fails; therefore, if the bit size of p is k.ρ; the 
threshold of noise is reached after log2k multiplication levels.

Polynomial noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary 
homomorphic operation on two or more plaintexts. 

A noise is said to be polynomial if there exists a value ′′b  in c3 such that �� �b bn where 
b is the initial noise contained in c1 and c2 and 3 1 2( , , )c op c c n= . If n=2, the growth 
is said quadratic. If n=3, the growth is said cubic. The growth is illustrated in [8] as 
follows: Let a modulus q such that q is approximated by xk, and given two ciphertexts 
mod – p with a noise at level x. In Homomorphic multiplication, the noise becomes 
x2. After four levels of homomorphic multiplication, the noise becomes x16. And so on 
but at almost log k levels of multiplications, the noise reaches threshold value and the 
decryption fails.

Linear noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary homomorphic 
operation on two or more plaintexts.

The noise is said linear if there exists a value ′′b  in c3 such that �� �b nb � where b is 
the initial noise contained in c1 and c2 and 3 1 2( , , )c op c c n= . After k multiplications, this 
growth is proportional to the noise whose magnitude is defined by (N + 1)k r.

In [4] Given two ciphertexts C1 and C2 are matrix-type B-bounded ciphertexts, in  
the sense that and the coefficients of µi and Ci and ei

��
 all have an order of magnitude at 

most B. Then, C+ represents the addition of two encrypted matrices whose noise in the 
elements is 2B-borné, and C× represents the multiplication of two encrypted matrices 
whose the noise in the elements is (N + 1)B2. In short, the level of error increases more 
than B2L, twice exponentially with multiplicative depth of circuit.
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To compensate for this growth, an implementation of NAND gate on two cipher-
texts C1 and C2 whose the noise B  –  strongly bounded, makes it possible to obtain 
new ciphertexts C I C CN3 1 2� �  (where IN  is identity matrix), then thesaid messages 
remains in {0,1}, and the coefficients of error vector C3 have a magnitude at most  
(N + 1)B. The function Flatten(C3) makes it possible to obtain C3 having the elements 
0/1 in strongly bounded. This property ensures that circuits with L depth can be pro-
cessed as long as the magnitude of error is at most (N + 1)LB and the homomorphic 
NAND of [4] generates noise of linear order of magnitude. 

Constant noise. In this strategy, a multiplication on ciphertexts increases the noise 
by adding a constant value. The growth of noise is independent of the number of 
multiplications on ciphertexts.

Given two ciphertexts c1 and c2. Let be op, an arbitrary homomorphic operation on 
two or more plaintexts. 

Noise is said to be constant if there exists a value ′′b  in c3 such �� �b b��  where b is the 
initial noise contained in c1 and c2 and 3 1 2( , , )c op c c n= . 

In [1], a ciphertext is defined as follows AAE m qs i( , / )16  where mi is the plaintext 
in {0,1}, s is the private key and 16 q  is magnitude of noise. When the homomorphic 
NAND is performed on ciphertexts c1 and c2 defined as follows AAE m qs ( , / )1 16  and 
AAE m qs ( , / )2 16  outputs ciphertext 3 3 ( , / 4)sc AAE m q= .

Logarithmic noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary 
homomorphic operation on two or more plaintexts. 

A noise is said logarithmic if there exists a value ′′b  in c3 such that �� �b blog( ) where 
b is the initial noise contained in c1 and c2 and 3 1 2( , , )c op c c n= . 

Strategy management of noise. A noise strategy is a technique which manages 
the noise generated by n homomorphic operations on n + 1 ciphertexts to preserve the 
validity of the resulting ciphertexts after decryption and the homomorphic structure on 
encrypt algorithm.

A noise strategy is said to be compact if it allows the ciphertext to remain compact 
within the limit of the security parameter during homomorphic operations. It is clear 
that the expansion parameter is close to 1. 

A noise strategy is said to be efficient if the execution time of the homomorphic 
operations on a set of ciphertext is reduced. 

Two main noise management strategies have caught our attention, which are boot-
strapping and modulus switching.

The bootstrapping. The majority of current schemes have a common property 
which adds short-sized noise to the plaintext message in the encryption operation. The 
homomorphic evaluation on ciphertexts increases noise to a threshold value where 
the decryption fails. [10] The bootstrapping proposed and conceptualized on the term 
recrypt by Gentry, is used to reduce noise in the encrypted message to a level which is 
determined by the complexity of the decryption circuit. 

(1)  Definition of function of reencryption: Recrypt.
Let c1 ciphertext of m bit under the key pk1 and sk1 the encrypted private key under 

the pk2 using the function encrypt as follows: encrypt(pk2, sk1j) on bits of sk1. It is 
defined as follows:
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Recrypt takes as inputs pk2, the circuit of decryption decrypt, the encrypted private key  
sk1 and the ciphertext c1. At first glance, it generates a vector c1 using encrypt(pk2, c1j)  
which operates on bits of c1, it encrypts at bit level the elements of c1 under pk2. 
It outputs 12 1( , , , )Evaluate pk decrypt sk c  that effectively eliminates the portion  
pk1 of c1 and keep it under pk2.

The bootstrapping refreshes ciphertext by performing a homomorphic decryption. 
usually, a plaintext is encrypted two times as follows: ( ( ( )))c encrypt encrypt mpk pk=

2 1
 

is decrypted from the outside to inside. But in recrypt, the inner layer of ciphertext 
is homomorphically decrypted by correspondent key c encrypt decrypt cpk sk pk1 12 1 2

= ( ( )), .  
As long as this technique reduce the noise in the scheme by eliminating noise in inner 
layer of ciphertext, despite the noise being added by evaluate. As long as the added 
noise by evaluate is less than the removed noise from inner encryption layer, the 
decryption continues to produce valid results.

Bootstrapping is extremely costly in time and resources. The complexity of several 
approaches to bootstrapping is at least as complex as the number of times of decryption 
of each ciphertext which encrypts the private key [10]. This requires in the bootstrap-
ping the homomorphic evaluation of the decryption, so each bit of the private key is 
replaced by a larger encrypted representation.

Modulus switching. Since bootstrapping is a greedy process, other alternatives have 
been proposed. The most promising alternative is switching modules [8]. The modulus 
switching uses an evaluator which knows the size of the private key not the key itself. It 
transforms a ciphertext c mod q to another ′c mod p� �  without compromise the propriety 
of correct of scheme. The transformation simply divide c by a factor p q. If sk is short 
and p q  the noise in ciphertext decreases. This technique allows the evaluator to 
minimize noise without the private key and bootstrapping makes it a flexible mode of 
noise management.

Definition 3. Modulus switching. Let p and q two odd moduli and a vector of  
integers c. Let define an integer ′c  close to ( )p q c such that   2c c mod=′ . Then, for all s  

with 1 ), 2 ( ) (.qc s q q p l s 
  < −  : , ,  2 , ( ).qp p

c s c s mod and c s p q′     = <     ′

1 ), (
q

c l ss  +  . or l s1( ) est l norm1 − � de s and ,c s  represents the cross product of 

two vectors, [ ]. q represents the modulo q elements.
The modulus switching reduces a ciphertext c q∈�   by a factor β after each homo-

morphic multiplication. To do this, it painstakingly chooses a decreasing modulus q for 
each multiplication level that keeps the noise at small level and constant from low level 
to high level. The refreshed ciphertext is c q� ��  in which the noise is reduced to 
level e β . By performing this procedure, the absolute size of noise in the ciphertext 
decreases. Through this technique, K multiplications levels can be performed before 
reaching the noise threshold.
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4	 Noise management in homomorphic DGHV [11]

4.1	 Somewhat homomorphic encryption scheme of DGHV

Given a safety parameter λ, the following assumptions are made: , ,ρ λ ρ λ= =′  
2 5,   .andη λ γ λ τ γ λ= = = +  These give a scheme having complexity of λ5.

(1)	 keygen(λ). 
–	 Choose at random an integer p of η bits as private key. Generate the public  

key as follows: x pq ri i i� � � Where )0,2 ( 2 ,  2 )p
i iq and rγ ρ ρ∈ ∩ ∈ ∩ −   are 

randomly selected for 1 i toτ= .
–	 Rename x0 as it is largest. Repeat if x0 is odd and x mod p0 � �  is even.
–	 Publish the key 0 1, , ,pk x x xτ=  .

(2)	 ( , )Encrypt pk m
Given { }  0,1 ∈m  and the public key pk, choose a random subset S ⊆ {1, 2, ………, τ} 

and a random integer 
'

 (2 2 )ρ ρ− ′∈r . It outputs 02 2  ( )ii S
c m r x mod x

∈
= + + ∑ .

(3)	 Decrypt(c,sk) evaluates m as follows (c mod p)(mod 2)

4.2	 Noise management in DGHV (reencryption and bootstrapping)

Let three new parameters be a function of λ noted κ, θ and Θ where � �� �� �, θ = λ  
and Θ = ω(κ log λ). Given a private key sk = p and a public key pk, add to the public key 
a vector of real y in [0, 2) in size Θ and κ precision such that there exists a subset s ⊂ 
{1, 2, ………, Θ} with ∑ yi = 1/p mod 2 (the inverse of private key is replaced by sum 
of subset s). 

Key generation. Let two keys from somewhat encryption scheme of sk
* � and pk

*, the 
generation of keys to make this scheme fully homomorphic encryption follows the 
algorithm defined below:

–	 Set 2κ =  px p ;
–	 Choose at random a vector of Θ bits (S1, S2, …………, SΘ) with a hamming weight θ  

and set { }1:  1  = =s i s ;
–	 Choose at random integers )1 10,2      2i i pi S

u and u x modκ κ+ +
∈

∈ ∩ = ∑  avec i = 1, 
2, ……………, Θ;

–	 compute 2κ=i iy u  and y = {y1, y2, ……………, yΘ};
–	 keep secret the private key * =k ks s  and publish the public key *{  ,  }=k kp p y

Reencryption: *( , )kreencrypt p c
for i = 1, 2, ………, Θ, compute *

  2 =i iz c y mod ; publish the refreshed ciphertext 
*  iz and c .

Decryption: *( , ),k idecrypt s c z
The plaintext is computed as follows: ( )*  2

∈
 = −   ∑ ii s

m c z mod
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4.3	 Toy example of noise management in DGHV [12]

The DGHV undergoes an increase in noise exponential for the multiplication and 
constant for the addition or linear for the addition. The example given below shows 
how this algorithm can be applied to noise management for a one-bit encrypted mes-
sage. With toy parameters, this example shows the difficulty of implementing it in 
everyday applications. The example below shows how to manage noise in [12] for 
unbounding processing on encrypted data.

Let sk p= =10001. The public key pk � is built as follows: 
Given [ , , , ] [ , , , ] [ , , , ] [ , , , ]q q q q and r r r r0 1 2 3 0 1 2 336 27 34 6 8 5 4 2= = . The public key 
 [360044, 270032, 340038, 60008]=pk  where x q p ri i i� �  and x0 is the greatest.
The plaintext m = 0 is encrypted as follows with subset S = [1,3] with r = 31: 

  0 2.31 2(270032  60008) 660142  360044  300098= + + + = =c mod .
Refreshment of ciphertext c0 300098=  of plaintext m0 = 0 : reencryption of c0 :

1)	Let    1 0001= =ks p  and � � 24, compute 24[2 10001] 1678 = =px ;
2)	Choose at random of vector of Θ bits with Θ = 9 with hamming weight of 3, 

s � � �0 0 1 0 0 1 0 1 0, , , , , , , ,  and set s = { , , }3 6 8 ;
3)	Choose at random integers ui � � [ , )0 225  for i = 1 to 9 as follows: { } 281782,1892147,589103,487403,491831,1093482,293813,3187325,5718711=iu  

{ } 281782,1892147,589103,487403,491831,1093482,293813,3187325,5718711=iu   
where 3 6 8 589103 1093482 31873525 1678

∈
= + + = + + =∑ ii s

u u u u  

4)	Set 25 2i iy u=  with i = 1 to 9 as follows: { }0.0167955, 0.1127807,0.035133,0.0290515,0.0293154,0.0651766,0.0175126,1 .8998101,0.3408617iy =  

{ }0.0167955, 0.1127807,0.035133,0.0290515,0.0293154,0.0651766,0.0175126,1 .8998101,0.3408617iy =  where    

3 6 8 0.0351133 0.0651766 1.8998101 2.0001 1  2ii s
y y y p mody

∈
+ + = + + = ≈=∑

5)	Compute 0   2 =i iz c y mod  avec i = 1 to 9 as follows: { }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz  

{ }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz  

{ }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz  with 3 6 8  1.4311034 1.3673068 1.2113898 4.0098∑ + + = + + =z z z  

c z
i s

i0 300098 4 0098 300094�
�

�
�
�

�

�
�
�
� � �

�
� .

6)	Reencrypt c0 as follows: 0 3 6 8 300098  ii s
c z z z z

∈
 − = −∑ + +  ∑

300094 is refreshed ciphertext of ciphertext 300098 whose the noise is 4 
units. The decryption of 300094 outputs the same plaintext as 300098 which is 0: 
300098  2  300094  2  0  2.= =mod mod mod
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5	 Trend of noise management strategy from 2009 to 2016

5.1	 Noise management strategy in homomorphic encryption from 
2009 to 2016

In [BGV12] [7]. This algorithm uses the modulus switching as described below: 

1)	Choose a gradual decrease in modulus ( )q q xi
i=  for i k< ;

2)	Perform a multiplication of two mod p−  ciphertexts; 
3)	Switch the ciphertext to small modulus q q x1 = . The noise level of refreshed cipher-

text decreases from 2 .x to x
4)	Repeat step (2), the multiplication of two ciphertexts with noise at level x, the noise 

becomes again x2; 
5)	Repeat step (3) by switching to modulus q2 to reduce noise at x level. Each mul-

tiplication reduces the ratio threshodnoise levelnoise by x. This approch makes it 
possible to perform k levels of multiplication before reaching the noise threshold.

In [DM15] [1]. This algorithm uses bootstrapping and modulus switching to manage 
noise as described below:

1)	Assume that the inputs bits 0 1, {0,1 }∈m m  are encrypted as ciphertexts 
4 ( , 16)i s ic AAE m q∈  with modulus t = 4 and error bound q 16;

2)	Perform a homomorphic NAND as follows: 4 4
0 , 16   ( , 16)  ( )s s iAAE m q AAE m q× → 

2
3( , 4)sAAE m q  where 3 0 11  = −m m m ;

3)	Refresh 2 4
3 3, 4 ( , 16)( )s sAAE m q AAE m q→  by using homomorphic accumula-

tor as follows: [ ] 32( . ( ))   2 ( )b a E s mod E m− =  where E m( )3  is the encrytion of the 
same plaintext under different encryption scheme E. It is output of homomorphic 
evaluation of decryption circuit under encrypted private key s.

5.2	 Trend of noise management strategy from 2009 to 2016

Table 1. Summary of trend of noise management strategy

No Scheme Efficient Noise Management Noise Growth Observations

1 [Gen09] NO Bootstrapping Exponential Ressources hungry and 
high expansion.

2 [DGHV10] NO Bootstrapping Exponential Ressources intensive 
and high expansion.

3 [BGV12] YES Modulus switching
Bootstrapping

Polynomial Optimal implmentation 
in Helib. [3,5] [17]

4 [GSW13] NON Leveled encryption
bootstrapping

Linear High expansion

5 [DM15] YES Bootstrapping/modulus 
swithing

Constant Compute homomorphic 
NAND in less than a 
second. High expansion.
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The Table 1 gives the summary of the noise direction over the period from 2009 
to 2016. In this table, the row 5 shows the improvement of bootstrapping in terms of 
efficiency through the scheme [1] when performs it in less than a second.

In contrast, the column observations of Table 1 shows that expansion is still high 
despite the numerous techniques for reducing it.

6	 Conclusion

The refreshing of the noise in the message is the challenge of homomorphic cryp-
tography. Its reduction makes it possible to perform several operations on an encrypted 
message before each homomorphic operation. This has been shown through the DGHV 
scheme for one bit on an experimental basis and difficult to use in practice.

Noise is the bottleneck in homomorphic operations. Its rapid growth especially in 
multiplication reduces the possibility of running larger circuits on encrypted messages. 
The fastest algorithms today benefit from a constant increase in noise. The efficiency 
of homomorphic cryptography is answered in the management of noise through a log-
arithmic increase.
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