
PAPER 
PARALLEL AES ENCRYPTION ENGINE FOR MANY CORE PROCESSOR ARRAYS USING MASKED S-BOX 

Parallel AES Encryption Engine for Many Core 
Processor Arrays Using Masked S-Box 

http://dx.doi.org/10.3991/ijes.v2i4.4194 

Dhanya Pushkaran, Neethu Bhaskar 
Sree Narayana Gurukulam College of Engineering, Kadayirippu, Kolenchery 

 
 
 

Abstract—With the ever increasing growth of data commu-
nication, hardware encryption technology will become an 
irreplaceable safety technology. In this paper, I present a 
method of AES encryption and decryption algorithm with 
128 bit key on an FPGA. In order to protect “data-at-rest” 
in memory from differential power analysis attacks with 
high-throughput advanced encryption standard (AES) 
engine with masked S-Box is proposed. By exploring differ-
ent granularities of data-level and task-level parallelism, we 
map 2 implementations of an Advanced Encryption Stand-
ard (AES) cipher with online key expansion on a fine-
grained many-core system. 

Index Terms—Advanced encryption standard (AES), differ-
ential power analysis (DPA), field programmable gate array 
(FPGA), masking, !"#$%&'("#$)*+,(#-%./'$*+0('(11$1+0'/.$22/'+

I. INTRODUCTION  
With the development of information technology, pro-

tection of information through encryption is very im-
portant in day to day life. In 2001, national institute of 
standard and technology replaces the data encryption 
standard and select the Rijndael algorithm as the advanced 
encryption standard(AES)[1]. AES has been used in many 
applications, such as secure communication system, digi-
tal video/audio recorder, RFID tags and smart cards etc.  
One of the main advantage of Rijndael algorithm is that it 
can be used for both hardware and software implementa-
tion. 

To satisfy many application numerous hardware im-
plementation of AES has been reported to achieve high 
throughput even though time consuming and costly. One 
of the main block of AES is the SubByte transformation 
[1] which uses S-box look-up table that is stored in 
memory.  This data stored in storage are under the risk of 
information leakage in embedded applications. The differ-
ential power analysis (DPA) attack [2] was further devel-
oped as one of the most promising power analysis attacks  
which is related to the power consumption. So the protec-
tion of data from DPA is very important. For that instead 
of using S-Box lookup table masked S-Box is being im-
plemented. We perform the masked S-Box mainly over 
!"!"!#$ Therefore, we only need to transform the input 
values from !"!""#% to !"!"!#% and transform the output 
values back from !"!"!#% to !"!""#% which reduces the 
hardware resources. 

This paper present the online expansion of two type 
AES implementation on a fine grained many core system 
to achieve high performance and throughput per unit of 
chip. 

II. AES ALGORITHM 
AES is a key iterated block cipher that contains several 

round of transformation on the state. It is a symmetric 
encryption algorithm uses 128 bit key to generate output 
cipher text. It takes 128 bits of data block and each 128-bit 
data block is considered as a 4-by-4 array of bytes, called 
the state. The number of iteration in the AES, Nr, is de-
fined by the length of the round key, which are 10 for key 
lengths of 128 bits. 

 
Figure 1.  Block Diagram of AES Algorithm 

The figure 1 shows the basic steps of AES algorithm 
with online key expansion. The steps include: 

1. SubBytes: Nonlinear bite transformation which 
replace each  input byte with the byte value from 
the substitution box. Substitution box is explained 
in section  

2. ShiftRow:  Each row of the state is left shifted ac-
cording to the row number. First row no shifting 
is done, for 2nd row 1byte shifting is done and so 
on. 

3. MixColumn: Each column of the array is consid-
ered as a polynomial over GF(2!) and modular 
multiplication is done with irreducible polynomial 
x"+1.  The resulting polynomial is then multiplied 
with a fixed polynomial given in equation (1). 
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A(x) = {03}x!+ {01}x"+{01}x+{02}########$%& 

 
4. AddRoundKey: Simple bitwise XOR operation of 

the state with the key expanded value is done. The 
key expansion is done by the following steps: 
1. KeySubWord: Each byte of the key value is 

replaced with the values from the substitution 
box. 

2. KeyRotWord:  Each row is done a 1 byte 
shifting to the left. 

3. KeyXor: Each row w[i] is XORed with the 
previous row w[i-1] to form a new row w'[i].  

III. MASKED S-BOX 
In SubByte transformation, each byte is replaced with a 

value from S-Box. Since there are only 256 representation 
of 1 byte, a lookup table of S-Box can be implemented. So 
the power and time consumption is reduced. But this re-
sult in differential power analysis (DPA) attach[3][4].  

So here S-Box using galois field can be implemented to 
avoid DPA attach. It can be implemented by taking the 
multiplicative inverse and apply the affine transformation. 
But calculating the multiplicative inverse in GF(2!) is 
very expensive. So masked S-Box is implemented that 
calculates multiplicative inverse of GF(2!) using GF(2"). 
The input byte is mapped to two elements of GF(2") and 
then find out the multiplicative inverse using GF(2"). 
After that the two elemnts inverse mapping to GF(2!) is 
done. Figure 2 shows the steps to find out the masked s-
box. 

A.  Multiplicative inverse 
For hardware implementation far better suited represen-

tation is to see field GF(2ˆ8) as a quadratic extension of 
the field GF(2ˆ4). In this case, an element a # GF(2ˆ8) is 
represented as the linear polynomial with coefficient in 
GF(2ˆ4) 

Map(a)= a$ x + al, a # GF (2ˆ8);  ah, al #  GF(2")  
For hardware implementation, the equation for map (a) 

is shown in equation 2. 
 
ah x + al = map (a),         ah, al # GF(2"),   a # GF(2!)     
(2) 
 
aA = a1!  a7,                          aB= a5 ! a7, 
aC= a4 ! a6                            al0= ac ! a0 ! a5, 
al1= a1 ! a2,                          al2= aA, 
al3= a2 ! a4                           ah0= ac ! a5, 
ah1= aA ! aC,                       ah2= aB ! a2 ! a3, 
ah3= aB 
 
 

After finding out the multiplicative inverse in GF(2"), 
two term polynomial ah x + al converted back to element 
in GF(2!). The equation for map!" is shown in equation 3. 
 
map!" (ah x + al) = a,         ah, al # GF(2"),   a # GF(2!)  
(3) 

 
Figure 2.  Block diagram of masked S-Box 

 
aA= al1  ah3,                                 aB= ah0  ah1 
a0= al0 ! ah0,                                a1= aB ! ah3, 
 a2= aA ! aB,                                a3= aB ! al1 ! ah2,  
a4= aA ! aB ! al3,                       a5= aB ! al2, 
 a6= aA ! al2 ! al3 ! ah0,           a7= aB ! al2 ! ah3 
 
      Multiplication in GF(2") corresponds to multiplica-
tion of polynomial modulo an irreducible polynomial of 
degree 4. The irreducible polynomial is given by,  
M(x)= x" + x+1. For hardware implementation, byte 
multiplication is given in equation 4. 
 
q(x) = a(x). b(x). mod m(x),   a(x),b(x),q(x) # GF(2")    

(4) 

aA= a0 ! a3,   aB= a2 ! a3 

q0= a0b0 ! a3b1 ! a2b2 ! a1b3    

 q1= a1b0 ! aAb1! aBb2 ! (a1 a2)b3 

q2= a2b0 ! a1b1 ! aAb2 ! aBb3    

 q3= a3b0 ! a2b1 ! a1b2! aAb3 

 
The multiplicative inverse can be find out using extended 
Euclidean algorithm. It can be derived by solving the 
equation a(x).a()$*&+,-# +.$*&/# %0# 1,2345,6# 57# 78,96#
56#:;3<45,6#=0#
#
q(x) = a(x)#>% mod m?(x),  q(x), a(x) # GF(2")             (5) 
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 aA= a1 ! a2 ! a3 ! a1a2a3 
q0= aA! a0! a0a2! a1a2 ! a0a1a2 
q1= a0a1 ! a0a2 ! a1a2 ! a3 ! a1a3 ! a0a1a3 
q2= a0a1 ! a2 ! a0a2 ! a3 ! a0a3 ! a0a2a3 
q3= aA ! a0a3 ! a1a3 ! a2a3 
 

B.  Affine Transformation 
 Affine transformation I given by, A'= M(a).X ! [v] 
Where [v] =x@+xA+xB+x and m(a)= x@+x"+xC+x+1. 
The equation for hardware implementation is given in 

equation 6. 
 

q = aff_tran(a)                          q= aff_trans>) (a)   (6) 
 

aA= a0 ! a1,                              aA= a0 ! a5,  
aB= a2 ! a3                               aB= a1 ! a4 
aC= a4 ! a5,                              aC= a2 ! a7,    
aD= a6 !  a7                              aD= a3 !  a6 
q0= D0 ! aC ! aD           q0= D5 ! aC 
q1= a5 ! aA!  aD                     q1= a0 ! aD 
q2= a2 ! aA ! aD                     q2= D7 ! aB 
q3= a7!  aA ! aB           q3= a2 ! aA 
q4= a1! aB ! aC           q4= a1! aD 
q5= D1 ! aB ! aC                      q5= a4 ! aC 
q6= D6 ! aB ! aC                      q6= a3 ! aA 
q7= a3 !  aC !  aD                    q7 = a6 ! aB 

 

IV. FINE GRAINED MANY CORE ARCHITECTURE 
The performance of architecture is roughly proportional 

to the square root of its complexity. So as the complexity 
is decreased the performance will increase but it may 
increase the logical area. So a many core architecture can 
perform better with complexity. That is instead of using 
single complicated core many core is used, which increas-
es the performance. 

V. AES IMPLEMENTATION 
In this paper I present two different AES implementa-

tion with online key expansion and the throughput of the 
design is measured.  

A. One task one processor (OTOP) 
Each step in the AES algorithm is considered as a task 

as shown in the dataflow diagram in figure 3. Each task is 
mapped on to one processor in many core processors. So 
we call this implementation One Task One processor. For 
single iteration about 10 cores are required and after com-
pleting first iteration the same cores are used for the fol-
lowing iteration. 

B. Loop unrolled nine times 
To enhance the throughput, new design is implemented 

as shown in figure 4. Here each loop is done by another 
set of core. So loop unrolled nine times break the data 
dependency and work on multiple data block. About 60 
cores are required to implement this design. 

 

 
Figure 3.  OTOP dataflow diagram 

 
Figure 4.  loop unrolled nine times data flow diagram 

VI. RESULT 
I have implemented the proposed design with hardware 
description language which is synthesized using Xilinx 
ISE 14.1and ported the design to Spartan-6 LX45 FPGA. 
The table 1 shows the throughput obtained from the two 
designs.  From this table it is clear that the loop unrolled 
nine times design is very much faster than one task one 
processor design. 

TABLE I.   

Implementation Throughput 

One Task One Processor 1.98 Gbps 

Loop Unrolled Nine Times 85.15Gbps 

VII. CONCLUSION 
Secure “data-at-rest” and enhance the throughput are 

the important factor for large data transformation system. 
so, modern systems shift the data encryption from a soft-
ware platform to a hardware platform. But the hardware 
based encryption still facing the possibility of DPA at-
tacks. In this case, an AES with masked S-box has been 
proposed to resist the DPA attach with acceptable area on 
FPGA. The proposed masked -Box needs to map the input 
values from GF(2!) to GF(2") at the beginning of the 
operation and map the result back from GF(2") to GF(2!) 
once at the end of the operation Which reduce about 20% 
area resources. 
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