
Paper—Customized Software Testing Framework for Web Applications

Customized Software Testing Framework
for Web Applications

https://doi.org/10.3991/ijes.v10i01.29473

Elis Pelivani1(), Adrian Besimi1, Betim Cico2

1Faculty of Contemporary Sciences and Technologies, South East European
University, Tetovo, North Macedonia

2Faculty of Computer Science & IT, Metropolitan Tirana University, Tirana, Albania
elis.pelivani@hotmail.com

Abstract—Software testing is gaining more attention and investments in the
IT companies. We have both manual and automated approaches, considering the
dynamic of the project the appropriate one is chosen. There have been presented
and used several frameworks and tools for this purpose. However, the outcome
is that a single tool does not cover all the testing needs of IT systems. In this
paper, we will present a customized framework based in Selenium that tackle this
gap within the IT systems where several modules with many cross function are
involved. We will present the architecture overview and a case study.

Keywords—customized framework, test cases, architecture, components

1 Introduction

1.1 Applying the styles to an existing paper

Software testing is gaining more importance nowadays and the most of the IT com-
panies are investing a lot of time, effort and resources in this field. Moreover, the testing
reporting and percentage of success is mandatory in the final steps of many applications
acceptance. Especially for some industries where the accepted margin of the failure is
close to zero, there is the need to use a set of software testing tools and frameworks for
different modules or applications. As we have shown in our previous researches, none
of the existing software tools and frameworks offer all the features and testing needs
for all the companies. For this reason, most of them have a mixed of testing, manual
and automated [1, 2].

The goal is to have as much as it is possible the automation of the software test-
ing. Consequently, various testing tools and frameworks are reviewed to have the best
choice [3]. For many of them, the best solution would be to have a customized frame-
work that gets the most needed features from several frameworks and optimizes the
outcome of the testing. This comes with high costs of investment in time, money and
resources.

In this research, we will try to introduce a new customized framework that is based
on the most powerful and used software-testing framework, Selenium. We will show

76 http://www.i-jes.org

https://doi.org/10.3991/ijes.v10i01.29473
mailto:elis.pelivani@hotmail.com

Paper—Customized Software Testing Framework for Web Applications

in detail the architecture and the information flow of this customization [4]. At the end
of it, we will also show a real case study with all the results of its implementation. This
will show how this customized framework improves our testing capabilities for this
kind of applications that are composed by many modules. Writing a new document
with this template.

2 Customized framework

The aim of our customized automation framework is:

•	 creating and running tests and test suites with full control over test concurrency and
producing extremely thorough yet understandable test reports and

•	 providing technological extensions for testing systems of any type.

2.1 Main architecture components

In the below figure it is shown the architecture overview of the framework, Figure 1.

Fig. 1. Architecture overview

The following are the primary component types found in the framework:
A platform core that includes everything needed for creating, running and report-

ing tests. [5] One of the core classes of the framework contains main methods that are
needed to perform user actions on an WebElement(DOM element) such as click(), get-
Text(), selectCheckbox(), deselectCheckbox(), moveMouseOverElement(), rightClick-
OnElement(). Every general driver method is located in this class.

iJES ‒ Vol. 10, No. 01, 2022 77

Paper—Customized Software Testing Framework for Web Applications

The Core components of the architecture of the customised framework are:

•	 config: Parses the configuration files and provides the framework with their parameters.
•	 Scheduler: Parses test suites and concurrency data and organizes it into a tree struc-

ture. Executes the tests in the tree while adhering to the specified concurrency
requirements.

•	 Content: Provides the test classes with broad data/document-based validation
functionality.

•	 Service: Manages the life cycle of services and declares service provider interfaces
for platform extensions.

•	 logfortesting: Keeps track of test execution and logs it.
•	 Invoker: Provides an implementation for default test class mechanism and defines a

service provider interface for executing tests.
•	 Data: Defines what a service is.

Execution extensions that allow running tests from the command line, as well as the
JUnit unit testing framework.

Services which contain service provider interfaces for interacting with a system
under test and give mechanisms to execute tests from the command line and the JUnit
unit testing framework [6] (e.g. a web GUI, database, JMS).

2.2 The schedules class

The basic entry point for parsing a given Suite or Test class and constructing the
described tree structure is SuiteParser. The class org.test.scheduler.RunnerTree is used
to group all pending tests into a tree structure. The tree is made up of multiple types of
nodes (represented by child classes of the org.test.scheduler.node.RunnerNode parent
class):

•	 Parent nodes: Child nodes are tree nodes that combine other nodes. A test suite is
represented by a parent node, which combines test cases and/or test suites. The class
org.test.scheduler.node.RunnerGroup represents them.

•	 Leaf nodes are tree nodes that do not have any children. Each leaf node represents
an atomic test case. The class org.test.scheduler.node.RunnerLeaf represents them.

The root node of the tree is mapped to the base test suite class. With RunnerNode as
the component, RunnerNode as the leaf, and RunnerGroup as the composite, the tree
node classes form a Composite Pattern. Because a test class method might be called
multiple times, Java class elements are assigned to nodes in the following way:

Child node test class -> child node test method -> child node test invocation (or
parameter set) -> leaf node.

2.3 Other settings

Java’s Executor mechanism: RunnerTree schedules and executes Runnables that
invoke the test cases using Java’s ExecutorService mechanism. The essential concept is
that an abstract service definition (ExecutorService) is used to asynchronously execute

78 http://www.i-jes.org

Paper—Customized Software Testing Framework for Web Applications

tasks (Runnable or Callable) and that an object handle (Future) is used to query execu-
tion status, obtain execution results, wait for termination, or cancel execution.

Some of the main plugins used from this customised framework are:
Test rail Connector: Allows framework test to send testrail results via the testrail con-

nection module (using Rest API), Figure 2. The utility class that creates the TestPlanEntry
is called first, followed by the Listener that updates the results case by case, and finally a
utility class that cleans up the un-tested cases from the testPlanEntry [7].

Fig. 2. Jenkins results displayed in test rail

Test Cloud Manager: The Cloud Manager acts as a “Load Balancer” for the Sele-
nium hosts that are needed to run all the test cases. It is a comprehensive application
made up of various parts (and supports extensions).

DatabaseTest, Database service is one of the most significant topics in database
testing. This Database Service allows creating, updating, and querying databases.

Jenkins-plugin: Jenkins Plugin provides useful data for tasks that run frame-
work-based tests. Each task must perform a unique Post-Build phase provided by this
Plugin to obtain the framework data from the executed run in order to use the charts.
Following that, both the run and the job have an additional button on the left sidebar.
The statistics for the run concentrate on the current and maybe past runs, while the sta-
tistics for the job concentrate on the change in results over time. Jenkins Plugin offers
sophisticated statistics and graphics for test executions [8]. This plugin helps analys-
ing how test cases perform over multiple releases, allowing to rapidly spot potentially
unstable test cases (or instabilities in Application under test). It also helps identifying
trends by comparing results with previous builds, Figure 3.

Fig. 3. Test result trend

iJES ‒ Vol. 10, No. 01, 2022 79

Paper—Customized Software Testing Framework for Web Applications

Visual Data Editor (VDE): For test data, framework presently supports two formats:
Excel files in a customized format and XML files in framework’s own testdata xml
format. To edit the latter, the framework ecosystem provides the Visual Data Editor as
an Eclipse plugin. Because XML files are difficult to edit by hand, this plugin provides
an editor for.testdata.xml files in Eclipse, Figure 4.

Fig. 4. The screen of the VDE in eclipse

Logfortesting is a component that offers the technical basis for test execution func-
tional logging. It is used to create HTML or XML reports that are well structured and
easy to read [9, 10], Figure 5.

Fig. 5. A summary report of the test framework

There are several statuses for the executed test cases. Full list is below [11, 12],
Figure 6:

•	 Pending, a test is scheduled to run, but it has not yet begun.
•	 Running, a test is presently in progress.
•	 Passed, a test was run, and no issues were found.
•	 Ignored, a test was disregarded. This can be due to a variety of factors for different

sorts of test objects: This indicates to TestSuites and TestCases that a test data set
has been designated to be ignored by the user, that the test has been run, but that the
result code has not been propagated to the suite. It indicates that both a prior step was

80 http://www.i-jes.org

Paper—Customized Software Testing Framework for Web Applications

incorrect, and hence this TestStep was skipped. If a test step was incorrect but was
set up to be retried despite an initial failure.

•	 Failed, a test failed due to a functional error e.g. incorrect value.
•	 Failed Performance, this implies that the SUT is stuck or takes an inordinate amount

of time to reply to a user action.
•	 Failed Access, A test failed owing to a failed system access. The system is most

likely unavailable, or the access setting is incorrect.
•	 Failed Automation, A test failed owing to an error that a Test Developer might resolve.

Technical errors, such as a changing technical identifier, are the most common.
•	 Inconclusive, a test failed due to an error that has to be examined by a Test Automa-

tion Framework Developer.

Fig. 6. Types of failures of the test cases

3 Our experiments

A test case is used to get a better understanding of how the framework operates. The
test case consists of eleven different configurations translated in eleven different test

iJES ‒ Vol. 10, No. 01, 2022 81

Paper—Customized Software Testing Framework for Web Applications

data to go through test steps. Aim of this scenario is to assure that the user can book a
seat on a certain date and check that the booking is successfully saved and displayed in
My Bookings screen. Scenario steps are displayed in the following print screen (part of
the generated report after test case finishes running).

At first, starting and finishing time of test case execution is displayed. Then, steps
in test case implementation are organized to form testGroups. Each testGroup gives
complete information of the TAS and SUT at that step, Figure 7.

Fig. 7. Report of the test steps

Often, certain functionality must be invoked before (set-up) or after (teardown) test
execution. This can be achieved by putting relevant code into methods. For this rea-
son, each test case class that is added in the framework has to extend a base class:
BaseTestCaseClass.

This class contains all the methods that are needed to be executed before a test
starts running and after it finishes execution (e.g., installation and configuration issues
with test environment: database setup and initial load, services start/stop). Beside these
methods, other Jenkins jobs are configured to start automatically before test Suite
begins running [13] (e.g., database clear up).

Login method is same for all test cases, Figure 8. It can take different test data
(username and password value) based on the functionality it will test. Following print
screen is part of the generated report, login method is displayed with full information
how it operates. Firstly, it goes to the provided URL (application domain), then maxi-
mizes the chrome driver window. Afterwards, it interacts with the SUT (System under
Test), inserts values in username and password input fields. Technical Locator column
indicates how xpath, classname or CSS locator locates the WebElements. Assertions
are made for each operation conducted on the application to ensure that it performs
properly.

82 http://www.i-jes.org

Paper—Customized Software Testing Framework for Web Applications

Fig. 8. Login method

The test logs give detailed information about the execution steps, actions and
responses of a test case and/or test suite. However, the logs alone cannot provide a
good overview of the overall execution result. For this, it is necessary to have in place
reporting functionality. After each execution of the test suite or test case, a concise
report must be created and published [14].

Whenever a test case encounters a failure, the framework makes sure that all infor-
mation needed to analyse the problem is available/stored, as well as any information
regarding the continuation of testing, if applicable. Screenshots and other visual cap-
tures are saved during test execution for further use during failure analysis.

Below it is a part of the report that is generated automatically when a test case fin-
ishes execution. This report is customized for the framework because Selenium itself
does not have reporting tools, extra configuration is needed to be done to produce such
detailed reports and log files. For each step, there is full information regarding WebEle-
ments, user actions, test data, assertion of that step.

In case of second run, test case has failed, and its execution time is significantly
higher than the other runs. A maximum execution time has been specified in the frame-
work core, a corresponding timer is started that will terminate (and fail) the test case if
it has not finished in the configured time. Besides that, for each action performed on the
SUT there is a taskCompletionTimeout which checks whether an action in performed
which a predefined time in milliseconds, Figure 9.

Fig. 9. Test execution results

iJES ‒ Vol. 10, No. 01, 2022 83

Paper—Customized Software Testing Framework for Web Applications

4 Conclusion

There are many different types of automated testing frameworks, so choosing the
proper one for your needs is important. Using one that is well structured, can improve
the team’s productivity by boosting test correctness, maximizing test coverage, and
minimizing costs and maintenance—eventually providing a higher return on invest-
ment. We believe that our customized framework complies with the key concepts that
support easy development, evolution, and maintenance of a Test Automation Solution.

Each component of the framework has a single responsibility [15], it is in charge
of a one task, e.g.: setting up the driver, logging results, generating detailed execu-
tion reports, creating and reading data files, executing teardown methods. All these
functionalities are secluded in platform core, which leads to another good principle
being applied: tests (scenarios) are separated from automation framework (as already
mentioned in case study, test data and test cases are in different packages from frame-
work core). [16] In conclusion, although some of the principles must be followed, it is
important that the automation framework serves the business needs and is customized
according to the application. That is why this kind of customized framework is wanted;
otherwise, one test automation solution would work for all kinds of applications. Fur-
ther analysis and discussion will be done for the presented customized framework with
more real case studies.

5 References

 [1] E. Pelivani and B. Cico, “A Comparative Study of Automation Testing Tools for Web
Applications,” 2021 10th Mediterranean Conference on Embedded Computing (MECO),
2021, pp. 1–6, https://doi.org/10.1109/MECO52532.2021.9460242

 [2] E. Pelivani, A. Besimi, B. Cico, “An Empirical Study of User Interface Testing Tools”,
International Journal on Information Technologies & Security, № 1 (vol. 14), 2022.

 [3] Anwar, Nahid & Kar, Susmita. (2019). Review Paper on Various Software Testing Tech-
niques & Strategies. Global Journal of Computer Science and Technology. 43–49, https://
doi.org/10.34257/GJCSTCVOL19IS2PG43

 [4] Muhammad Abid Jamil; Muhammad Arif; Normi Sham Awang Abubakar; Akhlaq Ahmad,
“Software Testing Techniques: A Literature Review,” 2016 6th International Conference
on Information and Communication Technology for The Muslim World (ICT4M), 2016,
pp. 177–182, https://doi.org/10.1109/ICT4M.2016.045

 [5] Raju Ranjan, “A Review Paper on Software Testing”, International Journal of Emerging
Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, vol.6, issue 1,
pp. 25–32, January 2019, Available: http://www.jetir.org/papers/JETIREQ06004.pdf

 [6] Okezie, Adaugo & Odun-Ayo, Isaac & Bogle, S. (2019). A Critical Analysis of Soft-
ware Testing Tools. Journal of Physics: Conference Series. 1378. 042030, https://doi.
org/10.1088/1742-6596/1378/4/042030

 [7] Mojtaba. Shahin, Muhammad Ali Babar, Liming Zhu, “Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices,” in
IEEE Access, vol. 5, 2017, pp. 3909–3943, https://doi.org/10.1109/ACCESS.2017.2685629

 [8] Ateşoğulları, Dilara & Mishra, Alok. White Box Test Tools: A Comparative View. Interna-
tional Journal of Information and Computer Security. Vol. 11, 2019, pp 79–90.

84 http://www.i-jes.org

https://doi.org/10.1109/MECO52532.2021.9460242
https://doi.org/10.34257/GJCSTCVOL19IS2PG43
https://doi.org/10.34257/GJCSTCVOL19IS2PG43
https://doi.org/10.1109/ICT4M.2016.045
http://www.jetir.org/papers/JETIREQ06004.pdf
https://doi.org/10.1088/1742-6596/1378/4/042030
https://doi.org/10.1088/1742-6596/1378/4/042030
https://doi.org/10.1109/ACCESS.2017.2685629

Paper—Customized Software Testing Framework for Web Applications

 [9] Satish Gojare, Rahul Joshi, Dhanashree Gaigaware, Analysis and Design of Selenium
WebDriver Automation Testing Framework, Procedia Computer Science, vol. 50, 2015,
pp. 341–346, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2015.04.038

 [10] Khushboo Sawant; Reetu Tiwari; Swapnil Vyas; Pawan Sharma; Aryan Anand; Shivani
Soni, “Implementation of Selenium Automation & Report Generation Using Selenium
Web Driver & ATF,” 2021 International Conference on Advances in Electrical, Comput-
ing, Communication and Sustainable Technologies (ICAECT), 2021, pp. 1–6, https://doi.
org/10.1109/ICAECT49130.2021.9392455

 [11] Nidhika Uppal Vinay Chopra, “Design and Implementation in Selenium IDE with Web-
Driver”, International Journal of Computer Applications (0975 – 8887), puter Applications,
vol. 46, no. 12, pp. 8–11, ISSN:0975 – 8887, May 2012.

 [12] Devi, Jyoti & Bhatia, Kirti & Sharma, Rohini. (2017). A Study on Functioning of Selenium
Automation Testing Structure. International Journal of Advanced Research in Computer
Science and Software Engineering. vol. 7, pp. 855–862, https://doi.org/10.23956/ijarcsse/
V7I5/0204

 [13] Ali Raza, Sergey Oplavin, Agiletestware Pangolin Connector for TestRail, https://plugins.
jenkins.io/, last update 2020.

 [14] Ravinder Singh, Virender Singh, Selenium WebDriver Achitecture, https://www.toolsqa.
com/selenium-webdriver/selenium-webdriver-architecture/, November 22, 2021.

 [15] Selenium community, Selenium overview https://www.selenium.dev/, last modified
December 7, 2021.

 [16] Andrew Pollner (Chair), Bryan Bakker, Armin Born, Mark Fewster, Jani Haukinen, Raluca
Popescu, Ina Schieferdecker. Advanced Level Syllabus Test Automation Engineer, 2016.

6 Authors

Elis Pelivani, PhD student as South East European University, Lecture of Mediter-
ranean University of Albania, areas of research-Software testing, Artificial intelligence,
Software defined Networking. Author can be contacted at ep24253@seeu.edu.mk

Adrian Besimi, Vice-rector for Academic Planning and Digitalization SEEU; Asso-
ciate Professor, South East European University at Faculty of Contemporary Sciences
and Technologies, research interest in fields of B2B, Data Mining, Web Services.
Author can be contacted at a.besimi@seeu.edu.mk

Betim Cico, full professor in Metropolitan, Tirana University, Albania; research
interest in fields of Cloud computing, Digital System Design, Digital Image Processing,
Advance Computer Architecture, Internet of Things, FPGA and software Engineering.
He is author of many research papers, projects and supervisor of several PhD students
Author can be contacted at betim.cico@gmail.com

Article submitted 2022-01-12. Resubmitted 2022-02-15. Final acceptance 2022-02-19. Final version
published as submitted by the authors.

iJES ‒ Vol. 10, No. 01, 2022 85

https://doi.org/10.1016/j.procs.2015.04.038
https://doi.org/10.1109/ICAECT49130.2021.9392455
https://doi.org/10.1109/ICAECT49130.2021.9392455
https://doi.org/10.23956/ijarcsse/V7I5/0204
https://doi.org/10.23956/ijarcsse/V7I5/0204
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://www.toolsqa.com/selenium-webdriver/selenium-webdriver-architecture/
https://www.toolsqa.com/selenium-webdriver/selenium-webdriver-architecture/
https://www.selenium.dev/
mailto:ep24253@seeu.edu.mk
mailto:a.besimi@seeu.edu.mk
mailto:betim.cico@gmail.com

