
PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

A MapReduce Framework for
DNA Sequencing Data Processing

https://doi.org/10.3991/ijes.v4i4.6537

Samy Ghoneimy, Samir Abou El-Seoud
British University in Egypt, Cairo, Egypt

Abstract—Genomics and Next Generation Sequencers
(NGS) like Illumina Hiseq produce data in the order of 200
billion base pairs in a single one-week run for a 60x human
genome coverage, which requires modern high-throughput
experimental technologies that can only be tackled with high
performance computing (HPC) and specialized software
algorithms called “short read aligners”. This paper focuses
on the implementation of the DNA sequencing as a set of
MapReduce programs that will accept a DNA data set as a
FASTQ file and finally generate a VCF (variant call format)
file, which has variants for a given DNA data set. In this
paper MapReduce/Hadoop along with Burrows-Wheeler
Aligner (BWA), Sequence Alignment/Map (SAM) tools, are
fully utilized to provide various utilities for manipulating
alignments, including sorting, merging, indexing, and gen-
erating alignments. The Map-Sort-Reduce process is de-
signed to be suited for a Hadoop framework in which each
cluster is a traditional N-node Hadoop cluster to utilize all of
the Hadoop features like HDFS, program management and
fault tolerance. The Map step performs multiple instances of
the short read alignment algorithm (BoWTie) that run in
parallel in Hadoop. The ordered list of the sequence reads
are used as input tuples and the output tuples are the align-
ments of the short reads. In the Reduce step many parallel
instances of the Short Oligonucleotide Analysis Package for
SNP (SOAPsnp) algorithm run in the cluster. Input tuples
are sorted alignments for a partition and the output tuples
are SNP calls. Results are stored via HDFS, and then ar-
chived in SOAPsnp format. The proposed framework ena-
bles extremely fast discovering somatic mutations, inferring
population genetical parameters, and performing associa-
tion tests directly based on sequencing data without explicit
genotyping or linkage-based imputation. It also demonstrate
that this method achieves comparable accuracy to alterna-
tive methods for sequencing data processing.

Index Terms—Next Generation Sequencers; short read
aligners; short read alignment algorithm; DNA sequencing
data processing

I. INTRODUCTION
Today, genome sequencing machines (such as Illumi-

na’s HiSeq 4000) are able to generate thousands of gi-
gabases of DNA and RNA sequencing data in a few hours
for less than US$1,000 (a few years ago, the price was
over US$100,000, and sequencing the first human genome
cost about US$3 billion) [1, 2].

Success in biology and the life sciences depends on our
ability to properly analyze the big data sets that are gener-

ated by these technologies, which in turn requires us to
adopt advances in informatics. Map!Reduce/Hadoop and
Spark enable us to compute and analyze thousands of
gigabytes/petabytes of data in hours (rather than days or
weeks). For example, Spark was recently used to sort 100
TB of data using 206 machines in 23 minutes.

In simple terms, DNA sequencing is the sequencing of
whole genomes (such as human genomes). According to
[3] “if finding DNA was the discovery of the exact sub-
stance holding our genetic makeup information, DNA
sequencing is the discovery of the process that will allow
us to read that information.”

The main function of DNA sequencing is to find the
precise order of nucleotides within a DNA molecule. Al-
so, DNA sequencing is used to determine the order of the
four bases—adenine (A), guanine (G), cytosine (C), and
thymine (T)—in a strand of DNA.

The challenges of DNA sequencing are many [4], but
the most important ones are:

1. There are several sequencing technologies to gener-
ate FASTQ files, and the lengths of DNA sequences
are different for each sequencing technology.

2. The input data (FASTQ data) size is big (a single
DNA sequence sample can be up to 900 GB).

3. With a single powerful server, it takes too long (up to
80 hours) to process one DNA sequence and extract
variants such as single nucleotide polymorphisms
(SNPs).

4. There are many algorithms and steps involved in
DNA sequencing, so selecting the proper combina-
tions of open source tools is a serious challenge. For
example, there are quite a few mapping/alignment
algorithms and parameters.

5. Scalability—that is, optimizing the number of map-
pers and reducers—is difficult to achieve.

A high-level DNA sequencing workflow is presented in
Figure 1. As we mentioned above, our focus in this paper
will be implementing DNA sequencing as a set of
MapReduce programs that will accept a DNA data set as a
FASTQ file and finally generate a VCF (variant call for-
mat) file, which has variants for a given DNA data set.

One of the major goals of DNA sequencing is to find
variants, since most of our DNA is identical; only a very
small percent differs from person to person. One im-
portant example is the identification of single nucleotide
polymorphisms (SNPs). The identification and extraction
of SNPs from raw genetic sequences involves many algo-
rithms and the application of a diverse set of tools

iJES ‒ Volume 4, Issue 4, 2016 11

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

II. THE DNA SEQUENCING PIPELINE
The DNA sequencing pipeline is illustrated in Figure 2

and includes the following key steps [6]:
1. Input data validation: performing quality control on

input data such as FASTQ files
2. Alignment: mapping short reads to the reference ge-

nome
3. Recalibration: visualizing and post-processing the

alignment, including base quality recalibration
4. Variant detection: executing the SNP calling proce-

dure along with filtering SNP candidates

There is plenty of data to analyze and apply DNA se-
quencing to, and there are many open source algorithms
for completing the previous four steps. Choice of these
open source tools will significantly affect the final results.

Figure 1. View of DNA sequencing

Figure 2. DNA sequencing pipeline

III. INPUT DATA FOR DNA SEQUENCING
The most common format for DNA sequencing data is

FASTQ, a text-based format for storing both a biological
sequence and its quality scores. For a given FASTQ file,
every four lines represent a single DNA sequence.

The general syntax of a FASTQ file is as follows:
<fastq>:= <block>+
<block>:=@<seqname>\n<seq>\n[<seqname>]\n<qual> \n
<seqname>:= [A-Za-z0-9_.:-]+
<seq>:= [A-Za-z\n\.~]+
<qual>:= [!-~\n]+

A practical example is given below:
@NCYC361-11a03.q1k bases 1 to 1576
GCGTGCCCGAAAAAATGCTTTTGGAGCCGCGC

GTGAAAT...
+NCYC361-11a03.q1k bases 1 to 1576
!)))))****(((***%%((((*(((+,**(((+**+,-...

FASTQ data can be paired or non-paired. If it is paired,

then our input for the DNA sequencing will be a pair of
files: left_file.fastq and right_file.fastq. If it is nonpaired,
there will be a single file: file.fastq.

IV. BACKGROUND AND RELATED WORK FOR FRAMEWORKS
USED FOR DNA SEQUENCING AND MAPREDUCE

McKenna, Aaron, et al [7] have developed a framework
to enable the development of analysis tools for NGS using
MapReduce. This framework is called Genome Analysis
Toolkit (GATK). The aim of GATK is to provide a struc-
tured programming framework that simplify the analysis
of NGS by developing efficient, robust, and scale-tolerant
NGS analysis tools. It is mainly based on covering most of
the analysis tool needs by providing small rich set of data
access patterns. GATK decouples and splits the infrastruc-
ture needed to access the NGS data, and the specific logic
to each analysis tool. This way, it enables splitting some
analysis calculations from data management infrastructure
which provides more correctness, stability, and CPU and
memory efficiency. This also results in the ability for
automatic parallelization of distributed clusters and shared
memory machines. GATK eliminates the problem of the
complexity of analysing and manipulating the huge data
generated and used while using DNA sequencing which
enables the developers and researchers to focus more on
the algorithms and analysis methods they are designing
and developing. All of this makes GATK one of the most
important programming frameworks for developing NGS
tools. 1000 Genomes Project and the Cancer Genome
Atlas are considered as two main examples for the devel-
oped NGS tools based on the GATK programming
framework.

DePristo, Mark A., et al [8] have developed another
framework which is an analytic and unified one. The aim
of this framework is to explore the differences between
several samples that achieve specific results while using
five sequencing technologies and three experimental de-
signs. These sequencing technologies can be summarized
as following:

1. Initial read mapping
2. Local realignment around indels

12 http://www.i-jes.org

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

3. Base quality score recalibration
4. SNP discovery and genotyping
5. Machine learning

SNP discovery and genotyping is to find all the poten-
tial variants while machine learning is for the separation
between true segregating variation and machine artifacts
common to NGS technologies. The developed framework
provides an integrated approach to data processing and
variation discovery from NGS data. This approach was
designed to meet the required specifications. The experi-
mentations done were comprehensive as several and dis-
tinct sequencing technologies were applied. The data used
for the experimentation was generated from the Board
Institute and 1000 Genomes project. After the experimen-
tation of these five sequencing technologies, results
showed that the new designed and developed framework
achieves more accurate results than not using it. Moreo-
ver, results showed that biological DNA variant has a
great impact in increasing the sensitivity and specificity of
variant discovery from NGS data and that because of the
following:

1. The enhanced calibration of base quality scores in-
troduced Local realignment for indels

2. Evaluation of multiple samples from a population

The developed framework also provides more modular-
ity and scalability that result in high quality variant and
genotype calls production.

As mentioned by Schatz, Michael C., et al [9], using
such parallel programmatic frameworks ease the parallel
computation process to the developers and researchers
with providing efficiency and fault tolerance. Another
example for such frameworks is the MPI (Message Pass-
ing Interfaces) which enables the developer to design and
implement parallel programs. The disadvantage of using it
is its software development complication. Condor 4 is
another example which is considered as a batch pro-
cessing system. It is one of the most effective systems to
run multiple independent parallel computations. But it is
not working as efficient with the more complicated paral-
lel algorithms. MapReduce framework is considered as
one of the most efficient frameworks with most of the
programs. It provides the ease to the programmer while
taking care of handling job scheduling, fault tolerance,
distributed aggregation and other management tasks.
MapReduce framework was initially developed by Google
and its main task was to streamline analyses of huge
amount of webpages. However, the MapReduce imple-
mentation by Google is confidential and it is not open
source, that’s why Hadoop16 is more popular and works
as an alternative which managed by Apache Software
Foundation. The main idea of the MapReduce is to go
through some Map, Reduce and shuffle parallel computa-
tional steps. These steps can be summarized in these three
points:

1. Map: reads are mapped to the reference genome in
parallel on multiple machines

2. Shuffle: aggregation of the alignments to be on the
same chromosome and being sorted by position

3. Scan: scanning of the sorted alignments for biologi-
cal events identification in each group

The feature of parallelism makes a program works bet-
ter with larger clusters. Hadoop 19, 22, 25, and 26 works

well with several genomic software while providing them
with better scalability. However, not all genomic pipelines
fits with it. In general, Hadoop and cloud computing
works well with programs which have processors that
work independently for long periods and don’t coordinate
with each other.

V. MAPREDUCE ALGORITHMS FOR DNA SEQUENCING
The first step in the DNA sequencing pipeline is vali-

dating the format of FASTQ files. With validation, we
want to verify the quality of the input files. Input data
validation tools enable the quality control checks on the
FASTQ file format coming from high-throughput se-
quencing pipelines.

There are many open source tools for input data valida-
tion. For example, for FASTQ validation you have these
options; FastQValidator and FastQC

In this section we will focus on mapping/alignment, re-
calibration, and variant detection algorithms using
MapReduce.

A. DNA sequence alignment
Sequence alignment is the comparison of two or more

DNA or protein sequences. The main purpose of sequence
alignment is to highlight similarity between the sequences.
For global sequence alignment, consider the following
example with two input sequences over the same alphabet:
• Sequence 1: GCGCATGGATTGAGCGA
• Sequence 2: TGCGCCATTGATGACCA

Our output is a possible alignment of the two sequenc-
es:
• -GCGC-ATGGATTGAGCGA
• TGCGCCATTGAT-GACC-A

We can observe three elements in the possible align-
ment output:
• Perfect matches (in bold), Mismatches (underlined)
• Insertions and deletions (called indels, presented ital-

ic formatting)

For the alignment phase, we will use MapRe-
duce/Hadoop along with the following open source tools:
• Burrows-Wheeler Aligner (BWA), an efficient pro-

gram that aligns relatively short nucleotide sequences
against a long reference sequence such as the human
genome [5].

• Sequence Alignment/Map (SAM) tools, which pro-
vide various utilities for manipulating alignments in
the SAM format, including sorting, merging, index-
ing, and generating alignments in a per-position for-
mat [5]. We will be working with files in the BAM
format, which is the binary format of a SAM file.

Typical DNA sequencing for a single data sample
(about 400–900 GB in the FASTQ file format) might take
70+ hours for a very powerful single server. The goal of
the MapReduce algorithm is to find the answer in a few
hours and make the solution scalable.

Since most open source tools (such as BWA,
SAMtools, and GATK) for alignment, recalibration, and
variant detection have Linux command-line interfaces, at
each MapReduce phase our map() and reduce() functions

iJES ‒ Volume 4, Issue 4, 2016 13

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

will call Linux shell scripts and provide the proper param-
eters.

To execute these shell scripts, we will use the Free-
Marker templating language, which will merge Java ob-
jects and data structures with a template to create a proper
shell script (see Figure 18-3). To distinguish one DNA
sequence from another, for each analysis we will assign
and utilize a unique GUID called the “analysis ID” (this
helps to keep our input and output directories organized).

The MapReduce solution is presented in three steps,
these correspond to steps 2–4 in the DNA sequencing
pipeline described above. First, data is partitioned and
merged during each stage.
A.1 Step 1: Alignment

Before the alignment step starts, we partition our DNA
sequence FASTQ file(s) into sets of 8 million lines (or 2
million sequences; remember, in FASTQ format, each
group of four lines represents a single DNA sequence). As
mentioned previously, if FASTQ data is paired, our input
is a pair of files: left_file.fastq and right_file.fastq. If it is
non-paired, our input will be a single file: file.fastq. For
paired data, we will partition as follows (for paired data,
an alignment map() function will process
left_file.fastq.NNNN and right_file.fastq.NNNN together):

left_file.fastq.0000 right_file.fastq.0000
left_file.fastq.0001 right_file.fastq.0001
left_file.fastq.0002 right_file.fastq.0002 ….
For non-paired data, we will partition as follows (for

non-paired data, an alignment map () function will pro-
cess file.fastq.NNNN):

file.fastq.0000
file.fastq.0001
file.fastq.0002 ….
Each partition (also known as a chunk) will be con-

sumed by a map() function. The partition size used here is
(8 million lines, equal to 2 million sequences) is just for
illustration purposes; the size we use for partitions should
be determined by the size of your Hadoop cluster. That is,
if we have a cluster of 50 nodes and each node can handle
4 mappers, then you should split your FASTQ file into
200 partitions.

For example, if the total input size is about 400 GB,
then we should partition the input into 2 GB chunks (this
way, we will maximize the usage of all your mappers).

The map() function will read the input file (one single
chunk) and will generate an aligned file in BAM format.
Here, the map() function uses BWA to perform the
alignment process. Once the alignment is done, then it will
extract all chromosomes (1, 2, ..., 22, 232) and save them
in the MapReduce filesystem (HDFS, for Hadoop).

For example, if we have 800 partitions, we will have
generated 800 files per chromosome (23 * 800 = 18,400
files). There will be only 23 reducers (one per chromo-
some).

The reducer will concatenate (merge and sort) all chro-
mosomes for a specific chromosome ID. All chromo-
somes 1 will be concatenated into a single file called
chr1.bam, all chromosomes 2 will be concatenated into a
single file called chr2.bam, and so on. Then each reducer
will partition the merged BAM file into small files that
will be used as input to the recalibration phase.

A.1.1 Mapper for the Alignment phase
For the alignment mapper shown in Example 18-1, our

solution will accept files in the FASTQ format as input
and will generate partitioned chromosomes (chr1, chr2,
….chr22, chr23).
Alignment phase: map() function
1 * @param key is a key generated by MapReduce
 framework
2 * @param value is a partitioned FASTQ file (may be
 8M lines = 2M sequences) */
3 map (key, value) {
4 // note: chr23 = concat(chrX, chrY, chrM)
5 alignedBAMFile = alignByBWA(value);
6 (chr1File, chr2File, ..., ch23File) =
 partitionByChromosome(alignedFile);
7 for (i=1, i < 24; i++) {emit(chr<i>, chr<i>File);}}

The alignByBWA() function accepts a partitioned
FASTQ file, performs the alignment, and finally partitions
the aligned file by chromosome. All of these actions are
done by a shell script template. Portions of this template
are listed in the following Example.

Alignment phase: nonpaired input
1 #!/bin/bash
2 export BWA=<bwa-install-dir>/bwa
3 export SAMTOOLS=<samtools-install-dir>/samtools
4 export BCFTOOLS=<bcftools-install-dir>/bcftools
5 export VCFUTILS=<bcftools-install-dir>/vcfutils.pl
6 export HADOOP_HOME=<hadoop-install-dir>
7 export HADOOP_CONF_DIR=<hadoop-install-dir>
 /conf
8 # data directories
9 export TMP_HOME=<root-tmp-dir>/tmp
10 export BWA_INDEXES=<root-index-dir>/ref/bwa
11 # define ref. genome
12 export REF=<root-reference-dir>/hg19.fasta
14 ### step 1: alignment
15 # the KEY uniquely identifies the input file
16 KEY={key}
17 # input_file
18 export INPUT_FILE=${input_file}
19 export ANALYSIS_ID=${analysis_id}
20 NUM_THREAD=3
21 cd $TMP_HOME
22 $BWA aln -t $NUM_THREAD $REF $INPUT_FILE >
 out.sai
23 $BWA samse -r $REF out.sai $INPUT_FILE|
 $SAMTOOLS view -Su -F 4 - | \
24 $SAMTOOLS sort - aln.flt
25 # start indexing aln.flt.bam file
26 $SAMTOOLS index aln.flt.bam
27 # partition aligned data
28 for i in {1..22}
29 do
30 CHR=chr$i
31 $SAMTOOLS view -b -o $CHR.bam aln.flt.bam
 $CHR
32 output_file=/genome/dnaseq/output/$ANALYSIS_ID/
 $CHR/$KEY.$CHR.bam

14 http://www.i-jes.org

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

33 $HADOOP_HOME/bin/hadoop fs -put $CHR.bam
 $output_file
33 done
34 # do the same thing for X, Y and M chromosomes
35 $SAMTOOLS view -b -o chr23.bam aln.flt.bam chrX
 chrY chrM
36 output_file=/genome/dnaseq/output/$ANALYSIS_
 ID/chr23/$KEY.chr23.bam
37 $HADOOP_HOME/bin/hadoop fs -put chr23.bam
 $output_file
38 exit 0

The provided shell script handles non-paired data only.
If the input files are paired, then the preceding lines 25–27
are replaced by the following code in.
Alignment phase: paired input
1 $BWA aln -t $NUM_THREAD $RE $INPUT_
 FILE_1 > out1.sai
2 $BWA aln -t $NUM_THREAD $REF $INPUT_
 FILE_2 > out2.sai
3 $BWA sampe -r $INFO_RG $REF out1.sai out2.sai
 $INPUT_FILE_1 $INPUT_FILE_2 | \
4 SAMTOOLS view -Su -F 4 - | $SAMTOOLS sort
 - aln.flt

4.1.1.2 Reducer for the alignment phase

For the alignment phase, there will be exactly 23 reduc-
ers (one reducer per chromosome).

The reducer key will be a composite key of
<chrID><;><analysisID>, where the chromosome ID is
labeled {01, 02, 03, ..., 23}. Note the chromosome ID of
23 includes chrM, chrX, and chrY. Each reducer will
merge all aligned .bam files into a single merged
chr<i>.bam file:
chr<i>.bam = merge the following files:
chr<i>.bam.0000
chr<i>.bam.0001 ….
chr<i>.bam.0437 ….

After merging all the files into a single chr<i>.bam file,
we partition chr<i>.bam into many small .bam files to be
fed to the recalibration mapper of step 2. The partitioned
files will be: chr<i>.bam.j (j = 1, 2, 3, ..., 100+)

The reduce () function for the alignment phase is
presented as follow.
Alignment phase: reduce() function
1 * @param key is a <chrID><;><analysis_id>
2 * where chrID is in (1, 2, 3, ..., 23)
3 * @param value is ignored (not used)
4 reduce(key, value) {
5 DNASeq.mergeAllChromosomesAndPartition(key); }

The bulk of the work lies with the
DNASeq.mergeAllChromosomesAndPartition() method,
which merges all aligned .bam files for a specific chromo-
some as shown in the following example. As mentioned
previously, the final merged file is then partitioned for
further processing by the recalibration phase (step 2).

mergeAllChromosomesAndPartition() method
1 * reducerKey=<chrID>;<analysis_id>
2 * where chrID=1, 2, ..., 22, 23 (23 includes chrM,

chrX, chrY) */
3 public static void mergeAllChromosomes
 AndPartition(String reducerKey)
4 throws Exception {
5 // split the line: each line has two fields (fields are
 separated by ";")
6 String[] tokens = reducerKey.split(";");
7 String chrID = tokens[0];
8 String analysisID = tokens[1];
9 Map<String, String> templateMap =
 new HashMap<String, String>();
10 templateMap.put("chr_id", chrID);
11 templateMap.put("analysis_id", analysisID);
12 mergeAllChromosomesBamFiles(templateMap);
13 partitionSingleChromosomeBam(templateMap);}

As we can see from the mergeAllChromosomesAnd-
Partition() method, both of the helper methods, mer-
geAllChromosomesBamFiles() and partitionSingleChro-
mosomeBam(), use the FreeMarker template engine to
pass the required Java objects and then execute shell
scripts on behalf of the reducers. The definition of the
mergeAll ChromosomesBamFiles() method is given in
the following Example.
mergeAllChromosomesBamFiles() method
1 * This method will merge the following files and create
 a single chr<i>.bam file
2 * where i is in {1, 2, ..., 23}:
3 * HDFS: /.../chr<i>/chr<i>.bam.0000
4 * HDFS: /.../chr<i>/chr<i>.bam.0001
5 * ..., 6 * HDFS: /.../chr<i>/chr<i>.bam.0437
7 * Then merge all these (.0000, .0001, ..., .0437) files
 and save the result in
8 * /data/tmp/<analysis_id>/chr<i>/chr<i>.bam
9 * Once chr<i>.bam is created, then we partition it into
 small .bam files,
10 * which will be fed to RecalibrationDriver (step 2 of
 DNA sequencing) */
11 public static void mergeAllChromosomesBamFiles
 (Map<String, String> templateMap)
12 throws Exception {
13 TemplateEngine.initTemplatEngine();
14 String templateFileName = <freemarker-template-file-
 as-a-bash-script>;
15 // create the actual script from a template file
16 String chrID = templateMap.get("chr_id");
17 String analysisID = templateMap.get("analysis_id");
18 String scriptFileName = createScriptFileName(chrID
 , analysisID);

iJES ‒ Volume 4, Issue 4, 2016 15

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

19 String logFileName = createLogFileName(chrID,
 analysisID);
20 File scriptFile = TemplateEngine.createDynamic
 ContentAsFile(templateFileName,
21 templateMap, scriptFileName);
22 if (scriptFile != null) {
23 ShellScriptUtil.callProcess(scriptFileName,
 logFileName);}}

The TemplateEngine.createDynamicContentAsFile()
method does the magic: it takes two inputs (templateFile-
Name and templateMap) and produces a scriptFile Name.
Basically, all parameters are passed to templateFileName
and then a new shell script is generated as a scriptFile-
Name, which is then executed on a reducer’s behalf.

There are two important classes, ShellScriptUtil and
TemplateEngine, that merit some discussion. The Shell-
ScriptUtil.callProcess() method accepts a shell script file
(first parameter), which it executes. It then writes all logs
from the script execution to a logfile (second parameter).
Logging is asynchronous, meaning that as you execute the
script, the logfile immediately becomes available.

The TemplateEngine class is defined in the following
Example. It just implements the basic notion of a templat-
ing engine: it accepts a template (as a text file with key
holders) and key-value pairs as a Java map and then cre-
ates a brand new file in which all keys in the template are
replaced by values.
TemplateEngine class
1 import java.io.File;
2 import java.io.Writer;
3 import java.io.FileWriter;
4 import java.util.Map;
5 import java.util.concurrent.atomic.AtomicBoolean;
6 import freemarker.template.Template;
7 import freemarker.template.Configuration;
8 import freemarker.template.DefaultObjectWrapper;
9 public class TemplateEngine {
10 private static Configuration
 TEMPLATE_CONFIGURATION = null;
11 private static AtomicBoolean initialized =
 new AtomicBoolean(false);
12 private static String TEMPLATE_DIRECTORY =
 "/home/dnaseq/template";
13 public static void init() throws Exception {
14 if (initialized.get()) {
15 return; }
16 initConfiguration ();
17 initialized.compareAndSet(false, true); }
18 static {
19 if (!initialized.get()) {
20 try { init(); }
21 catch(Exception e) {theLog-

ger.error("TemplateEngine init failed at initializa-
tion.", e);}}}

22 private static void initConfiguration ()
 Throws Exception TEMPLATE_CONFIGURATION

= new Configuration();
23 TEMPLATE_CONFIGURATION.setDirectoryFor
 TemplateLoading (
24 new File(TEMPLATE_DIRECTORY));
25 TEMPLATE_CONFIGURATION.setObjectWrapper
 (new DefaultObjectWrapper());
26 TEMPLATE_CONFIGURATION.setWhitespace
 Stripping(true);
TEMPLATE_CONFIGURATION.setClassicCompatible(
true); }
61 public static File createDynamic ContentAsFile (
 ...){...}

The most important method of the TemplateEngine
class, createDynamicContentAs File(), is defined in the
following Example. This method accepts a template file
that has key holders and a set of key-value pairs and then
generates a new file by substituting the given keys in the
key holders.

TemplateEngine.createDynamicContentAsFile() meth-
od * @param templateFile is a template filename such as
script.sh.template
* @param keyValuePairs is a set of (K,V) pairs
* @param outputFileName is a generated filename from
templateFile
public static File createDynamicContentAsFile(String
templateFile,
Map<String,String> keyValuePairs,
String outputFileName)
throws Exception {
if ((templateFile == null) || (templateFile.length() == 0))
{ return null; }
Writer writer = null; try {
 Template template =
TEMPLATE_CONFIGURATION.getTemplate(template
File);
File outputFile = new File(outputFileName);
writer = new BufferedWriter (new FileWriter
 (outputFile));
template.process (keyValuePairs, writer);
writer.flush (); return outputFile;}
finally {if (writer != null) {writer.close();}

A.2 Step 2: Recalibration

Recalibration is the second phase of our MapReduce
DNA sequencing pipeline. In the recalibration step, each
map() function will work on a specific aligned chromo-
some.

The mapper will perform duplicate marking, local rea-
lignment, and recalibration. The goal of map() is to create
a local recalibration table filled with covariates. These

16 http://www.i-jes.org

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

local covariates will be merged by the single reducer to
create the final single global file (recalibration table) that
will be used by the map() function of the third and final
step of DNA sequencing, variant detection.

Following the alignment phase, we create special
metadata to be used by the recalibration mappers. This
metadata has the following format:
<counter><;><partitioned-bam-file><;><ref_genome>
 <;><analysis_id>
The recalibration mapper is presented in the following
Example.
Recalibration phase: map() function

 // key is MR generated, ignored here
 // value is: <counter><;><partitioned-bam-file>
 <;><ref_genome><;><analysis_id>
 map (key, value) {
 // actual file location will be:
// /data/dnaseq/align/ANALYSIS_ID/merged.bam.
 <KEY>
 Map<String, String> tokens =
 DNASeq.tokenizeRecalibrationMapperInput(value);
 String reducerKey = tokens.get("analysis_id");
 DNASeq.recalibrationMapper(tokens);
 emit(reducerKey, value);}
 public static void recalibrationMapper(Map<String,
 String> templateMap)
 throws Exception {
 TemplateEngine.init();
 String key = templateMap.get("key");
 String analysisID = templateMap.get("analysis_id");
 String scriptFileName = createScriptFile-
Name("recalibration_mapper", key,
analysisID);
String logFileName = createLogFile-
Name("recalibration_mapper",
key, analysisID);
 File scriptFile = TemplateEngine.createDynamic
 ContentAsFile(
"recalibration_mapper.template", templateMap,
 scriptFileName);
 if (scriptFile != null) {
 ShellScriptUtil.callProcess(scriptFileName,
 logFileName); }}

The recalibration mapper template is defined as follow.
Recalibration mapper template
#!/bin/bash
Recalibration mapper template
 ### call snp (get variants) up to calculation of
 ...recal.table.csv
once recal.table.csv is created, it will be saved in

 HDFS
input file: aligned bam file (partitioned from a
 chr<i>.bam)
input file: aligned bam file (partitioned from a
 chr<i>.bam)
copy HDFS_BAM_FILE to LOCAL_BAM_FILE
HDFS_BAM_FILE=${hdfs_bam_file}
BAM_FILE='basename $HDFS_BAM_FILE';
$HADOOP_HOME/bin/hadoop fs –copyToLocal
 $HDFS_BAM_FILE.

put 4.recal.table.csv into GLOBAL/SHARED
 directory

export SHARED_RECAL_DIR=
 /dnaseq/recal/${analysis_id}
marking duplicates
java -Xmx4g\Djava.io.tmpdir=$JAVA_IO_TMPDIR \
-jar $PICARD_JAR/MarkDuplicates.jar \
I=$BAM_FILE \
O=2.mark.out.bam \
M=2.mark.out.metrics \
AS=true
local realignment
samtools index 2.mark.out.bam
java -Xmx4g \
-Djava.io.tmpdir=$JAVA_IO_TMPDIR \
-jar $GATK_JAR/GenomeAnalysisTK.jar \
-T IndelRealigner \
-I 2.mark.out.bam \
-o 3.realigned.out.bam \
-R $REF \
-targetIntervals $DBSNP/dbsnp_indel.intervals \
-known $DBSNP/dbsnp_indel.vcf \
--consensusDeterminationModel KNOWNS_ONLY \
-LOD 0.4
base quality recalibration
 java -Xmx4g \
-Djava.io.tmpdir=$JAVA_IO_TMPDIR \
-jar $GATK_JAR/GenomeAnalysisTK.jar \
-T CountCovariates \
-I 3.realigned.out.bam \
-recalFile 4.recal.table.csv \
-R $REF \
-knownSites $DBSNP/dbsnp.vcf \
-cov QualityScoreCovariate \
-cov ReadGroupCovariate \
-cov PositionCovariate \
-cov DinucCovariate
copy result to shared directory

iJES ‒ Volume 4, Issue 4, 2016 17

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

cp -f 4.recal.table.csv $SHARED_RECAL_DIR/
 $KEY.4.recal.table.csv
we also need to save 3.realigned.out.bam (which
will be needed in variant_detection_
 mapper.sh.template)
cp -f 3.realigned.out.bam $SHARED_RECAL_DIR/
 $BAM_FILE.3.realigned.out.bam
so we will have:
$SHARED_RECAL_DIR/$KEY.4.recal.table.csv
 for KEY=1, 2, 3,
$SHARED_RECAL_DIR/$BAM_FILE.3.
 realigned.out.bam for KEY=1, 2, 3,
(will be input to variant_detection_
 mapper.sh.template)
The recalibration reducer template is defined in the fol-
lowing Example.
Recalibration reducer template
1 #!/bin/bash
3 ### Merge all -.4.recal.table.csv files (generated by
 individual .bam files)
4 ### into a single recal.table.merged.final.txt file.
5 ###
6 ### Once recal.table.merged.final.txt is created, it will
 be saved in
7 ### /dnaseq/recal/${analysis_id}/ and will be fed into
 VariantDetectionMapper.
8 # All -.4.recal.table.csv files are in $SHARED_
 RECAL_ DIR directory
9 export SHARED_RECAL_DIR=/dnaseq/recal/
 $ANALYSIS_ID/
100recal_files='find $SHARED_RECAL_DIR –name
 '*.4.recal.table.csv' | sort'
11 num_of_recal_files='find $SHARED_RECAL_DIR –
 name '*.4.recal.table.csv' | wc -1'
12 ### NOTE: all calculations will take place at
 $SHARED_RECAL_DIR
13 # prepare java input files
14 java_input_files=""
15 for file in $recal_files
16 do
17 echo "preparing java input file=$file"
18 java_input_files="$file $java_input_files"
19 done
20 cd $SHARED_RECAL_DIR
21 current_dir='pwd'
22 export MERGE_COVARIATES=
 JavaMergeCovariates
23 $JAVA_HOME/bin/java -Xms4g -Xmx12g
 $MERGE_COVARIATES \
24 -i "$java_input_files" -o recal.txt.unsorted

25 # sort the file accordingly
26 /bin/sort -t, -k 2,2n -k3,3n -k4,4 recal.txt.unsorted >
 recal.txt.sorted
27 # The recal.txt.sorted file will be used by the Variant
 Detection Mapper.

AStep3: Variant detection
Variant detection (also known as SNP calling) is the fi-

nal phase of DNA sequencing. The goal of this step is to
generate variants in VCF (variant call format; developed
by the 1000 Genomes Project). The map() function will
use the BAM file generated by the map() function of the
recalibration step, and the final single “recalibration table”
file. The map() function will use open source tools (such
as GATK and SAMtools) to generate partial variants
(which are raw BCF—binary call format—files). The
reducer will concatenate (sort and merge) the raw BCF
files to generate a single VCF file.

Once the VCF file is created, it can be used by many
analytical algorithms, such as allelic frequency (covered in
Chapter 21), family analysis, and the Cochran-Armitage
trend test.

Variant detection is the process of finding bases in the
NGS (next-generation sequencing) data that differ from
the reference genome, such as hg18 or hg19; these refer to
the version of the human genome assembly and determine
the version of the corresponding reference annotations (for
details, see http://bit.ly/build_36_1_genome).

B. DNA sequence alignment
The mapper accepts a chunked “realigned .bam” file

and performs the following transformations on it:
• Base quality recalibration
• Variant calling and filtering
The bulk of the work is done by the

DNASeq.theVariantDetectionMapper() method, which
accepts the required parameters and creates a proper shell
script from a given template.

Finally, it executes the shell script. The mapper for the
variant detection phase is provided in the following Ex-
ample.
Variant detection phase: map() function
1 // key: ignored, not used
2 // value: <counter><;><3.realigned.out.bam.
 <key>><;><ref_genome><;><analysis_id>
3 // index < 0 > < 1 > < 2 > < 3 >
4 // value example-1: 0001;/<dir>
 /realigned.out.bam.0001;hg19;208
5 // value example-2: 0007;/<dir>
 /realigned.out.bam.0007;hg19;208
6 // NOTE: THERE WILL BE ONE SINGLE REDUCER
 for variant detection:
7 // the key for output of reducer will be <analysis_id>
8 map(key, value) {
9 Map<String, String> tokens = DNASeq.tokenize
 TheVariantDetectionMapper(value);
10 String reducerKey = tokens.get("analysis_id");

18 http://www.i-jes.org

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

11 DNASeq.theVariantDetectionMapper(tokens);
12 emit(reducerKey, reducerKey); }

The theVariantDetectionMapper() method, shown in
following Example, accepts as a parameter the analysis_id
(which uniquely identifies all file directories for a specific
DNA sequencing run).

theVariantDetectionMapper() method
1 public static void theVariantDetectionMapper
 (Map<String, String> template-
Map)
2 throws Exception {
3 TemplateEngine.init();
4 // create the actual script from a template file
5 String scriptFileName = "/dnaseq/variant_detection_
 mapper_" +
6 templateMap.get("analysis_id") + "_" +
 templateMap.get("key") +".sh";
7 String logFileName = "/dnaseq/variant_detection_
 mapper_" +
8 templateMap.get("analysis_id") + "_" + templateMap.
 get("key") +".log";
9 File scriptFile = TemplateEngine.createDynamic
 ContentAsFile(
10 "variant_detection_mapper.template", templateMap,
 scriptFileName);
11 if (scriptFile != null) {
14 ShellScriptUtil.callProcess(scriptFileName,logFile
 Name); }}

Portions of the variant_detection_mapper.template are
provided as follow.
Variant detection mapper template

1 #!/bin/bash
4 # 1. perform base quality recalibration:
5 # GATK required that the BAM file extension has to be
 .bam
6 samtools index $REALIGNED_OUT_BAM_FILE
7 #
8 java -Xmx4g \
9 -Djava.io.tmpdir=$JAVA_IO_TMPDIR \
10 -jar $GATK_JAR/GenomeAnalysisTK.jar \
11 -T TableRecalibration \
12 -I $REALIGNED_OUT_BAM_FILE \
13 -o 4.recal.out.bam \
14 -R $REF \
15 -recalFile $SHARED_RECAL_DIR/recal.table.
 merged.final.txt
17 # 2. variant calling and filtering

18 samtools mpileup -Duf $REF -q 1 4.recal.out.bam |
 bcftools view -bvg] - > \
19 $REALIGNED_OUT_BAM_FILE.raw.bcf

C. DNA sequence alignment

As noted previously, there will be only one reducer for
all mappers. This is because we will be merging values to
create a single output: a VCF file. Accordingly, the reduc-
er does only one thing: creates a VCF file.

Variant detection phase: reducer() function
1 // key: <analysis_id>, which identifies all data uniquely
2 // values: ignored
3 reduce(key, values) {430 | Chapter 18: DNA Sequenc-
ing
4 DNASeq.theVariantDetectionReducer(key);
5 emit(key, key);}

 theVariantDetectionReducer() method
1 public static void theVariantDetectionReducer(String
 analysisID)
2 throws Exception {
3 TemplateEngine.init();
4 Map<String, String> templateMap =
 new HashMap<String, String>();
5 templateMap.put("key", "-");
6 templateMap.put("analysis_id", analysisID);
7 // create the actual script from a template file
8 String scriptFileName =
 "/dnaseq/variant_detection_reducer_" +
9 templateMap.get("analysis_id") +".sh";
10 String logFileName = "/dnaseq/variant_detection_
 reducer_" +
11 templateMap.get("analysis_id") +".log";
12 File scriptFile = TemplateEngine.createDynamic
 ContentAsFile(
13 "variant_detection_reducer.template",
14 templateMap,
15 scriptFileName);
16 if (scriptFile != null) {
17 ShellScriptUtil.callProcess(scriptFileName
 , logFileName); }}

Portions of the variant_detection_reducer.template are
provided as follows.

Variant detection reducer template

1 #!/bin/bash
2 ...
3 # call snp (get variants)

iJES ‒ Volume 4, Issue 4, 2016 19

PAPER
A MAPREDUCE FRAMEWORK FOR DNA SEQUENCING DATA PROCESSING

4 # concatenate all $KEY.raw.bcf files
5 #
6 FINAL_BCF_FILE=$FINAL_DIR/all.raw.bcf
7 VCF_FILE=$FINAL_DIR/var.flt.vcf
8 ...
9 ##
10 ## Concatenate BCF files. The input files are required
 to be
11 ## sorted and have identical samples appearing in the
 same order.
12 ##
13 ALL_BCF_FILES='find $RECAL_DIR/ -name
 '*.raw.bcf' | sort'
14 $BCFTOOLS cat $ALL_BCF_FILES >
 $FINAL_BCF_FILE
15 #
16 # begin bcftools & create final VCF file

17 BCFTOOLS view $FINAL_BCF_FILE | $VCFUTILS
varFilter > $VCF_FILE

VI. CONCLUSION
This paper provided a unified computational Map-

Reduce/Hadoop analytical framework to ease the devel-
opment of efficient and robust analysis tools for next-
generation DNA sequencers using the functional pro-
gramming philosophy of MapReduce to enable various
analyses, particularly population genetic analyses. This
paper also presented a MapReduce solution for DNA
sequencing, a very important task in the genome analysis
ecosystem. Typically, DNA sequencing can be done by a
powerful computer in 70 hours, but this time can be de-

creased to minutes by a Map-Reduce solution on a cluster
of 100 nodes. The propose programming framework ena-
bles developers and analysts to quickly and easily write
efficient and robust NGS tools, many of which may be
incorporated into large-scale sequencing projects like the
1000 Genomes Project and The Cancer Genome Atlas.

REFERENCES
[1] Ross MG, Russ C, Costello M, et al. “Characterizing and measur-

ing bias in sequence data.” Gen Biol. 2013;14:R51.
https://doi.org/10.1186/gb-2013-14-5-r51

[2] Liu L, Li Y, Li S, et al. “Comparison of next-generation sequenc-
ing systems.” J Biomed Biotechnol. 2012; 2012: 251364.

[3] http://dnasequencing.com, last visited: June 20, 2016.
https://doi.org/10.1155/2012/251364

[4] Zhao, Xi, et al. “Combining Gene Signatures Improves Prediction
of Breast Cancer Survival.” Oslo, Norway: Department of Genet-
ics, Institute for Cancer Research, Oslo University Hospital, 2011.

[5] http://bio-bwa.sourceforge.net/ ,last visited: June 20, 2016.
[6] Mahmoud Parsian, “Data Algorithms,” O’Reilly Media, 2015.
[7] McKenna, Aaron, et al. "The Genome Analysis Toolkit: a

MapReduce framework for analyzing next-generation DNA se-
quencing data." Genome research 20.9 (2010): 1297-1303.
https://doi.org/10.1101/gr.107524.110

[8] DePristo, Mark A., et al. "A framework for variation discovery
and genotyping using next-generation DNA sequencing da-
ta." Nature genetics43.5 (2011): 491-498 https://doi.org/10.1038/
ng.806

[9] Schatz, Michael C., Ben Langmead, and Steven L. Salzberg.
"Cloud computing and the DNA data race." Nature biotechnolo-
gy 28.7 (2010): 691.

AUTHORS
Samy Ghoneimy and Samir Abou El-Seoud are with

the Faculty of Informatics and Computer Science, British
University in Egypt, Cairo, Egypt (selseoud@yahoo.com)

Submitted 23 October 2016. Published as resubmitted by the authors
24 November 2016.

20 http://www.i-jes.org

	iJES – Vol. 4, No. 4, 2016
	A MapReduce Framework for DNA Sequencing Data Processing

