
Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

Noise Management in Homomorphic Encryption Scheme:
Analyzing of Algorithm

https://doi.org/10.3991/ijes.v9i4.25993

Paulin Boale Bomolo(), Eugene Mbuyi Mukendi, Simon Ntumba Badibanga
Université de Kinshasa, Kinshasa, République Démocratique du Congo

paulin.boale@unikin.ac.cd

Abstract—Homomorphic encryption is the Swiss army of cryptography. It
allows to perform computations on encrypted data. this conjecture of processing
on encrypted data was stated by [13]. Until Gentry breakthrough in 2009, only
partial solutions were offered. They deal with encrypted data with bounded func-
tions in operations. Gentry raised the bound of number of operations by intro-
ducing a new method called the bootstrapping. This method allows to reduce
the noise in the ciphertext and to perform more computing on it. Since Gentry’s
breakthrough, several improvements and several alternatives to the bootstrapping
technique have been proposed to improve execution time and reduce resource
consumption. This article studies the growth of noise and the noise management
strategy in homomorphic encryption. It also presents the trend of hoping strategy
from 2009 to 2016. Through the DGHV, it shows the management of noise on a
one-bit encrypted message.

Keywords—noise, encryption homomorphic, bootstrapping, modulus
switching, noise management

1	 Introduction

Homomorphic encryption is based on noise cryptography. The ciphertext is obtained
by masking the plaintext by a value called noise. To decrypt, it suffices only to remove
this value in the cyphertexts to retrieve the original plaintext. But, in computations
on the ciphertexts, this value may exceed the threshold and the immediate consequence
is the decryption fails. The management of noise in homomorphic operations is
a bottleneck in the practicability of these encryption in everyday applications.
A bitter observation is that the noise increases with the depth of the circuit to be
evaluated. Several techniques have been proposed by different authors during the
period 2009 to 2016. Among these techniques, bootstrapping which makes it possi-
ble to reduce the size of the noise in the ciphertext by a homomorphic evaluation of
the decryption circuit is the most used. The following lines describe the types of
increasing noise in ciphertexts during homomorphic operations and present the most
commonly used noise management strategies.

100 http://www.i-jes.org

https://doi.org/10.3991/ijes.v9i4.25993
mailto:paulin.boale@unikin.ac.cd

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

2	 Homomorphic encryption scheme

When the encrypted data is stored on cloud [20,21], all kinds of computations [19]
such as analyzing data, the calculation of variance, data mining, … are performed after
prior decryption. The prior decryption brings an additional cost in terms of resources
and time and introduces a possibility of loss of confidentiality and privacy. Homomor-
phic encryption offers an alternative to traditional cryptography by offering the power
of performing operations on encrypted data without any prior conditions.

2.1	 Definitions [10]

Definition 1. Public key encryption. A public key encryption is a triplet of
polynomial time algorithms keygen, encrypt and decrypt. Keygen is an algorithm which
takes as input the parameter λ and outputs a couple of keys (sk, pk) where pk is public
key and sk is private key. The space of plaintext M is defined by public key pk and
space of ciphertext C is defined by private key sk. Encrypt is a probabilistic algorithm
which takes as inputs public key pk, the plaintext m and random value r. It outputs c C∈ .
It is noted as follows: c Encrypt m rpk← (), . Decrypt is deterministic algorithm which
takes as inputs the private key sk and the ciphertext c. It outputs the plaintext m. It is
evaluated as follows:) (skm Decrypt c← .

Definition 2. Homomorphic encryption. A homomorphic encryption scheme
is a public encryption scheme which includes three in polynomial time keygen,
encrypt, decrypt as described above to which added a fourth algorithm, the evaluate.
The definition of which is given below: Evaluate is an algorithm which takes as
inputs the public key pk, ciphertext vector ci of size n and a function F. It outputs

1 2(, , ,) nF c c c C……………… ∈ .
Axiome 1: free from error of homomorphic evaluation. Consider a set of

ciphertexts c c c ci n� ����{ , , , }1 2 and correspondents decrypted plaintexts
m m m mi n� �����{ , , , }1 2 . The evaluation is said free from error if

((, ,)) ()i iDecrypt F c pk F m= .

2.2	 Types of homomorphic encryption

There are four types of homomorphic encryption:
The partial homomorphic encryption. The partial homomorphic encryption

is which the encrypt cannot that evaluating a limited number of operations defined
in functions f. There is talk of an additive homomorphic it encrypt evaluates only
additions [16] [15] while multiplicative homomorphic, it evaluates multiplications
[16] on encrypted data. In some use cases, these schemes have proven to be useful
primitives in constructing secure voting protocols.

The somewhat homomorphic encryption. The somewhat homomorphic encryption
is which the said algorithm evaluates functions or polynomials of bounded degree, the
latter being set by the parameters of the scheme used. It has a computational bounded
capacity, but unlike partial homomorphic encryption, the polynomials or functions
evaluated include additions and multiplications [18] [10]. [18] is an exception which
allows to process encrypted messages with multiple additions and a single multiplication.

iJES ‒ Vol. 9, No. 4, 2021 101

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

The leveled homomorphic encryption. The Leveled Homomorphic Encryption
allows to algorithm encrypt to evaluate restrictive functions or polynomials. This
evaluation deals with functions or polynomials setted by L which allows to evaluate
polynomials or functions of degree L – 1. The size of used parameter increases linearly
with L [4] [9].

The fully homomorphic encryption. The Fully homomorphic Encryption is in
which the algorithm encrypt evaluate polynomial or function whose degree is arbitrary
on the encrypted data [2]. The full Homomorphic Encryption is built from two previous
ones using Gentry’s technique [11] [12] or the alternative method [6] [8]. To date, no
Pure Homomorphic Encryption has been discovered.

2.3	 Properties of homomorphic encryption [10]

1.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is defined correct
for any t inputs in circuit C if, for all generated couple of key (sk, pk) by
keygen(λ), any plaintext t bits (, ,)m mt1 ………………… and any vector
ciphertext c c ct� ����(, ,)1 with c encrypt pk mi i� � (), , it is clear that
decrypt (, (, ,)) (, ,)sk evaluate pk C c C m mt



� �����1
2.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is homomorphic for a class of

circuit if it is correct for all C C, ε is homomorphic for all Boolean circuit.
3.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is compact if there is fixed bound

b(λ) such that for any generated key (sk, pk) by keygen(λ), any circuit C and any sequence
of ciphertexts c c ct� ���(, ,)1 which generated with respect of pk, the size of cipher-
text evaluate pk C c(, ,) is less than b(λ) bits (regardless the size of circuit C).

4.	 The scheme ε = (keygen, encrypt, decrypt, evaluate) is homomorphic encryption
where the decryption is implemented by a circuit which depends only on the security
parameter.

5.	 The scheme (keygen, encrypt, decrypt, evaluate) is homomorphic encryption, and
for any security value λ be set C� ()� a set of circuits with which ε is correct. We say
ε is bootstrappable if () ()Decrypt Cε ελ λ⊆ if is valid for each value of λ. It is clear
that it is evaluating his own decryption algorithm.

3	 The noise management

3.1	 Definition of noise

Noise is a hazard introduced into the encryption and aims to destroy the determinism
existing between the plaintext and the encrypted message “it is not obvious to know
whether posteriori an encrypted message encrypts a given plaintext.” It is a concept that
was introduced by GoldWasser-Micali in 1982 [14].

(1)	 Axiom of the determinism of encryption: “An encrypted message corresponds pos-
teriori to a plaintext.”

(2)	 Axiom of the probabilism of encryption: “Several encrypted messages can corre-
spond posteriori to a same plaintext.”

102 http://www.i-jes.org

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

The DGHV and the noise [11]
Algorithm of DGHV. Given security parameter λ, Keygen (λ) takes as input the

security parameter λ and generates a key p which is an integer P bits size. The parameters
N, P, Q respectively sets by 2 5, andλ λ λ .

Encrypt(p,m) takes as inputs the key p and a plaintext {0,1}m ∈ . To encrypt m,
choose a random r of N–bits such that 2 2r p�� < and choose randomly an integer q of
Q–bits. It outputs a fresh ciphertext c = m + 2r + pq where r is pattern noise that masks
an actual plaintext m.

Decrypt(p,c) takes as inputs the key p and the ciphertext c. It outputs

 () 2mf c mod p mod= . Here, ()c c mod p= is in interval ��
��

�
��

p p
2 2
, with the prerequisite

that p divides c c� �� without remainder.
Evaluate( f,c) takes as inputs a Boolean function f and a set of ciphertexts

S c cc n� ����{ , , }1 . f is represented by a circuit C composed by NAND and XOR
gates.

Given a circuit C+ a copy of circuit C which the NAND and XOR are replaced
respectively from addition and multiplication on integers.

Let be f + a multivariate polynomial which corresponds to circuit C+. It outputs
c f c cn� ���� (, ,)1 or the evaluation of the function f + on ciphertexts ci.

Homomorphic encryption operation and the noise in the DGHV. A homomorphic
encryption performs arithmetic operations which are addition and multiplication.
Let be two ciphertexts c q p r m1 1 1 12� � � and c q p r m2 2 2 22� � � .

Let’s calculate: 1 2 1 1 1 2 2 2 1 22 2 ()c c q p r m q p r m p q q+ = + + + + + = + + 1 22() r r+ +
1 2m m+ . The evaluation of c c1 2+ produce a valid decryption of m m1 2+ if r r p1 2 2� � .

The increase in noise in the addition of ciphertext is equivalent to 2
1
rii

n

�� with n ≥ 2.
As long as r pii

n

�� �
1

2 the decryption of homomorphic addition of ciphertext
1

n

ii
c

=∑
produce the sum of valid plaintext mii

n

�� 1
.

1 2 1 1 1 2 2 2 1 2 2 1 1 2 1 2 1 2(2) (2) 2 2 4c c q p r m q p r m q q p r q p q m p r q p r r× = + + × + + = + + + +

1 2 1 2 2 1 1 22 2r m m q p r m m m+ + + + . The evaluation of c c1 2× produce a decryption m m1 2
if 1 2 1 2 2 12 2r r r m r m p+ + < . The increase in noise in the homomorphic multiplication

of ciphertexts 2 1
1
i

ii

n
r�

�� with n ≥ 2. If the approximation of p t2 2= � with a positive
integer t, then t – 1 multiplications can be performed on ciphertexts before the decryp-
tion fails.

3.2	 Noise management strategies in homomorphic encryption

Given two ciphertexts c1 and c2 which respectively contain 10 and 20 as noise value.
The noise threshold in this encryption scheme for retrieving a valid plaintext after
decryption is 300. Beyond this value, the decryption fails.

The homomorphic encryption of ()c c c1 2 2� � (1) gives a noise with value of 600.
The resulted ciphertext c3 from expression (1) contains a resulting noise greather than

iJES ‒ Vol. 9, No. 4, 2021 103

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

threshold value which is 300. The decryption of c3 fails by providing a different value
of result of evaluation of (1).

Indeed, the homomorphic encryption in expression (1) add a noise at level of 30.
Said value is less than the threshold of 300. The decryption of c1 + c2 produce a plain-
text which worth the sum of m1 + m2. Subsequently, this result is homomorphically
multiplied by c2. This operation brings a noise at level of 600 which is greater than
the threshold. From this example, each typical operation introduces a specific type of
increasing noise in ciphertext.

For a ciphertext with noise beyond the threshold, its decryption violates the correct
property. Thus, to reduce noise in the ciphertext, several management strategies noise
were proposed whose commonly used are defined below.

Growth of noise in homomorphic encryption. Noise in ciphertext can increase
in several ways in homomorphic encryption. The growth of noise is the value which
is added to the initial noise after one or several homomorphic operations between two
or more ciphertexts. Thus, a growth of noise can be described as a: exponential noise,
polynomial noise, linear noise, constant noise and logarithmic noise.

Exponential noise. [10,11]. Given two ciphertexts c1 and c2. Let be op, an arbitrary
homomorphic operation on two or more plaintexts.

A noise is said exponential if there exists a value ′′b in c3 such that �� �b bn2 where
b is the initial noise contain in c1 and c2 and 3 1 2(, ,)c op c c n= .

The growth in [10,11] is illustrated as follow: the homomorphic multiplication of
two ciphertexts mod – p messages chiffrés with noise at level ρ results a ciphertext with
noise at level 2ρ; after second level of same operation the noise becomes 22ρ, then 23ρ
and so on; the noise exponentially increases with number of multiplications. The mod-
ulus is threshold value before decryption fails; therefore, if the bit size of p is k.ρ; the
threshold of noise is reached after log2k multiplication levels.

Polynomial noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary
homomorphic operation on two or more plaintexts.

A noise is said to be polynomial if there exists a value ′′b in c3 such that �� �b bn where
b is the initial noise contained in c1 and c2 and 3 1 2(, ,)c op c c n= . If n=2, the growth
is said quadratic. If n=3, the growth is said cubic. The growth is illustrated in [8] as
follows: Let a modulus q such that q is approximated by xk, and given two ciphertexts
mod – p with a noise at level x. In Homomorphic multiplication, the noise becomes
x2. After four levels of homomorphic multiplication, the noise becomes x16. And so on
but at almost log k levels of multiplications, the noise reaches threshold value and the
decryption fails.

Linear noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary homomorphic
operation on two or more plaintexts.

The noise is said linear if there exists a value ′′b in c3 such that �� �b nb � where b is
the initial noise contained in c1 and c2 and 3 1 2(, ,)c op c c n= . After k multiplications, this
growth is proportional to the noise whose magnitude is defined by (N + 1)k r.

In [4] Given two ciphertexts C1 and C2 are matrix-type B-bounded ciphertexts, in
the sense that and the coefficients of µi and Ci and ei

��
 all have an order of magnitude at

most B. Then, C+ represents the addition of two encrypted matrices whose noise in the
elements is 2B-borné, and C× represents the multiplication of two encrypted matrices
whose the noise in the elements is (N + 1)B2. In short, the level of error increases more
than B2L, twice exponentially with multiplicative depth of circuit.

104 http://www.i-jes.org

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

To compensate for this growth, an implementation of NAND gate on two cipher-
texts C1 and C2 whose the noise B – strongly bounded, makes it possible to obtain
new ciphertexts C I C CN3 1 2� � (where IN is identity matrix), then thesaid messages
remains in {0,1}, and the coefficients of error vector C3 have a magnitude at most
(N + 1)B. The function Flatten(C3) makes it possible to obtain C3 having the elements
0/1 in strongly bounded. This property ensures that circuits with L depth can be pro-
cessed as long as the magnitude of error is at most (N + 1)LB and the homomorphic
NAND of [4] generates noise of linear order of magnitude.

Constant noise. In this strategy, a multiplication on ciphertexts increases the noise
by adding a constant value. The growth of noise is independent of the number of
multiplications on ciphertexts.

Given two ciphertexts c1 and c2. Let be op, an arbitrary homomorphic operation on
two or more plaintexts.

Noise is said to be constant if there exists a value ′′b in c3 such �� �b b�� where b is the
initial noise contained in c1 and c2 and 3 1 2(, ,)c op c c n= .

In [1], a ciphertext is defined as follows AAE m qs i(, /)16 where mi is the plaintext
in {0,1}, s is the private key and 16 q is magnitude of noise. When the homomorphic
NAND is performed on ciphertexts c1 and c2 defined as follows AAE m qs (, /)1 16 and
AAE m qs (, /)2 16 outputs ciphertext 3 3 (, / 4)sc AAE m q= .

Logarithmic noise. Given two ciphertexts c1 and c2. Let be op, an arbitrary
homomorphic operation on two or more plaintexts.

A noise is said logarithmic if there exists a value ′′b in c3 such that �� �b blog() where
b is the initial noise contained in c1 and c2 and 3 1 2(, ,)c op c c n= .

Strategy management of noise. A noise strategy is a technique which manages
the noise generated by n homomorphic operations on n + 1 ciphertexts to preserve the
validity of the resulting ciphertexts after decryption and the homomorphic structure on
encrypt algorithm.

A noise strategy is said to be compact if it allows the ciphertext to remain compact
within the limit of the security parameter during homomorphic operations. It is clear
that the expansion parameter is close to 1.

A noise strategy is said to be efficient if the execution time of the homomorphic
operations on a set of ciphertext is reduced.

Two main noise management strategies have caught our attention, which are boot-
strapping and modulus switching.

The bootstrapping. The majority of current schemes have a common property
which adds short-sized noise to the plaintext message in the encryption operation. The
homomorphic evaluation on ciphertexts increases noise to a threshold value where
the decryption fails. [10] The bootstrapping proposed and conceptualized on the term
recrypt by Gentry, is used to reduce noise in the encrypted message to a level which is
determined by the complexity of the decryption circuit.

(1)  Definition of function of reencryption: Recrypt.
Let c1 ciphertext of m bit under the key pk1 and sk1 the encrypted private key under

the pk2 using the function encrypt as follows: encrypt(pk2, sk1j) on bits of sk1. It is
defined as follows:

iJES ‒ Vol. 9, No. 4, 2021 105

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

Recrypt takes as inputs pk2, the circuit of decryption decrypt, the encrypted private key
sk1 and the ciphertext c1. At first glance, it generates a vector c1 using encrypt(pk2, c1j)
which operates on bits of c1, it encrypts at bit level the elements of c1 under pk2.
It outputs 12 1(, , ,)Evaluate pk decrypt sk c that effectively eliminates the portion
pk1 of c1 and keep it under pk2.

The bootstrapping refreshes ciphertext by performing a homomorphic decryption.
usually, a plaintext is encrypted two times as follows: ((()))c encrypt encrypt mpk pk=

2 1

is decrypted from the outside to inside. But in recrypt, the inner layer of ciphertext
is homomorphically decrypted by correspondent key c encrypt decrypt cpk sk pk1 12 1 2

= (()), .
As long as this technique reduce the noise in the scheme by eliminating noise in inner
layer of ciphertext, despite the noise being added by evaluate. As long as the added
noise by evaluate is less than the removed noise from inner encryption layer, the
decryption continues to produce valid results.

Bootstrapping is extremely costly in time and resources. The complexity of several
approaches to bootstrapping is at least as complex as the number of times of decryption
of each ciphertext which encrypts the private key [10]. This requires in the bootstrap-
ping the homomorphic evaluation of the decryption, so each bit of the private key is
replaced by a larger encrypted representation.

Modulus switching. Since bootstrapping is a greedy process, other alternatives have
been proposed. The most promising alternative is switching modules [8]. The modulus
switching uses an evaluator which knows the size of the private key not the key itself. It
transforms a ciphertext c mod q to another ′c mod p� � without compromise the propriety
of correct of scheme. The transformation simply divide c by a factor p q. If sk is short
and p q the noise in ciphertext decreases. This technique allows the evaluator to
minimize noise without the private key and bootstrapping makes it a flexible mode of
noise management.

Definition 3. Modulus switching. Let p and q two odd moduli and a vector of
integers c. Let define an integer ′c close to ()p q c such that 2c c mod=′ . Then, for all s

with 1), 2 () (.qc s q q p l s 
  < − : , , 2 , ().qp p

c s c s mod and c s p q′     = <     ′

1), (
q

c l ss  +  . or l s1() est l norm1 − � de s and ,c s represents the cross product of

two vectors, []. q represents the modulo q elements.
The modulus switching reduces a ciphertext c q∈�  by a factor β after each homo-

morphic multiplication. To do this, it painstakingly chooses a decreasing modulus q for
each multiplication level that keeps the noise at small level and constant from low level
to high level. The refreshed ciphertext is c q� �� in which the noise is reduced to
level e β . By performing this procedure, the absolute size of noise in the ciphertext
decreases. Through this technique, K multiplications levels can be performed before
reaching the noise threshold.

106 http://www.i-jes.org

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

4	 Noise management in homomorphic DGHV [11]

4.1	 Somewhat homomorphic encryption scheme of DGHV

Given a safety parameter λ, the following assumptions are made: , ,ρ λ ρ λ= =′
2 5, .andη λ γ λ τ γ λ= = = + These give a scheme having complexity of λ5.

(1)	 keygen(λ).
–	 Choose at random an integer p of η bits as private key. Generate the public

key as follows: x pq ri i i� � � Where)0,2 (2 , 2)p
i iq and rγ ρ ρ∈ ∩ ∈ ∩ −  are

randomly selected for 1 i toτ= .
–	 Rename x0 as it is largest. Repeat if x0 is odd and x mod p0 � � is even.
–	 Publish the key 0 1, , ,pk x x xτ=  .

(2)	 (,)Encrypt pk m
Given { } 0,1 ∈m and the public key pk, choose a random subset S ⊆ {1, 2, ………, τ}

and a random integer
'

 (2 2)ρ ρ− ′∈r . It outputs 02 2 ()ii S
c m r x mod x

∈
= + + ∑ .

(3)	 Decrypt(c,sk) evaluates m as follows (c mod p)(mod 2)

4.2	 Noise management in DGHV (reencryption and bootstrapping)

Let three new parameters be a function of λ noted κ, θ and Θ where � �� �� �, θ = λ
and Θ = ω(κ log λ). Given a private key sk = p and a public key pk, add to the public key
a vector of real y in [0, 2) in size Θ and κ precision such that there exists a subset s ⊂
{1, 2, ………, Θ} with ∑ yi = 1/p mod 2 (the inverse of private key is replaced by sum
of subset s).

Key generation. Let two keys from somewhat encryption scheme of sk
* � and pk

*, the
generation of keys to make this scheme fully homomorphic encryption follows the
algorithm defined below:

–	 Set 2κ =  px p ;
–	 Choose at random a vector of Θ bits (S1, S2, …………, SΘ) with a hamming weight θ

and set { }1: 1 = =s i s ;
–	 Choose at random integers)1 10,2 2i i pi S

u and u x modκ κ+ +
∈

∈ ∩ = ∑ avec i = 1,
2, ……………, Θ;

–	 compute 2κ=i iy u and y = {y1, y2, ……………, yΘ};
–	 keep secret the private key * =k ks s and publish the public key *{ , }=k kp p y

Reencryption: *(,)kreencrypt p c
for i = 1, 2, ………, Θ, compute *

 2 =i iz c y mod ; publish the refreshed ciphertext
* iz and c .

Decryption: *(,),k idecrypt s c z
The plaintext is computed as follows: ()* 2

∈
 = −   ∑ ii s

m c z mod

iJES ‒ Vol. 9, No. 4, 2021 107

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

4.3	 Toy example of noise management in DGHV [12]

The DGHV undergoes an increase in noise exponential for the multiplication and
constant for the addition or linear for the addition. The example given below shows
how this algorithm can be applied to noise management for a one-bit encrypted mes-
sage. With toy parameters, this example shows the difficulty of implementing it in
everyday applications. The example below shows how to manage noise in [12] for
unbounding processing on encrypted data.

Let sk p= =10001. The public key pk � is built as follows:
Given [, , ,] [, , ,] [, , ,] [, , ,]q q q q and r r r r0 1 2 3 0 1 2 336 27 34 6 8 5 4 2= = . The public key
 [360044, 270032, 340038, 60008]=pk where x q p ri i i� � and x0 is the greatest.
The plaintext m = 0 is encrypted as follows with subset S = [1,3] with r = 31:

 0 2.31 2(270032 60008) 660142 360044 300098= + + + = =c mod .
Refreshment of ciphertext c0 300098= of plaintext m0 = 0 : reencryption of c0 :

1)	Let 1 0001= =ks p and � � 24, compute 24[2 10001] 1678 = =px ;
2)	Choose at random of vector of Θ bits with Θ = 9 with hamming weight of 3,

s � � �0 0 1 0 0 1 0 1 0, , , , , , , , and set s = { , , }3 6 8 ;
3)	Choose at random integers ui � � [,)0 225 for i = 1 to 9 as follows: { } 281782,1892147,589103,487403,491831,1093482,293813,3187325,5718711=iu

{ } 281782,1892147,589103,487403,491831,1093482,293813,3187325,5718711=iu
where 3 6 8 589103 1093482 31873525 1678

∈
= + + = + + =∑ ii s

u u u u

4)	Set 25 2i iy u= with i = 1 to 9 as follows: { }0.0167955, 0.1127807,0.035133,0.0290515,0.0293154,0.0651766,0.0175126,1 .8998101,0.3408617iy =

{ }0.0167955, 0.1127807,0.035133,0.0290515,0.0293154,0.0651766,0.0175126,1 .8998101,0.3408617iy = where

3 6 8 0.0351133 0.0651766 1.8998101 2.0001 1 2ii s
y y y p mody

∈
+ + = + + = ≈=∑

5)	Compute 0 2 =i iz c y mod avec i = 1 to 9 as follows: { }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz

{ }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz

{ }0.295959,1.2625086,1.4311034,1.4962348,0.297047,1.4929092,1.3673068,1.4962348,1.2113898,1.9144466=iz with 3 6 8 1.4311034 1.3673068 1.2113898 4.0098∑ + + = + + =z z z

c z
i s

i0 300098 4 0098 300094�
�

�
�
�

�

�
�
�
� � �

�
� .

6)	Reencrypt c0 as follows: 0 3 6 8 300098 ii s
c z z z z

∈
 − = −∑ + +  ∑

300094 is refreshed ciphertext of ciphertext 300098 whose the noise is 4
units. The decryption of 300094 outputs the same plaintext as 300098 which is 0:
300098 2 300094 2 0 2.= =mod mod mod

108 http://www.i-jes.org

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

5	 Trend of noise management strategy from 2009 to 2016

5.1	 Noise management strategy in homomorphic encryption from
2009 to 2016

In [BGV12] [7]. This algorithm uses the modulus switching as described below:

1)	Choose a gradual decrease in modulus ()q q xi
i= for i k< ;

2)	Perform a multiplication of two mod p− ciphertexts;
3)	Switch the ciphertext to small modulus q q x1 = . The noise level of refreshed cipher-

text decreases from 2 .x to x
4)	Repeat step (2), the multiplication of two ciphertexts with noise at level x, the noise

becomes again x2;
5)	Repeat step (3) by switching to modulus q2 to reduce noise at x level. Each mul-

tiplication reduces the ratio threshodnoise levelnoise by x. This approch makes it
possible to perform k levels of multiplication before reaching the noise threshold.

In [DM15] [1]. This algorithm uses bootstrapping and modulus switching to manage
noise as described below:

1)	Assume that the inputs bits 0 1, {0,1 }∈m m are encrypted as ciphertexts
4 (, 16)i s ic AAE m q∈ with modulus t = 4 and error bound q 16;

2)	Perform a homomorphic NAND as follows: 4 4
0 , 16 (, 16) ()s s iAAE m q AAE m q× →

2
3(, 4)sAAE m q where 3 0 11 = −m m m ;

3)	Refresh 2 4
3 3, 4 (, 16)()s sAAE m q AAE m q→ by using homomorphic accumula-

tor as follows: [] 32(. ()) 2 ()b a E s mod E m− = where E m()3 is the encrytion of the
same plaintext under different encryption scheme E. It is output of homomorphic
evaluation of decryption circuit under encrypted private key s.

5.2	 Trend of noise management strategy from 2009 to 2016

Table 1. Summary of trend of noise management strategy

No Scheme Efficient Noise Management Noise Growth Observations

1 [Gen09] NO Bootstrapping Exponential Ressources hungry and
high expansion.

2 [DGHV10] NO Bootstrapping Exponential Ressources intensive
and high expansion.

3 [BGV12] YES Modulus switching
Bootstrapping

Polynomial Optimal implmentation
in Helib. [3,5] [17]

4 [GSW13] NON Leveled encryption
bootstrapping

Linear High expansion

5 [DM15] YES Bootstrapping/modulus
swithing

Constant Compute homomorphic
NAND in less than a
second. High expansion.

iJES ‒ Vol. 9, No. 4, 2021 109

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

The Table 1 gives the summary of the noise direction over the period from 2009
to 2016. In this table, the row 5 shows the improvement of bootstrapping in terms of
efficiency through the scheme [1] when performs it in less than a second.

In contrast, the column observations of Table 1 shows that expansion is still high
despite the numerous techniques for reducing it.

6	 Conclusion

The refreshing of the noise in the message is the challenge of homomorphic cryp-
tography. Its reduction makes it possible to perform several operations on an encrypted
message before each homomorphic operation. This has been shown through the DGHV
scheme for one bit on an experimental basis and difficult to use in practice.

Noise is the bottleneck in homomorphic operations. Its rapid growth especially in
multiplication reduces the possibility of running larger circuits on encrypted messages.
The fastest algorithms today benefit from a constant increase in noise. The efficiency
of homomorphic cryptography is answered in the management of noise through a log-
arithmic increase.

7	 References

	 [1]	L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a
second. Cryptology ePrint Archive, Report 2014/816. https://eprint.iacr.org/2014/816.2014

	 [2]	I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryp-
tion: Bootstrapping in less than 0.1 seconds, pages 3–33. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. https://doi.org/10.1007/978-3-662-53887-6_1

	 [3]	A. Khedr, Member, IEEE, G. Gulak, Senior Member, IEEE, and V. Vaikuntanathan.
SHIELD: Scalable homomorphic implementation of encrypted data-classifiers. Cryptology
ePrint Archive, Report 2014/838. https://eprint.iacr.org/2014/838. 2014.

	 [4]	C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto ’13, 2013. https://
doi.org/10.1007/978-3-642-40041-4_5

	 [5]	A. Khedr, G. Gulak, and V. Vaikuntanathan. SHIELD: Scalable homomorphic implementa-
tion of encrypted data-classifiers. IEEE Transactions on Computers, PP(99):1– 1, 2015.

	 [6]	Y. Doröz and B. Sunar. Flattening NTRU for evaluation key free homomorphic encryption.
Cryptology ePrint Archive, Report 2016/315, 2016.

	 [7]	Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. In ITCS, pages 309–325, 2012. https://doi.org/10.1145/2090236.2090262

	 [8]	J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryp-
tology ePrint Archive, 2012:144, 2012.

	 [9]	Joppe W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully
homomorphic encryption scheme. In Stam [Sta13], pages 45–64.

	[10]	C. Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009. https://doi.org/10.1145/1536414.1536440

	[11]	M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over
the integers. In Eurocrypt, pages 24–43, 2010. https://doi.org/10.1007/978-3-642-13190-5_2

	[12]	Homomorphic application and applications, Springer, 2014, New York.

110 http://www.i-jes.org

https://eprint.iacr.org/2014/816.2014
https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2014/838
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-13190-5_2

Paper—Noise Management in Homomorphic Encryption Scheme: Analyzing of Algorithm

	[13]	R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–180, 1978.

	[14]	S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984. https://doi.org/10.1016/0022-0000(84)90070-9

	[15]	P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. Euroc-
rypt ’99, pp. 223–238. https://doi.org/10.1007/3-540-48910-X_16

	[16]	T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete loga
rithms. Crypto ’84, pp. 469–472. https://doi.org/10.1109/TIT.1985.1057074

	[17]	S. Halevi and V. Shoup, Algorithms in Helib, 2014. https://doi.org/10.1007/978-3-
662-44371-2_31

	[18]	D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. TCC ’05,
LNCS 3378, pp. 325–341. https://doi.org/10.1007/978-3-540-30576-7_18

	[19]	H.-C. Hsu, Z.-Y. Liu, R. Tso, and K. Chen. Multi-value private information retrieval using
homomorphic encryption, IJES, August 2020, 15th AsiaJCIS

	[20]	R. Motawie, Mahmoud, M. El-Khouly, and Samir A. El-Seoud. Security problems in cloud
computing, IJES, December 2016. https://doi.org/10.3991/ijes.v4i4.6538

	[21]	F. O. Idepefo, O. S. Aderibigbe, B. S. Afolabi, and B. I. Akhigbe. Towards on architecture-
based ensemble methods for online social network sensitive data privacy protection, IJES,
Vol. 9, No. 1, 2021. https://doi.org/10.3991/ijes.v9i1.20819

8	 Authors

Paulin Boale Bomolo is senior lecturer and PhD Student at university of Kinshasa
in Mathematics and Computers sciences department. His field of research is cryptog-
raphy, in particular homomorphic cryptography. He works to improve algorithms in
everyday applications. He contributed to the publication of articles respectively in the
journal IJCSI and IJSR such as “Study of Master-Slave Database replication in distrib-
uted database”, IJCSI, 2011.

Eugene Mbuyi Mukendi is professor and head of Mathematic and computers
sciences department of the University of Kinshasa. As publications, Author of many
publications, such as: “Enhanced Parallel Skyline on multi-core architecture with lax
Memory space Cost”, IJCSI, volume 13, Issue 5, September 2016, Data mart approach
for stock management model with a calendar under budgetary constraint, IJCSI, vol-
ume 15, Issue 5, September 2018, Poster and the 2nd International conference on Big
Data Analysis and Data Mining, San Antonio, USA, December 1, 2015; Data Mart
Approach for Stock Management Model with a calendar Under Budgetary constraint,
IJCSI, volume 15, Issue 5, September 5, 2016. E-mail: eugene.mbuyi@unikin.ac.cd

Simon Ntumba Badibanga is professor at the Mathematic and Computers Sciences
department of the University of Kinshasa. Director of informatics laboratory of the
faculty of sciences at the university of Kinshasa. He is author of many articles in many
scientific journals like in IJCSI, Poster and the 2nd International conference on Big
Data Analysis and Data Mining, San Antonio, USA, December 1, 2015. E-mail: simon.
ntumba@unikin.ac.cd

Article submitted 2021-08-04. Resubmitted 2021-10-11. Final acceptance 2021-10-14. Final version
published as submitted by the authors.

iJES ‒ Vol. 9, No. 4, 2021 111

https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.3991/ijes.v4i4.6538
https://doi.org/10.3991/ijes.v9i1.20819
mailto:eugene.mbuyi@unikin.ac.cd
mailto:simon.ntumba@unikin.ac.cd
mailto:simon.ntumba@unikin.ac.cd

