
SHORT PAPER
BIG DATA MINING: TOOLS & ALGORITHMS

Big Data Mining: Tools & Algorithms
http://dx.doi.org/10.3991/ijes.v4i1.5350

A.S. Hashmi and T. Ahmad
Jamia Millia Islamia, Delhi, India

Abstract—We are now in Big Data era, and there is a grow-
ing demand for tools which can process and analyze it. Big
data analytics deals with extracting valuable information
from that complex data which can’t be handled by tradi-
tional data mining tools. This paper surveys the available
tools which can handle large volumes of data as well as
evolving data streams. The data mining tools and algorithms
which can handle big data have also been summarized, and
one of the tools has been used for mining of large datasets
using distributed algorithms.

Index Terms—Big Data, Data Mining, Hadoop, Large-scale
Machine Learning.

I. INTRODUCTION
The term “big data” refers to any collection of data

which is so large and complex that it becomes difficult to
handle using traditional database management systems
and data processing tools. The first research paper on ‘big
data’ appeared in 2000 by Diebold [1]. The sources of big
data are social networking sites, e-commerce portals,
sensors (smart devices/IoT), etc.

Big Data is characterized by 3 V’s [2]: Volume, Varie-
ty, and Velocity. There is no fixed size to classify a da-
taset as big data or not, instead ‘volume’ dimension refers
to a dataset which is large enough to be beyond the pro-
cessing capabilities of traditional data processing tools,
and the dataset can grow up to any size which can be in
peta-bytes (1015 bytes), exa-bytes (1018 bytes) or even
more. The ‘variety’ dimension is included because the
traditional data warehouses store only structured data, but
data generated on Twitter, etc. is highly unstructured, so
such data is also beyond the processing capabilities of
traditional data processing tools. While traditional data
analytics is based on periodic analysis of data, big data is
processed and analyzed in real-time or near real-time.
Therefore, the third dimension of ‘velocity’ has also been
included.

Apart from these 3 V’s, two more V’s have been added
viz. Veracity and Value. ‘Veracity’ refers to the lack of
quality and accuracy, as we can understand by the exam-
ple of data generated on Twitter consisting of abbrevia-
tions, typos and colloquial speech. The dimension of ‘val-
ue’ was added due to the fact that big data after being
processed must provide valuable information to the organ-
ization which can use it for making important business
decisions, policies and strategies.

The remainder of this paper is structured as follows: In
Section II, we discuss various tools available to process
big data. Section III summarizes the machine learning
models and data mining algorithms. Then in Section IV,
we discuss the tools and algorithms available for data
mining, with focus on tools supporting distributed pro-
cessing and stream processing. The experimental setup

and the results are discussed in Section V, and then we
conclude the paper in Section VI.

II. BIG DATA TOOLS
Traditional data processing tools (e.g. Excel, SPSS,

etc.) are not able to scale up with the size of growing da-
tasets. For example, with Microsoft Excel 2007, analysts
can’t perform analysis on more than 1 million rows. So a
tool which can scale-up should be used to deal with the
growing datasets. Social networking platforms like Face-
book, Twitter, etc. generate huge volumes of valuable
social data per day at very high-speeds. This data need to
be processed in real-time which can be used to predict
outcome of elections, stock market behavior, etc. To do
this we require tools which can perform analysis on
streaming data. The major tools for handling different
characteristics of big data are summarized in Table I.

MPP (Massively Parallel Processing) relational data-
bases like Greenplum, Vertica, etc. have the capability to
store and manage petabytes of data, where the data is
partitioned across multiple nodes with each node having
processors/memory to process data locally (it is a shared-
nothing architecture i.e. no disk-level sharing). But MPP
databases have an upper limit on storage capacity as well
as it has same data processing limitations as associated
with SQL.

Semi-structured data is structured data stored in a form
other than tables (e.g. XML, JSON, etc.), and a database
management system which provides a mechanism for
storage and retrieval of such data is called a NoSQL data
store (NoSQL stands for Not Only SQL indicating that
they may also support SQL-like query languages). Exam-
ples of NoSQL data stores are Cassandra, HBase, Mon-
goDB, etc. The NoSQL data stores do not have a fixed
rigid schema like RDBMS for data to fit into, hence they
can handle disparate data coming from different sources.
BigTable [3] is a distributed storage system designed for
managing large volumes of semi-structured data, or
BigTable can be said to be a distributed NoSQL data
store.

TABLE I.
BIG DATA TOOLS

Characteristic Tool Remark

Volume MPP databases, Ha-
doop

distributed pro-
cessing

Variety NoSQL databases,
Hadoop

schema-less
data store

Velocity In-memory databases,
Spark

query data inside
RAM

instead of disk

Stream processing Storm, S4
Real-time pro-
cessing instead of
batch processing

36 http://www.i-jes.org

SHORT PAPER
BIG DATA MINING: TOOLS & ALGORITHMS

Google File System (GFS) [4] is a distributed file sys-
tem designed to provide access to data using large clusters
of commodity hardware. Map-Reduce [5] is a program-
ming model for distributed and parallel processing. Map-
Reduce model consists of two functions: “map” function
splits the input data and distributes it across multiple ma-
chines to process the data in parallel, and “reduce” func-
tion that collects the results from the machines and re-
solves these results into a final aggregated result. Map-
Reduce programming can be done in Java, Python, Ruby,
etc. Apache Hadoop is an open-source tool for distributed
storage and distributed processing. Hadoop uses HDFS
(Hadoop Distributed File System) which is based on GFS
for distributed storage of semi-structured data, and it uses
Map-Reduce for distributed processing. Amazon Elastic
MapReduce (EMR) is web-service which uses Hadoop
to process large volumes of data on Amazon EC2 (Elastic
Compute Cloud) cloud.

There are various Hadoop-based tools which make Big
Data processing more convenient and efficient. Apache
Sqoop is a tool for transferring data b/w Hadoop and
RDBMS. Apache Flume is a tool for collecting, aggregat-
ing, and moving data from multiple sources into Hadoop.
Apache HBase is an open-source distributed NoSQL data
store modeled on BigTable, and it runs on top of HDFS.
HDFS is concerned with storage of large files, whereas
HBase allows storage of data as tables (but the data stored
does not need a pre-defined fixed schema like with an
RDBMS). HBase helps Hadoop to overcome challenges in
random read and write. HBase doesn’t provide a SQL-like
query language and to process data in HBase tables we
have to use Map-Reduce programs. Apache Hive is a data
warehousing framework built on top of Hadoop, which
allows users to store data in tables and write queries in
HiveQL (Hive Query Language) to retrieve data instead of
complex Map-Reduce program. Hive converts the
HiveQL queries into a series of Map-Reduce jobs. But
HiveQL has limited capability and can’t be used to per-
form complex operations. Cloudera, MapR, Horton-
works, IBM Infosphere BigInsights are some Hadoop-
based distributions providing HDFS, Map-Reduce, Pig,
Hive, HBase, Sqoop, Flume, Hue, Impala, Oozie,
ZooKeeper, Sentry, etc in one single package.

The tools discussed so far deal with ‘volume’ only and
we need to look for tools which can also handle data
streams. In-memory databases like SAP HANA, Altibase,
etc. are gaining popularity for applications where response
time is critical, but almost all of them are RDBMS.
Apache Storm and Apache S4 (Simple Scalable
Streaming Systems) are distributed real-time computa-
tion framework for processing fast, large streams of data.
Apache Spark is a cluster computing framework, which
provides performance up to 100 times faster than Map-
Reduce through data caching. Apache Spark can also
handle data streams through Spark Streaming library.
Apache Hadoop YARN is a sub-project of Hadoop
which enables Hadoop to go beyond batch processing and
support broader data processing. YARN (Yet Another
Resource Negotiator) is a part of Hadoop NextGen, and
enables Hadoop to provide resource management capabili-
ties to new engines like Apache Spark, etc. Apache Sam-
za is a YARN-based stream processing framework. Ama-
zon Kinesis is a cloud-based service for processing of
distributed data streams.

The tools discussed in this section deal with only pro-
cessing of voluminous or streaming data, and we can build
applications using these tools for processing of such data.
The tools which deal with mining of Big Data will be
discussed in Section IV.

III. DATA MINING
Data Mining is the computational process of finding

patterns in given data and making predictions for the new
data. The main techniques for finding patterns are associa-
tion-rule/frequent-pattern mining, clustering, classification
and regression analysis. The data mining process consists
of 3 stages: Getting and Cleaning data (or ETL – Extract,
Transform, and Load), Model building (choosing an ap-
propriate learning model/algorithm to get the desired re-
sult), and Deployment (application of model to data).

The data mining models can be divided into 2 catego-
ries: unsupervised and supervised models. Unsupervised
models are concerned with finding patterns/clusters in the
given data, whereas supervised models deal with training
the system with historical data and making predictions or
classifying new data. Various statistical models like re-
gression analysis, bayes model, maximum-likelihood
estimation, etc. and machine learning models like Neural
Network, Decision tree, etc. are used for data mining.

The models for supervised learning are: Regression,
Nearest Neighbors, Naïve Bayes, Decision trees, Percep-
tron, Support Vector Machines, Ensemble models. The
popular algorithms for clustering are: k-means, fuzzy c-
means (centroid models), BIRCH (hierarchical models),
DBScan, OPTICS (density models). Other techniques for
clustering are Expectation-Maximization (distribution
models), Self Organizing Maps (Neural Network). The
algorithms for frequent pattern mining are: Apriori algo-
rithm, FP-Growth algorithm, Eclat, etc.

Dimensionality reduction may be required before ap-
plying a learning model as high-dimensional data (data
that requires more than 2 or 3 dimensions) can be difficult
to analyze. Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Factor Analysis, and
Non-Negative Matrix Factorization are few techniques for
dimensionality reduction.

Ensemble learning is the combination of multiple algo-
rithms to get improved results for supervised learning. The
popular ensemble methods are Bagging, Boosting, and
Random Forests.

Outlier detection is a data mining technique to find
anomalies in data. There are various clustering based
algorithms for outlier detection.

Machine Learned Ranking is the use of machine learn-
ing for construction of ranking models in information
retrieval systems (e.g. PageRank algorithm used by
Google search engine). Topic models are used to discover
“topics” in a collection of documents. A popular algorithm
for topic mining is Latent Dirichlet Allocation.

The data mining algorithm studied so far are not able to
handle data streams. So, in order to obtain useful infor-
mation from data streams, we need to find new algorithms
or modify existing algorithms. There are various models
which have been proposed for learning a data stream: we
can use the entire data stream, or we can take a sample of
data stream, or we can also use the sliding-window model
of computation. The sliding-window model considers only
the last n elements of the stream, based on the assumption

iJES ‒ Volume 4, Issue 1, 2016 37

SHORT PAPER
BIG DATA MINING: TOOLS & ALGORITHMS

that it is more important to use recent data for learning
from data streams.

Widmer and Kubat [6] noticed that in the data stream,
the classification or clustering centers continuously
change with time. This is known as the problem of con-
cept-drift in data streams. The model which is most ap-
propriate to handle concept-drift is the sliding-window
model. Gama et. al. [7] discusses the strategies for han-
dling concept drift.

Many algorithms have been proposed in literature
which deal with mining of data streams. These include
algorithms for data stream clustering, data stream classifi-
cation, etc. Data stream algorithms have gained more
focus recently with the advent of big data, as the data
generated is to be processed in real-time to obtain the
desired value from it.

The most popular algorithms for clustering of a data
stream are BIRCH [8], Scalable k-means [9], Single-pass
k-means [10], Stream [11], Stream LSearch [12], CluS-
tream [13], ODAC [14], DenStream [15], D-Stream [16],
SWClustering [17], ClusTree [18], DGClust [19],
StreamKM++ [20], SOMKE [21].

The algorithms for classification of data stream can be
divided into two categories – incremental learning and
ensemble learning algorithms. Ensemble learning com-
bines multiple learning algorithms for prediction and may
discard some training data as out-dated whereas incremen-
tal learning adjusts old results to what has been learned
from the new data. The popular algorithms for incremental
learning are Incremental Bayesian algorithm [22], Incre-
mental SVM [23], VFDT (Hoeffding Tree) [24], CVFDT
[25]. Some ensemble learning algorithms are Streaming
Ensemble Algorithm (SEA) [26], Accuracy-Weighted
Ensemble (AWE) [27], Dynamic Weighted Majority
(DWM) [28].

The most notable work on regression on data streams is
Hoeffding-based Regression trees [29]. The famous algo-
rithms for pattern mining from a data stream are estDec
[30], FP Stream [31], Moment [32], IncMine [33], CloS-
tream [34]. The algorithms proposed for outlier detection
in data streams are Abstract-C [35], STORM [36], COD
and MCOD [37]. BRISMFPredictor [38] has been pro-
posed for online Recommendation Systems.

The streaming data may come from multiple sources,
hence the stream mining algorithms must be able to syn-
chronize and aggregate these data streams for efficient
data mining. The most notable work on multi-source data
stream mining are: the SPIRIT [39] algorithm which dis-
covers patterns from multiple data streams, Siddiqui pro-
posed techniques for clustering and classification of mul-
tiple data streams in [40, 41], whereas Ikonomovska
worked on multi-stream regression in [42].

IV. BIG DATA MINING TOOLS
For voluminous data, we need tools which can scale-up

to data size. The traditional data mining tools like Weka,
R, RapidMiner, etc. are not scalable as they do not support
distributed processing. However, Wegener et al. [43]
integrated Weka with Hadoop, and Das et al. [44]
achieved integration of R and Hadoop.

As far as distributed learning algorithms are concerned,
Chu et al. [45] adapted Google's Map-Reduce paradigm
on a variety of learning algorithms including k-means,
Expectation-Maximization, Locally Weighted Linear

Regression, Logistic Regression, Naive Bayes, Support
Vector Machine, Back-propagation Neural Network, Prin-
cipal Component Analysis, Independent Component
Analysis, and Gaussian Discriminative Analysis.

A classification of data mining tools based on type of
data (batch/stream) and type of processing (distributed and
non-distributed) is given in Fig. 1 below.

For large scale machine learning, we require tools and
algorithms which can scale up to the large volumes of
data. One such tool is Apache Mahout, which is a ma-
chine learning library built on top of Hadoop. It has Map-
Reduce implementations of major machine learning mod-
els, which can help us to mine large volumes of data
through distributed processing on a Hadoop cluster. An-
other tool is Apache Spark’s MLlib which is also a ma-
chine learning library, has a broader range of machine
learning models compared to Mahout, and can also run on
a Hadoop cluster. Another important tool is H2O which
is a “scalable” machine-learning API and supports R as
well as Hadoop.

For mining of data streams, we require tools which
support stream processing. VFML (Very Fast Machine
Learning) toolkit supports k-means, EM algorithm for
stream clustering, and Bayesian Network, Hoeffding Tree
for stream classification. SPMF supports estDec, CloS-
tream for pattern mining from data stream. Massive
Online Analysis (MOA) is the most popular open-source
tool which supports mining of data streams. MOA doesn’t
support distributed processing, and there may be situations
where we may need distributed processing of data
streams.

Jubatus is a distributed online machine learning
framework supporting many data stream mining algo-
rithms. Jubatus is one such tool which supports data min-
ing of data streams through distributed processing. Scala-
ble Advanced Massive Online Analysis (SAMOA) is a
framework for development of distributed streaming ma-
chine learning algorithms while keeping programming
abstraction for the underlying streaming processing en-
gines like Apache Storm, S4, and Samza.

Vowpal Wabbit is an out-of-core machine learning
system which speeds up machine learning with techniques
such as hashing, reductions, etc. VW supports algorithms
for multi-class classification like One-Against-All (OAA),
Cost-sensitive OAA (CSOAA), Error Correcting Tourna-
ment (ect), Weighted All Pairs (wap). VW also supports
algorithms for Regression (Ordinary Least Squares), Rec-
ommendation Systems (Matrix Factorization, Contextual
Bandit), Regularization (Truncated Gradient Descent).

Figure 1. Data Mining Tools

38 http://www.i-jes.org

SHORT PAPER
BIG DATA MINING: TOOLS & ALGORITHMS

V. EXPERIMENTS & RESULTS
In order to provide more insight into big data mining,

the authors conducted experiments on large data sets
(larger than the available RAM on the system). The da-
tasets chosen were airline dataset (11.8 GB) for clustering
and HIGGS dataset for classification (7.48 GB). The air-
line dataset [67] consists of 29 features with 123534969
observations. The HIGGS dataset [68] consists of 28 fea-
tures with 11000000 observations.

The RAM available on the systems was only 2 GB and
therefore full datasets could not be loaded in RAM for
data mining. To handle the large datasets, we created a
private cloud such that the combined RAM of all these
systems in the cloud is more than the size of the dataset.
The tool used for creation of the cloud as well as mining is
H2O. It was observed that the data loaded into the H2O
cloud is further compressed as the airline dataset loaded
into the H2O cluster was of 3.78 GB and the HIGGS da-
taset loaded was of 2.3 GB.

The algorithms chosen were distributed k-means for
clustering, and distributed random forest, distributed deep
learning for classification. The time taken to cluster the
dataset or to generate the classification model for each
algorithm is given in Table II. The authors also varied the
size of the cloud to study the effect of change of size of
the cloud on the turn-around time of the results (the size of
dataset was beyond the processing capabilities of a single-
node, so multi-node was cloud was setup).

TABLE II.
EXPERIMENTAL RESULTS: TIME TAKEN FOR MODEL GENERATION

Dataset Algorithm

Cloud-size
(4 core per system)

1 3 6
airline.csv Distributed k-means - 1.35

hours
6.24
min

HIGGS.csv Distributed Random
Forest (20 trees) - 32

min
3.68
min

HIGGS.csv Deep Learning
(200X200, 10 epochs) - 2.66

hrs
47.2
min

VI. CONCLUSION
In the experiments performed, the authors were able to

cluster and classify a large dataset on a private cloud,
which can be scaled up to handle the growing dataset. The
time taken to cluster the dataset and to generate the mod-
els was also quite satisfactory. The authors also observed
that the turnaround-time of the results improved by in-
creasing the size of the cloud.

The turn-around time to generate the classification
model and the accuracy of the algorithm depends upon the
parameters of the algorithm. The authors here have not
attempted to compare these algorithms in any way, as the
focus of this paper is only to survey the tools and algo-
rithms.

REFERENCES
[1] F. Diebold, “Big Data: Dynamic Factor Models for Macroeco-

nomic Measurement and Forecasting,” Discussion read to the
Eighth World Congress of the Econometric Society, 2000.

[2] D. Laney, “3-D Data Management: Controlling Data Volume,
Velocity and Variety,” META Group Research Note, February 6,
2001.

[3] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data Research,”
Google, 2006.

[4] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file sys-
tem,” Proceedings of the nineteenth ACM symposium on Operat-
ing systems principles, Vol. 37, Issue 5, pp. 29-43, 2003.
http://dx.doi.org/10.1145/945445.945450

[5] J. Dean, and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” Proceedings of the 6th OSDI, pp. 137-
150, 2004.

[6] G. Widmer, and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Journal of Machine Learning, Vol. 23,
Issue 1, pp. 69-101, 1996. http://dx.doi.org/10.1007/BF00116900

[7] J. Gama, A. Bifet, I. Zliobaite, M. Pechenizkiy, and A.
Bouchachia, “A Survey on Concept Drift Adaptation,” ACM
Computing Surveys, Vol. 1, No. 1, 2013.

[8] T. Zhang, R. Ramakrishnan, and M. Livn, “BIRCH: A new data
clustering algorithm and its applications,” Data Mining and
Knowledge Discovery, Vol. 1, Issue 2, pp. 141-182, 1997.
http://dx.doi.org/10.1023/A:1009783824328

[9] P. S. Bradley, U. M. Fayyad, and C. Reina, “Scaling clustering
algorithms to large databases,” Proceedings of Knowledge Dis-
covery and Data Mining, AAAI Press, pp. 9-15, 1998.

[10] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering
algorithms revisited,” SIGKDD Explorations, pp. 51-57, 2000.
http://dx.doi.org/10.1145/360402.360419

[11] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan, “Clustering
data streams,” IEEE Symposium on Foundations of Computer Sci-
ence, pp. 359-366, 2000. http://dx.doi.org/10.1109/sfcs.2000.
892124

[12] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Mot-
wani, “Streaming data algorithms for high-quality clustering,”
18th International Conference on Data Engineering, pp. 685-694,
2002. http://dx.doi.org/10.1109/ICDE.2002.994785

[13] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” Proceedings of the 29th Con-
ference on Very Large Data Bases, pp. 81-92, 2003.
http://dx.doi.org/10.1016/b978-012722442-8/50016-1

[14] P. Rodrigues, J. Gama, and J. Pedroso, “ODAC: Hierarchical
clustering of time series data streams,” Proceedings of the Sixth
SIAM International Conference on Data Mining, pp. 499-503,
2006. http://dx.doi.org/10.1137/1.9781611972764.48

[15] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based cluster-
ing over an evolving data stream with noise,” Proceedings of the
Sixth SIAM International Conference on Data Mining, SIAM, pp.
328-339, 2006. http://dx.doi.org/10.1137/1.9781611972764.29

[16] Y. Chen, and L. Tu, “Density-based clustering for real-time stream
data,” Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM Press, pp.
133-142, 2007. http://dx.doi.org/10.1145/1281192.1281210

[17] A. Zhou, F. Cao, W. Qian, and C. Jin, “Tracking clusters in evolv-
ing data streams over sliding windows,” Knowledge and Infor-
mation Systems, Vol. 15, No. 2, pp. 181-214, 2008.
http://dx.doi.org/10.1007/s10115-007-0070-x

[18] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree:
indexing micro-clusters for anytime stream mining,” Knowledge
and Information Systems, Vol. 29, No. 2, pp. 249-272, 2011.
http://dx.doi.org/10.1007/s10115-010-0342-8

[19] J. Gama, P. P. Rodrigues, and L. Lopes, “Clustering distributed
sensor data streams using local processing and reduced communi-
cation,” Intelligent Data Analysis, Vol. 15, No. 1, pp. 3-28, 2011.

[20] M. R. Ackermann, M. Martens, C. Raupach, K. Swierkot, C.
Lammersen, and C. Sohler, “Streamkm++: A clustering algorithm
for data streams,” ACM Journal of Experimental Algorithmics,
Vol. 17, No. 1, 2012. http://dx.doi.org/10.1145/2133803.2184450

[21] H. He, and H. Man, “SOMKE: Kernel Density Estimation Over
Data Streams by Sequences of Self-Organizing Maps,” IEEE
Transactions on Neural Networks and Learning Systems, Vol. 23,
No. 8, 2012.

[22] J. Roure, and R. Sanguesa, “Incremental Methods for Bayesian
Network Learning,” 1999.

iJES ‒ Volume 4, Issue 1, 2016 39

SHORT PAPER
BIG DATA MINING: TOOLS & ALGORITHMS

[23] N. A. Syed, H. Liu, and K. K. Sung, “Handling concept drift in
incremental learning with support vector machines,” Proceedings
of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 317-321, 1999.
http://dx.doi.org/10.1145/312129.312267

[24] P. Domingos, and G. Hulten, “Mining high-speed data streams,”
Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 71-80, 2000.
http://dx.doi.org/10.1145/347090.347107

[25] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing
data streams,” Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 97-
106, 2001. http://dx.doi.org/10.1145/502512.502529

[26] W. N. Street, and Y. A. Kim, “Streaming Ensemble Algorithm
(SEA) for large-scale classification,” Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 377-382, 2001. http://dx.doi.org/10.1145/5025
12.502568

[27] H. Wang, W. Fan, P.S. Yu, and J. Han, “Mining concept-drifting
data streams using ensemble classifiers,” Proceedings of the 9th
ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 226-235, 2003. http://dx.doi.org/10.1145/956
750.956778

[28] J. Z. Kolter, and M. A. Maloof, “Dynamic Weighted Majority: A
New Ensemble Method for Drifting Concepts,” ACM Journal of
Machine Learning Research, Vol. 8, pp. 2755-2790, 2007.

[29] E. Ikonomovska, J. Gama, R. Sebastiao, and D. Gjorgjevik, “Re-
gression Trees from Data Streams with Drift Detection,” Proceed-
ings of the 12th International Conference on Data Science, pp.
121-135, 2009. http://dx.doi.org/10.1007/978-3-642-04747-3_12

[30] J. H. Chang, and W. S. Lee, “Finding Recent Frequent Itemsets
Adaptively over Online Data Streams,” Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 487-492, 2003. http://dx.doi.org/10.1145/
956750.956807

[31] C. Gianella, J. Han, J. Pei, X. Yan, and P. S. Yu, “Mining Fre-
quent Patterns in Data Streams at Multiple Time Granularities,”
Data Mining: next generation challenges and future directions,
MIT/AAAI Press, pp. 191-212, 2004.

[32] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz, “Moment: Maintain-
ing Closed Frequent Itemsets over a Stream Sliding Window,” 4th
IEEE International Conference on Data Mining, pp. 59-66, 2004.

[33] J. Cheng, Y. Ke, and W. Ng, “Maintaining frequent closed item-
sets over a sliding window,” Journal of Intelligent Information
Systems, Vol. 31, No. 3, pp. 191-215, 2008.
http://dx.doi.org/10.1007/s10844-007-0042-3

[34] S. J. Yen, C. W. Wu, Y. S. Lee, V. S. Tseng, and C. H. Hsieh, “A
Fast Algorithm for Mining Frequent Closed Itemsets over Stream

Sliding Window,” IEEE International Conference on Fuzzy Sys-
tems (FUZZ), 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007724

[35] D. Yang, E. Rundensteiner, and M. Ward, “Neighbor-based pat-
tern detection for windows over streaming data,” In EDBT, pp.
529–540, 2009. http://dx.doi.org/10.1145/1516360.1516422

[36] F. Angiulli, and F. Fassetti, “Distance-based outlier queries in data
streams: the novel task and algorithms,” Data Mining and
Knowledge Discovery, Vol. 20, Issue 2, pp. 290–324, 2010.
http://dx.doi.org/10.1007/s10618-009-0159-9

[37] D. Georgiadis, M. Kontaki, A. Gounaris, A. Papadopoulos, K.
Tsichlas, and Y. Manolopoulos, “Continuous Outlier Detection in
Data Streams: An Extensible Framework and State-Of-The-Art
Algorithms,” SIGMOD, 2013. http://dx.doi.org/10.1145/24636
76.2463691

[38] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk, “Scalable Collabo-
rative Filtering Approaches for Large Recommender Systems,”
Journal of Machine Learning Research, pp. 623-656, 2009.

[39] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming Pattern
Discovery in Multiple Time-Series,” Proceedings of 31st VLDB
Conference, 2005.

[40] Z. F. Siddiqui, and M. Spiliopoulou, “Combining Multiple Interre-
lated Streams for Incremental Clustering,” SSDBM, 2009.
http://dx.doi.org/10.1007/978-3-642-02279-1_38

[41] Z. F. Siddiqui, and M. Spiliopoulou, “Tree Induction over Peren-
nial Objects,” SSDBM, 2010. http://dx.doi.org/10.1007/978-3-642-
13818-8_43

[42] E. Ikonomovska, “Regression on evolving multi-relational data
streams,” LEMIR, 2011. http://dx.doi.org/10.1145/1966874.
1966875

[43] D. Wegener, M. Mock, D. Adranale, and S. Wrobel, “Toolkit-
based High-Performance Data Mining of Large Data on MapRe-
duce Clusters,” Proc. Int’l Conf. Data Mining Workshops
(ICDMW’09), pp. 296-301, 2009. http://dx.doi.org/10.1109/
icdmw.2009.34

[44] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J.
McPherson, “Ricardo: Integrating R and Hadoop,” Proceedings
ACM SIGMOD Int’l Conf. Management Data (SIGMOD’10), pp.
987-998, 2010. http://dx.doi.org/10.1145/1807167.1807275

[45] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,
and K. Olukotun, “Map-Reduce for Machine Learning on Multi-
core,” Proc. 20th Ann. Conf. Neural Information Processing Sys-
tems (NIPS’06), pp. 281-288, 2006.

AUTHORS
A.S. Hashmi and T. Ahmad are with Jamia Millia Is-

lamia, Delhi, India.
Submitted 10 December 2015. Published as resubmitted by the au-

thors 28 February 2016.

40 http://www.i-jes.org

	iJES – Vol. 4, No. 1, 2016
	Big Data Mining: Tools & Algorithms

