
PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

Handling Nodes Mobility and Failure During
Bootstrapping in Randomly Deployed Ring-based

Wireless Sensor Networks
http://dx.doi.org/10.3991/ijes.v1i1.29345

Ghofrane Fersi, Wassef Louati and Maher Ben Jemaa
National School of Engineers of Sfax, Sfax, Tunisia

Abstract—Distributed Hash Table (DHT)-based protocols
are new approaches proposed to Wireless Sensor Networks
(WSN). Their main advantage resides on the easy
integration of DHT-based WSN into the Internet Of Things.
However, these protocols face multiple challenges in their
bootstrapping phase, especially at the case of randomly
deployed WSN. We presented in a recent work a
bootstrapping protocol for use in DHT-based protocols
having the structure of ring in static WSN. However, in
most cases, there are some nodes that may fail or move in
the network. Bootstrapping should take into account such
situations in order to achieve better performance.

In this paper, we propose a distributed local recovery
method for use in our bootstrapping protocol that allows it
to handle efficiently nodes failure and mobility. Simulation
results have shown that our proposed approach is able to
ensure the local recovery in a timely and energy-efficient
manner.

Index Terms—Bootstrapping, Distributed Hash Table-based
protocol, Failure, Mobility, Wireless Sensor Networks.

 INTRODUCTION I.
The Internet Of Things (IOT) [17] is the future vision

of Internet: Internet is no more related to the virtual world
but it is extended to our real life. In the future Internet all
the objects and area are connected to the internet. Each
object is identified with a unique identifier and we can get
information about it by sending a query with its identifier.
This query will be received by this object even if it has
changed its physical position. The communication nature
in the Internet of Things is information centric which
means that data are identified by keys. When given data
need to be retrieved, a query with their corresponding key
is sent.

A great part of IOT is made up of Wireless Sensor
Networks [1] [2]. Hence, there is a need to conceive
protocols that facilitate the integration of these networks
into IOT. Distributed Hash Table (DHT)-based protocols
[4] and more specifically the protocols having the virtual
structure of a ring [5] [6] [10] [11] [12] are suitable
solutions to facilitate such integration. Effectively, each
node in these protocols is identified with a unique
location-independent identifier. All the nodes are
organized into a virtual ring with the increasing order of
their identifiers. Such structure makes the integration of
WSN into IOT, an easy and efficient task.

Also, there are some situation where the WSN cannot
be deployed manually such the case of natural disasters
and/or hostile supervision. In these cases, sensors are

scattered randomly and they should form autonomously
their own network without human intervention. It is clear
that in such cases, we need the use of autonomous and
location independent protocols. DHT-based protocols are
autonomous and ensure their functionalities without the
need to have any information from any central point in the
network. Hence these protocols are well suited to
randomly deployed sensors cases.

However, the bootstrapping phase of these DHT-based
protocols is so challenging at the case of randomly
deployed WSN since all the nodes are scattered
simultaneously and start joining the network at the same
time. They will then exchange lot of simultaneous
messages which leads to interference problems. All these
problems lead to multiple inconsistencies. Existing works
[8] [9] in this field argue that bootstrapping should contain
two phases: In the first phase, all nodes search their places
simultaneously and form consequently multiple rings. In
the second phase, messages are exchanged between nodes
in order to heal all the rings into a global consistent one.

In a recent work [15], we have proposed a
bootstrapping approach that avoids concurrent joining and
that forms directly one global consistent ring in randomly
deployed static WSN. This is ensured by organizing all
the nodes into a tree and orchestrating the nodes joining
from root to children nodes in a way that at a given time
only one node joins the network.

Nodes in WSN are prone to failure. They may fail when
scattered or fail due to their energy exhaustion. Also, in
most WSN, there are some nodes that can move and
change their place during the network bootstrapping.
Effectively, even if the total bootstrapping duration is
limited, they can be some few nodes that may change their
location. For example, at the case of flooding, sensors
when scattered in order to collect information about these
flooding, are obviously static or move so slowly in the
same speed which preserves the same physical neighbors
for almost nodes. However, the presence of some physical
obstacles, may change the speed of some few nodes
leading to a modification in the physical neighbors set.
There is hence a need to take into account such situations
in order to avoid any inconsistency that could be caused
by a node failure or mobility.

In this paper, we propose a distributed local recovery
mechanism that can be integrated into our proposed
bootstrapping protocol in order to handle efficiently nodes
failure and/or mobility in the network.

Our paper is organized as follows. In section 2, we
present a general overview of existing ring-based
protocols. The related work is given in section 3. We

28 http://www.i-jes.org

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

specify in section 4 a brief presentation of our
bootstrapping protocol. Our proposed improvement to
handle nodes failure and mobility is given in section 5.
Section 6 specifies the cost of our proposed recovery
approach in terms of sent messages number. Section 7
concludes the paper.

 BACKGROUND II.
In order to be familiar with the ring-based protocols, we

present in this section a short overview of two DHT ring-
based protocols:

Virtual Ring Routing (VRR) [5] and Scalable Source
Routing (SSR) [6].

 Virtual Ring Routing A.

Figure 1. Virtual Ring Routing virtual and physical topology

Virtual Ring Routing (VRR) [5] combines DHT and
routing functionalities without the need of any underlying
routing protocol. VRR is directly integrated on the top of
the link layer. VRR nodes identifiers are location
independent.

As depicted in figure 1, all the nodes are organized into
a virtual ring in an increasing order of their identifiers.
Each VRR node maintains in its routing table the next
physical hops towards the virtual paths that the current
node participated in their setup. It contains also a physical
neighbor set containing the identifiers of the physical
neighbors in addition to the next physical hops towards
the virtual neighbors of the current node. To route a
message, the VRR node picks from its routing table the
node having the closest identifier to the destination’s
identifier and forwards the message to its corresponding
physical hop.

 Scalable Source Routing B.
All the Scalable Source Routing (SSR) [6] nodes should

be organized into a global virtual ring. Each node should
have a source route to its virtual neighbors. SSR packets
contain source address, destination address and source
route. The former is not essentially the total route from the
source to the destination. It can only be a sub route that
ends at an intermediate node. This intermediate node
checks its local cache in order to search an appending
route to the destination. If this search fails, it appends the
source route to the closest node to the destination.

 RELATED WORK III.
There are some DHT-based protocols that support
bootstrapping in randomly deployed WSN. Iterative
Successor Pointer Rewiring Protocol (ISPR) [8] is a
simple bootstrap protocol for use in ring-based protocols
like SSR [6] or VRR [5].
Each node maintains exactly one and only one successor
and predecessor by exchanging Successor Solicitation
messages. At the end of this step, multiple consistent
local rings are formed. To ensure global consistency, a
specified node in each ring floods the network. VRR uses
also a similar procedure to ISPR. Flooding the entire
network consumes a lot of energy.
The linear method [9] shares with ISPR the same steps to
reach local ring consistency. However, in order to ensure
the global ring consistency, it does not use the flooding
step. The
linear method assumes that the address space is linear and
not a ring. The edges in the virtual graph are undirected.
Total ordering of nodes addresses is used in order to
distinguish right and left neighbors. To form a global
ring, the leftmost node establishes an edge to the
rightmost node.
The two mentioned approaches require two steps in order
to arrive to the steady state: multiple consistent ring
formation, then, rings fusion.
Our protocol does not need any ring merging since it
ensures directly the formation of a global consistent ring.

 BOOTSTRAPPING IV.

Figure 2. Example of randomly deployed network topology

In this section, we give a brief overview of our
proposed bootstrapping approach [15]. All the nodes in
our approach are organized into a tree. The root node is
the first node that joins the network. When active, its child
node having the smallest identifier joins the network and
so on. When the current joining node has no more
children, it sends a message to its parent that in turn
chooses another child node to join the network.
Recursively, all the nodes join the network.

Bootstrapping in our approach is divided into rounds. In
each round i, there is one active node that broadcasts
HELLO messages in order to discover its children and
starts a hearing phase. In this step, neighboring nodes that
received this HELLO message and that did not have
received any HELLO messages from any other node

iJES ‒ Volume 1, Issue 1, August 2013 29

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

during the i-1 rounds are considered as children nodes of
this active node. This latter, in turn, is considered as their
parent forming hence a tree. The children nodes send to
their parent node a HELLO response message at a random
time in order to avoid interference problems that can be
caused by simultaneous message sending.

Figure 3. Bootstrapping tree

The active node of a given round stores all the
identifiers of its waiting set (the set containing the

identifiers of the children nodes) by the increasing order
of their identifiers. Then, it sends to the node having the
smallest identifier in its waiting set a Permission message.
This message allows the destination node to start the
joining process. For example at the case of VRR, when
this message is received by the child node, it sends a setup
request message to its corresponding active node. This
latter picks from its routing table, the node having the
closest identifier to this new node and forwards the
message to its corresponding next physical hop and so on
until reaching the node having the closest identifier to the
current joining node identifier. This node adds the current
joining node to its virtual neighbors set called vset. Then,
it responds it by a setup message containing the set of its
other virtual neighbors in order to help the joining node
finding the other neighbors. Once this setup message is
arrived to the destination, the source node is added to the
vset of this new joining node then it sends setup request
messages to the nodes in the vset field of the setup
message. When the candidate nodes respond the new
joining node, it becomes well stabilized into the virtual
ring and becomes active. This recently active node will
start the next round and so on. The first branch in the
bootstrapping phase starts by an active node chosen at the

30 http://www.i-jes.org

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

network startup. The first branch ends when the recently
active node does not receive any HELLO response
messages from any nodes during its entire hearing step
(The first branch in figure 3 is made up of nodes 1, 33, 8
and 4). In such a case, this latter node sends to its parent
node a Reallocation message. This message informs the
parent node that its first child node has no more nodes to
treat. When the parent node receives this message, it
removes the source node from its waiting set and chooses
from its waiting set, the next smallest identifier and sends
to its corresponding node a Permission message. All the
steps stated before are repeated until the active node
receives a Reallocation message from all its waiting set.
At this case, the active node sends to its parent node a
Reallocation message in order to choose another child
node to start the joining process. All the steps are repeated
until the first active node (the root) received Reallocation
messages from all the nodes in its waiting set.

When this happens, all nodes in the network are well
stabilized into one global virtual ring and reach the steady
state. Figure 3 illustrates an example of our proposed
bootstrapping scheme for the network given in figure 1.
The numbers in black color in the figure 3 depict the order
of the nodes that join the network.

 NODES MOBILITY AND FAILURE V.
A. Case of homogeneous WSN

Figure 3. Tree reparation after node failure

In this section, we describe the behavior of our
bootstrapping protocol at the case of nodes mobility and
failure. The key idea is to detect the node departure by
neighboring nodes and to try to heal the tree locally and
to associate the orphan nodes of a leaving parent to other
parents without the need to reconstruct the tree and
without causing any inconsistency.
In order to detect that a node is no longer a physical
neighbor, each node in the network that is already
associated to a parent, broadcasts LIFE messages. In order
to avoid interference problems, each node starts
broadcasting these LIFE messages at a random time. Each
node that is already associated and receives this LIFE
message, sends an acknowledgement. If the source node
does not receive any acknowledgement, it perceives that
there is an interference problem.

When an interference is detected, the node rebroadcasts
LIFE messages after another random time. This procedure
is repeated until no interference is detected. From that
moment, LIFE messages are broadcasted each T period
from the successful broadcast and so on. The LIFE
message contains the source node identifier and the
identifier of the source node’s parent. Each node that
receives this message, adds the identifier of the source
node in its physical neighbors set. Nodes that have
received a LIFE message from a node whose parent is the
same as their parent are considered in the same level.
They add the identifier of the source node in their Level
set. When the physical neighbors of a given node do not
receive any LIFE message from it during two periods of
T, they realize that this neighbor becomes unreachable.
This can be due to two different reasons: the physical
neighbor failed or moved and changed its place. The
unreachable node can be not yet active and it can be also
active and having children nodes.
In the first case, the corresponding parent of the
unreachable node deletes it from its waiting set. In the
second case, the children nodes of the moving parent can
have multiple status:
1. Children nodes have already sent to their parent a
Reallocation message: In such a case, the children nodes
and their corresponding children have already joined the
network, hence they do not need to be associated to
another parent.
2. Children nodes have not sent a Reallocation message
to their parent. Then, they need a parent to orchestrate
their joining process if they have not yet joined the
network and to orchestrate the joining process of their
children otherwise.
In the second case, the orphan node broadcasts a
ParentRequest message. This message contains the
identifier of the old parent. We assume here that the
network is sufficiently dense so that each node A is at
least a physical neighbor of a node B having the same
level as the parent of A. If there are nodes having
received this message and belonging to the same level of
the old node that do not have yet sent to their parent a
Reallocation message, they will respond this orphan node
with a ParentOffer message. When the orphan node
receives the first ParentOffer message from a given node,
it chooses the source node of this message as its new
parent and sends it an Association message in order to
become its child. After that, it ignores any other parent
offer since it has been already associated to a parent.
When the orphan nodes do not receive any ParentOffer
message from any nodes, they notice that the other nodes
having the same level as their old parent, have already
joined the network with their children. They will then
broadcast a ParentRequestException message. When the
nodes having the same level as the old node, receive these
messages, they are aware that the orphan nodes did not
find a new parent. They will then send
ParentOfferException to these nodes.
These latter choose the source of the first received
ParentOfferException message as new parent and
respond it with an Association message. The parent node

iJES ‒ Volume 1, Issue 1, August 2013 31

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

that receives this message, adds the identifier of the
source node in its waiting set and sends to the first active
node in the network a PermissionException message.
This message is routed using the used routing protocol
(for example in our case, this message is routed to the
destination using VRR). At the reception of this message,
the first active node adds the identifier of the source node
in its Additional Waiting set. When this active node
receives Reallocation messages from all its waiting set, it
sends a Permission message to the first node in its
Additional Waiting Set using the appropriate routing
protocol. At the reception of this message, the parent
node sends a Permission message to the first node in
its waiting set and the procedure of bootstrapping already
explained is repeated until the waiting set of the parent
node becomes empty.
When this happens, the parent node sends a Reallocation
message to the first active node which allows it to send a
Permission message to the next node in its Additional
Waiting Set. When the waiting set as well as the
Additional waiting set of the first active node become
empty, the network reaches the steady state.
The node that do not receive any LIFE messages from
any node from its physical neighbors set from 2T period
of time, realizes that it has been moved from its place. If
a moving node is already active, it does not need to be
reinserted in the bootstrapping tree. Since it does no
longer belong to the tree, it does not respond to any
Parent request or Parent Exception request message. The
moving node only needs to update the path between it
and its virtual neighbors.
In most cases, this update can be achieved locally by
replacing only the next hops towards its virtual neighbors.
If this local repair fails, the path between the moved node
and its virtual neighbors is reconstructed. If the moving
node has not yet joined the network, it hears LIFE
messages from its new physical neighbors nodes. There
are different cases that can be presented:
1. There is a neighboring node that is active and that have
not yet sent a Reallocation message to its parent. In this
case, the mobile node sends a parentRequest message to
this node and becomes associated to it.
2. All neighboring nodes are not yet active. The moved
node does not receive in such case any LIFE messages. It
should then wait for the activation of one of these
neighboring nodes in order to be associated to it.
3. All neighboring nodes are active and have already sent
Reallocation messages to their parents. Hence, the moved
node sends a ParentRequestException message to the
closest node to it. The latter node adds the moved node in
its waiting set and sends to the first active node a
PermissionRequestException.
Figure 4 gives an example of a node mobility. When the
node 8 moves, its neighboring nodes do not receive from
it any LIFE messages during a period T.

Figure 4. Example of node mobility treatment

Algorithm 1 presents the tree recovery process
pseudocode and figure 3 summarizes the main tree
recovery cases that can occur.

Its children nodes 4, 18 and 56 become orphans. They are
not yet active (the joining process is still in step 2 as
depicted in the figure). Hence, they will search a new
parent. They start broadcasting ParentRequest messages
containing the identifier of their old parent, the node 8.
Nodes 11 and 91 find the node 8 in their level set. The
node 11 sends to the node 4 a ParentOffer message.
Similarly, the node 91 sends to the nodes 18 and 56
ParentOffer messages. Evidently, node 11 does not
receive the ParentRequest messages that are sent by the
nodes 18 and 56 because they are not its physical
neighbors as shown in figure 1. When the node 4 receives
the ParentOffer from the node 11, it sends it an
Association message and becomes its new child. Nodes
18 and 56 become also the children of the node 91. The
moving node 8 is in this case already active, hence it is
aware that the nodes 1 and 33 are its virtual neighbors. In
this case, the node 8 does not need to rejoin the tree. It
only needs to update its virtual paths to its virtual
neighbors depending on its new position.

B. Case of heterogeneous WSN

Figure 4. Bootstrapping in heterogeneous WSN

32 http://www.i-jes.org

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

Most of WSN are made up of great number of sensors
having different modalities and various characteristics.
Taking into account such heterogeneity and especially
energy variation, when conceiving a network protocol
improves significantly network performance. We have
proposed in [18], an energy-aware bootstrapping protocol
for use in heterogeneous WSN. The main goal of this
approach is to use at most energy powerful nodes in the
bootstrapping phase in order to avoid the use of energy
critical nodes and preserve their amount of energy. In
this protocol, the priority of the joining process is given
to energy-powerful nodes as depicted in figure 4. If a
node that has not yet joined and is associated to a weak
node receives HELLO message from an energy powerful
node; it removes its association to the weak node and
reassociates itself to the new strong node. This builds an
powerful network backbone for use in the routing
process.
In order to handle nodes failure and mobility in this
bootstrapping protocol, we should also take into account
nodes heterogeneity. Hence, the orphan node should not
be associated directly to the first parent form which it has
received a ParentOffer. Instead of that, it starts a timer of
1 second when it broadcast the ParentRequest message.
During this time, if the orphan node has received a
ParentOffer from an energy powerful node, it is
associated to it. Otherwise, at the timer expiration, the
orphan node is associated to a weak node since it has not
found an energy-powerful parent.

 MOBILITY AND FAILURE DETECTION COST VI.
The total bootstrapping phase lasts approximately 20
seconds in a 100-nodes network. Each node should
broadcast a LIFE message each 1 second. Hence, each
node needs to broadcast 20 messages during the
bootstrapping phase. The nodes that detect the node
departure need to broadcast ParentRequest messages.
Since the bootstrapping period is very short, there is only
so few nodes that can change their places during this
phase. We assume that the maximal number of moving
nodes in the bootstrapping phase is 4. There is on average
2 physical neighbors that are associated to a given parent.
Hence, the maximal number of ParentRequest messages
is 8 messages. There is also at most 8
ParentRequestException messages. Each orphan node has
to be associated to a new parent by sending an
Association message. Hence, there are on average 8
Association messages that are sent during the
bootstrapping phase.
Nodes having the same level as the old parent send
ParentOffer and Par! entOfferException messages to the
orphan nodes. There are on average 8 orphan nodes.
There are hence on average 8 ParentOffer messages or 8
ParentOfferException messages (the nodes that send
ParentOffer message to a node do not send it
ParentOfferException and vice versa). When the
ParentOfferException is accepted, the new parent sends
PermissionException message. The maximal number of
PermissionException messages is 8. The active node

responds by at most 8 Permission messages. The total
number of messages needed to detect a failure or a
mobility and recover the bootstrapping tree is at most
2048 messages.

 SIMULATION VII.
In order to investigate the feasibility of our proposed
mobility support scheme in the bootstrapping phase, we
have used simulations on NS2 [13]. We analyzed the
behavior of the physical neighbors in order to recover the
bootstrapping tree at the case of nodes mobility and/or
failure. The basic configuration simulates 50 nodes
distributed randomly over 100 m*200 m plane. We vary
the number of simultaneous mobile nodes in the network
and measure the time and the energy needed by the
neighboring nodes to recover locally the tree without the
need of whole reconstruction. It is clear that when a node
has no children or has an empty waiting list, its
neighboring nodes do not need to exchange any messages
and need only to delete the moved node’s identifier from
the physical neighbors list. That’s why we have chosen
the time of the nodes mobility in a way that the mobile
node has already some children in its waiting set in order
to study the reassociation process of these children nodes
to new parents.

Figure 5. Time to recover the bootstrapping tree

Figure 5 clearly shows that neighboring nodes of moving
ones are able to recover the tree locally and to find new
parents to the orphan nodes in a very short time (6
seconds) even if the number of moving nodes increases.

Figure 6. Consumed energy to recover the bootstrapping tree

Figure 6 measures the total amount of consumed energy
at the recovery phase. Evidently, this amount increases
slightly when the number of mobile nodes increases

iJES ‒ Volume 1, Issue 1, August 2013 33

PAPER
HANDLING NODES MOBILITY AND FAILURE DURING BOOTSTRAPPING IN RANDOMLY DEPLOYED RING-BASED…

because the number of exchanged messages to recover
the tree increases as well. However, it is clear that the
total consumed energy is so limited.

 CONCLUSION VIII.
In this paper, we have improved our bootstrapping
protocol in order to take into account nodes mobility and
failure cases. Nodes detecting the failure or the
movement of a node, try to heal the tree locally and in a
totally distributed manner without the need to reconstruct
all the tree. This ensures ring global consistency and
avoids time and energy wastage of global tree
reconstruction.

REFERENCES
[1] Akyildiz, I. F. , Su, W. , Sankarasubramaniam, Y. and Cayirci, E. ,

Wireless sensor networks: A survey Computer
Networks,38(4),393-422,2002. http://dx.doi.org/10.1016/S1389-
1286(01)00302-4

[2] Yick, J. , Mukherjee, B. and Ghosal, D. , Wireless sensor network
survey Computer Networks, 52(12),2292-2330, 2008.
http://dx.doi.org/10.1016/j.comnet.2008.04.002

[3] Lewis, F.L. ,Wireless sensor networks. Smart environments:
Technologies, protocols, and applications. New York: Wiley,
2004.

[4] Fersi, G. , Louati, W. and Ben Jemaa, M. , Distributed Hash
Table-based Routing and Data Management in Wireless Sensor
Networks: a Survey: ACM/Springer Wireless Networks,19 (2), pp
219-236.

[5] Caesar,M.,Castro,M.,Nightingale,G.OShea,E. and Rowstron,A.,
Virtual ring routing: Network routing inspired by DHTs: In
Proceedings of SIGCOMM, Italy, 2006.

[6] Fuhrmann,T. ,The use of scalable source routing for networked
sensors:In Proceedings of the 2nd IEEE workshop on embedded
networked sensors, Australia, 2005.

[7] Wehrle,K. , Gtz,S. and Rieche,S. , Distributed Hash tables: In R.
Steinmetz, K. Wehrle (Eds.), Peer-to-Peer systems and
applications (Chapter 7, pp. 79-93). Berlin, Heidelberg: Springer,
2005. http://dx.doi.org/10.1007/11530657_7

[8] Cramer, C. and Fuhrmann, T. ,Self-stabilizing ring networks on
connected graphs: University of Karlsruhe (TH), Technical report
2005-5, 2005.

[9] Kutzner,K. and Fuhrmann,T. ,Using linearization for global
consistency in SSR: In Proceedings of international IEEE
workshop on hot topics in P2P systems,CA,2007.

[10] Almamo, A. and Labiod, H. , ScatterPastry: An overlay routing
using a DHT over wireless sensor networks: In Proceedings of the
international conference on intelligent pervasive computing,
Korea, 2007.

[11] Almamou, A. , Schiller, J. , Labiod, H. and Mesut, G. , A Case for
an overlay routing on top of MAC layer for WSN: In Proceedings
of the second international conference on sensor technologies and
applications, France, 2008.

[12] Fersi, G. , Louati, W. and Ben Jemaa, M. , Energy-aware virtual
ring routing in wireless sensor networks, Journal of Network
Protocols and Algorithms,2(4),16-29, 2010.

[13] NS2 website Available at http://www.isi.edu/nsnam/ns/
[14] Malkhi, D., Sen, S., Talwar, K., Werneck, R. and Wieder,

U.,Virtual Ring Routing Trends, DISC 2009.
[15] Fersi, G. , Louati, W. and Ben Jemaa, M. , Consistent and

Efficient Bootstrapping Ring-Based Protocol in Randomly
Deployed Wireless Sensor Networks Intenational Conference on
telecommunications (ICT), Maroc, 2013 (to appear).

[16] Bradonji, M. and Kong, J. S., Wireless Ad Hoc Networks with
Tunable Topology, Forty-Fifth Annual Allerton Conference
Allerton House, USA, 2007.

[17] Christin, D., Reinhardt, A. , Mogre, P. , Steinmetz, R. , Wireless
Sensor Networks and the Internet of Things: Selected Challenges,
Proceedings of the 8th GI/ITG KuVS Fachgesprach ”Drahtlose
Sensornetze”, 2009.

[18] Fersi, G., LOUATI, W., BEN JEMAA, M., Energy-Aware
Distributed Hash Table based Bootstrapping Protocol for
Randomly Deployed Heterogeneous Wireless Sensor Networks.
28th International Symposium on Computer and Information
Sciences (Iscis’2013), Springer, Paris, France, 2013.

AUTHORS
Ghofrane FERSI is a Ph.D student at the National

School of Engineers of Sfax, Tunisia (e-mail:
ghofrane.fersi@redcad.org).

Wassef LOUATI is an associate professor at the
Higher Institute of Computer Science of Mahdia, Tunisia
(e-mail: wassef.louati@redcad.org).

Maher BEN JEMAA is a keynote professor at the
National School of Engineers of Sfax, Tunisia (e-mail:
maher.benjemaa@enis.rnu.tn).

Submitted 22 June 2013. Published as re-submitted by the authors 23
July 2013.

34 http://www.i-jes.org

	iJES – Vol. 1, No. 1, August 2013
	Handling Nodes Mobility and Failure During Bootstrapping in Randomly Deployed Ring-based Wireless Sensor Networks

