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Abstract—Genomics and Next Generation Sequencers 
(NGS) like Illumina Hiseq produce data in the order of   200 
billion base pairs in a single one-week run for a 60x human 
genome coverage, which  requires modern high-throughput 
experimental technologies that can  only be tackled with high 
performance computing (HPC) and specialized software 
algorithms called   “short read aligners”. This paper focuses 
on the implementation of the DNA sequencing as a set of 
MapReduce programs that will accept a DNA data set as a 
FASTQ file and finally generate a VCF (variant call format) 
file, which has variants for a given DNA data set. In this 
paper MapReduce/Hadoop along with Burrows-Wheeler 
Aligner (BWA), Sequence Alignment/Map (SAM)  tools, are 
fully utilized to provide various utilities for manipulating 
alignments, including sorting, merging, indexing,  and gen-
erating alignments. The Map-Sort-Reduce process is de-
signed to be suited for a Hadoop framework in  which each 
cluster is a traditional N-node Hadoop cluster to utilize all of 
the Hadoop features like HDFS, program  management and 
fault tolerance. The Map step performs multiple instances of 
the short read alignment algorithm   (BoWTie) that run in 
parallel in Hadoop. The ordered list of the sequence reads 
are used as input tuples and the  output tuples are the align-
ments of the short reads. In the Reduce step many parallel 
instances of the Short  Oligonucleotide Analysis Package for 
SNP (SOAPsnp) algorithm run in the cluster. Input tuples 
are sorted  alignments for a partition and the output tuples 
are SNP calls. Results are stored via HDFS, and then ar-
chived in  SOAPsnp format.   The proposed framework ena-
bles extremely fast discovering somatic mutations, inferring 
population genetical  parameters, and performing associa-
tion tests directly based on sequencing data without explicit 
genotyping or  linkage-based imputation. It also demonstrate 
that this method achieves comparable accuracy to alterna-
tive  methods for sequencing data processing.   

Index Terms—Next Generation Sequencers; short read 
aligners; short read alignment algorithm; DNA sequencing 
data processing 

I. INTRODUCTION 
Today, genome sequencing machines (such as Illumi-

na’s HiSeq 4000) are able to generate thousands of gi-
gabases of DNA and RNA sequencing data in a few hours 
for less than US$1,000 (a few years ago, the price was 
over US$100,000, and sequencing the first human genome 
cost about US$3 billion) [1, 2]. 

Success in biology and the life sciences depends on our 
ability to properly analyze the big data sets that are gener-

ated by these technologies, which in turn requires us to 
adopt advances in informatics. Map!Reduce/Hadoop and 
Spark enable us to compute and analyze thousands of 
gigabytes/petabytes of data in hours (rather than days or 
weeks). For example, Spark was recently used to sort 100 
TB of data using 206 machines in 23 minutes. 

In simple terms, DNA sequencing is the sequencing of 
whole genomes (such as human genomes). According to 
[3] “if finding DNA was the discovery of the exact sub-
stance holding our genetic makeup information, DNA 
sequencing is the discovery of the process that will allow 
us to read that information.” 

The main function of DNA sequencing is to find the 
precise order of nucleotides within a DNA molecule. Al-
so, DNA sequencing is used to determine the order of the 
four bases—adenine (A), guanine (G), cytosine (C), and 
thymine (T)—in a strand of DNA. 

The challenges of DNA sequencing are many [4], but 
the most important ones are: 

1. There are several sequencing technologies to gener-
ate FASTQ files, and the lengths of DNA sequences 
are different for each sequencing technology.  

2. The input data (FASTQ data) size is big (a single 
DNA sequence sample can be up to 900 GB).  

3. With a single powerful server, it takes too long (up to 
80 hours) to process one DNA sequence and extract 
variants such as single nucleotide polymorphisms 
(SNPs).  

4. There are many algorithms and steps involved in 
DNA sequencing, so selecting the proper combina-
tions of open source tools is a serious challenge. For 
example, there are quite a few mapping/alignment 
algorithms and parameters.  

5. Scalability—that is, optimizing the number of map-
pers and reducers—is difficult to achieve. 

 

A high-level DNA sequencing workflow is presented in 
Figure 1. As we mentioned above, our focus in this paper 
will be implementing DNA sequencing as a set of 
MapReduce programs that will accept a DNA data set as a 
FASTQ file and finally generate a VCF (variant call for-
mat) file, which has variants for a given DNA data set. 

One of the major goals of DNA sequencing is to find 
variants, since most of our DNA is identical; only a very 
small percent differs from person to person. One im-
portant example is the identification of single nucleotide 
polymorphisms (SNPs). The identification and extraction 
of SNPs from raw genetic sequences involves many algo-
rithms and the application of a diverse set of tools 
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II. THE DNA SEQUENCING PIPELINE 
The DNA sequencing pipeline is illustrated in Figure 2 

and includes the following key steps [6]: 
1. Input data validation: performing quality control on 

input data such as FASTQ files 
2. Alignment: mapping short reads to the reference ge-

nome 
3. Recalibration: visualizing and post-processing the 

alignment, including base quality recalibration 
4. Variant detection: executing the SNP calling proce-

dure along with filtering SNP candidates 
 

There is plenty of data to analyze and apply DNA se-
quencing to, and there are many open source algorithms 
for completing the previous four steps. Choice of these 
open source tools will significantly affect the final results. 

 
Figure 1.  View of DNA sequencing 

 
Figure 2.  DNA sequencing pipeline 

III. INPUT DATA FOR DNA SEQUENCING 
The most common format for DNA sequencing data is 

FASTQ, a text-based format for storing both a biological 
sequence and its quality scores. For a given FASTQ file, 
every four lines represent a single DNA sequence. 

The general syntax of a FASTQ file is as follows: 
<fastq>:= <block>+ 
<block>:=@<seqname>\n<seq>\n[<seqname>]\n<qual> \n 
<seqname>:= [A-Za-z0-9_.:-]+ 
<seq>:= [A-Za-z\n\.~]+ 
<qual>:= [!-~\n]+ 
 
A practical example is given below: 
@NCYC361-11a03.q1k bases 1 to 1576 
GCGTGCCCGAAAAAATGCTTTTGGAGCCGCGC

GTGAAAT... 
+NCYC361-11a03.q1k bases 1 to 1576 
!)))))****(((***%%((((*(((+,**(((+**+,-... 
 
FASTQ data can be paired or non-paired. If it is paired, 

then our input for the DNA sequencing will be a pair of 
files: left_file.fastq and right_file.fastq. If it is nonpaired, 
there will be a single file: file.fastq. 

IV. BACKGROUND AND RELATED WORK FOR FRAMEWORKS 
USED FOR DNA SEQUENCING AND MAPREDUCE 

McKenna, Aaron, et al [7] have developed a framework 
to enable the development of analysis tools for NGS using 
MapReduce. This framework is called Genome Analysis 
Toolkit (GATK). The aim of GATK is to provide a struc-
tured programming framework that simplify the analysis 
of NGS by developing efficient, robust, and scale-tolerant 
NGS analysis tools. It is mainly based on covering most of 
the analysis tool needs by providing small rich set of data 
access patterns. GATK decouples and splits the infrastruc-
ture needed to access the NGS data, and the specific logic 
to each analysis tool. This way, it enables splitting some 
analysis calculations from data management infrastructure 
which provides more correctness, stability, and CPU and 
memory efficiency. This also results in the ability for 
automatic parallelization of distributed clusters and shared 
memory machines. GATK eliminates the problem of the 
complexity of analysing and manipulating the huge data 
generated and used while using DNA sequencing which 
enables the developers and researchers to focus more on 
the algorithms and analysis methods they are designing 
and developing. All of this makes GATK one of the most 
important programming frameworks for developing NGS 
tools. 1000 Genomes Project and the Cancer Genome 
Atlas are considered as two main examples for the devel-
oped NGS tools based on the GATK programming 
framework. 

DePristo, Mark A., et al [8] have developed another 
framework which is an analytic and unified one. The aim 
of this framework is to explore the differences between 
several samples that achieve specific results while using 
five sequencing technologies and three experimental de-
signs. These sequencing technologies can be summarized 
as following:  

1. Initial read mapping 
2. Local realignment around indels 
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3. Base quality score recalibration 
4. SNP discovery and genotyping  
5. Machine learning  

 

SNP discovery and genotyping is to find all the poten-
tial variants while machine learning is for the separation 
between true segregating variation and machine artifacts 
common to NGS technologies. The developed framework 
provides an integrated approach to data processing and 
variation discovery from NGS data. This approach was 
designed to meet the required specifications. The experi-
mentations done were comprehensive as several and dis-
tinct sequencing technologies were applied. The data used 
for the experimentation was generated from the Board 
Institute and 1000 Genomes project. After the experimen-
tation of these five sequencing technologies, results 
showed that the new designed and developed framework 
achieves more accurate results than not using it. Moreo-
ver, results showed that biological DNA variant has a 
great impact in increasing the sensitivity and specificity of 
variant discovery from NGS data and that because of the 
following: 

1. The enhanced calibration of base quality scores in-
troduced Local realignment for indels 

2. Evaluation of multiple samples from a population  
 

The developed framework also provides more modular-
ity and scalability that result in high quality variant and 
genotype calls production. 

As mentioned by Schatz, Michael C., et al [9], using 
such parallel programmatic frameworks ease the parallel 
computation process to the developers and researchers 
with providing efficiency and fault tolerance. Another 
example for such frameworks is the MPI (Message Pass-
ing Interfaces) which enables the developer to design and 
implement parallel programs. The disadvantage of using it 
is its software development complication. Condor 4 is 
another example which is considered as a batch pro-
cessing system. It is one of the most effective systems to 
run multiple independent parallel computations. But it is 
not working as efficient with the more complicated paral-
lel algorithms. MapReduce framework is considered as 
one of the most efficient frameworks with most of the 
programs. It provides the ease to the programmer while 
taking care of handling job scheduling, fault tolerance, 
distributed aggregation and other management tasks. 
MapReduce framework was initially developed by Google 
and its main task was to streamline analyses of huge 
amount of webpages. However, the MapReduce imple-
mentation by Google is confidential and it is not open 
source, that’s why Hadoop16 is more popular and works 
as an alternative which managed by Apache Software 
Foundation. The main idea of the MapReduce is to go 
through some Map, Reduce and shuffle parallel computa-
tional steps. These steps can be summarized in these three 
points: 

1. Map: reads are mapped to the reference genome in 
parallel on multiple machines 

2. Shuffle: aggregation of the alignments to be on the 
same chromosome and being sorted by position 

3. Scan: scanning of the sorted alignments for biologi-
cal events identification in each group 

 

The feature of parallelism makes a program works bet-
ter with larger clusters. Hadoop 19, 22, 25, and 26 works 

well with several genomic software while providing them 
with better scalability. However, not all genomic pipelines 
fits with it. In general, Hadoop and cloud computing 
works well with programs which have processors that 
work independently for long periods and don’t coordinate 
with each other. 

V. MAPREDUCE ALGORITHMS FOR DNA SEQUENCING 
The first step in the DNA sequencing pipeline is vali-

dating the format of FASTQ files. With validation, we 
want to verify the quality of the input files. Input data 
validation tools enable the quality control checks on the 
FASTQ file format coming from high-throughput se-
quencing pipelines.  

There are many open source tools for input data valida-
tion. For example, for FASTQ validation you have these 
options; FastQValidator and FastQC 

In this section we will focus on mapping/alignment, re-
calibration, and variant detection algorithms using 
MapReduce. 

A. DNA sequence alignment  
Sequence alignment is the comparison of two or more 

DNA or protein sequences. The main purpose of sequence 
alignment is to highlight similarity between the sequences. 
For global sequence alignment, consider the following 
example with two input sequences over the same alphabet: 
• Sequence 1: GCGCATGGATTGAGCGA 
• Sequence 2: TGCGCCATTGATGACCA 

 

Our output is a possible alignment of the two sequenc-
es: 
• -GCGC-ATGGATTGAGCGA 
• TGCGCCATTGAT-GACC-A 

 

We can observe three elements in the possible align-
ment output: 
• Perfect matches (in bold), Mismatches (underlined) 
• Insertions and deletions (called indels, presented ital-

ic formatting) 
 

For the alignment phase, we will use MapRe-
duce/Hadoop along with the following open source tools: 
• Burrows-Wheeler Aligner (BWA), an efficient pro-

gram that aligns relatively short nucleotide sequences 
against a long reference sequence such as the human 
genome [5]. 

• Sequence Alignment/Map (SAM) tools, which pro-
vide various utilities for manipulating alignments in 
the SAM format, including sorting, merging, index-
ing, and generating alignments in a per-position for-
mat [5]. We will be working with files in the BAM 
format, which is the binary format of a SAM file. 

 

Typical DNA sequencing for a single data sample 
(about 400–900 GB in the FASTQ file format) might take 
70+ hours for a very powerful single server. The goal of 
the MapReduce algorithm is to find the answer in a few 
hours and make the solution scalable. 

Since most open source tools (such as BWA, 
SAMtools, and GATK) for alignment, recalibration, and 
variant detection have Linux command-line interfaces, at 
each MapReduce phase our map() and reduce() functions 
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will call Linux shell scripts and provide the proper param-
eters.  

To execute these shell scripts, we will use the Free-
Marker templating language, which will merge Java ob-
jects and data structures with a template to create a proper 
shell script (see Figure 18-3). To distinguish one DNA 
sequence from another, for each analysis we will assign 
and utilize a unique GUID called the “analysis ID” (this 
helps to keep our input and output directories organized). 

The MapReduce solution is presented in three steps, 
these correspond to steps 2–4 in the DNA sequencing 
pipeline described above. First, data is partitioned and 
merged during each stage.  
A.1 Step 1: Alignment 

Before the alignment step starts, we partition our DNA 
sequence FASTQ file(s) into sets of 8 million lines (or 2 
million sequences; remember, in FASTQ format, each 
group of four lines represents a single DNA sequence). As 
mentioned previously, if FASTQ data is paired, our input 
is a pair of files: left_file.fastq and right_file.fastq. If it is 
non-paired, our input will be a single file: file.fastq. For 
paired data, we will partition as follows (for paired data, 
an alignment map() function will process 
left_file.fastq.NNNN and right_file.fastq.NNNN together): 

left_file.fastq.0000 right_file.fastq.0000 
left_file.fastq.0001 right_file.fastq.0001 
left_file.fastq.0002 right_file.fastq.0002 …. 
For non-paired data, we will partition as follows (for 

non-paired data, an alignment map ( ) function will pro-
cess file.fastq.NNNN): 

file.fastq.0000 
file.fastq.0001 
file.fastq.0002 …. 
Each partition (also known as a chunk) will be con-

sumed by a map( ) function. The partition size used here is 
(8 million lines, equal to 2 million sequences) is just for 
illustration purposes; the size we use for partitions should 
be determined by the size of your Hadoop cluster. That is, 
if we have a cluster of 50 nodes and each node can handle 
4 mappers, then you should split your FASTQ file into 
200 partitions. 

For example, if the total input size is about 400 GB, 
then we should partition the input into 2 GB chunks (this 
way, we will maximize the usage of all your mappers). 

The map( ) function will read the input file (one single 
chunk) and will generate an aligned file in BAM format. 
Here, the map( ) function uses BWA to perform the 
alignment process. Once the alignment is done, then it will 
extract all chromosomes (1, 2, ..., 22, 232) and save them 
in the MapReduce filesystem (HDFS, for Hadoop). 

For example, if we have 800 partitions, we will have 
generated 800 files per chromosome (23 * 800 = 18,400 
files). There will be only 23 reducers (one per chromo-
some). 

The reducer will concatenate (merge and sort) all chro-
mosomes for a specific chromosome ID. All chromo-
somes 1 will be concatenated into a single file called 
chr1.bam, all chromosomes 2 will be concatenated into a 
single file called chr2.bam, and so on. Then each reducer 
will partition the merged BAM file into small files that 
will be used as input to the recalibration phase. 

A.1.1 Mapper for the Alignment phase 
For the alignment mapper shown in Example 18-1, our 

solution will accept files in the FASTQ format as input 
and will generate partitioned chromosomes (chr1, chr2, 
….chr22, chr23). 
Alignment phase: map( ) function 
1 * @param key is a key generated by MapReduce 
       framework 
2 * @param value is a partitioned FASTQ file (may be 
      8M lines = 2M sequences)  */ 
3 map (key, value) { 
4 // note: chr23 = concat(chrX, chrY, chrM) 
5 alignedBAMFile = alignByBWA(value); 
6 (chr1File, chr2File, ..., ch23File) =  
     partitionByChromosome(alignedFile); 
7 for (i=1, i < 24; i++) {emit(chr<i>, chr<i>File);}} 
 

The alignByBWA() function accepts a partitioned 
FASTQ file, performs the alignment, and finally partitions 
the aligned file by chromosome. All of these actions are 
done by a shell script template. Portions of this template 
are listed in the following Example. 
 
Alignment phase: nonpaired input 
1 #!/bin/bash 
2 export BWA=<bwa-install-dir>/bwa 
3 export SAMTOOLS=<samtools-install-dir>/samtools 
4 export BCFTOOLS=<bcftools-install-dir>/bcftools 
5 export VCFUTILS=<bcftools-install-dir>/vcfutils.pl 
6 export HADOOP_HOME=<hadoop-install-dir> 
7 export HADOOP_CONF_DIR=<hadoop-install-dir> 
    /conf 
8 # data directories 
9 export TMP_HOME=<root-tmp-dir>/tmp 
10 export BWA_INDEXES=<root-index-dir>/ref/bwa 
11 # define ref. genome 
12 export REF=<root-reference-dir>/hg19.fasta 
14 ### step 1: alignment 
15 # the KEY uniquely identifies the input file 
16 KEY={key} 
17 # input_file 
18 export INPUT_FILE=${input_file} 
19 export ANALYSIS_ID=${analysis_id} 
20 NUM_THREAD=3 
21 cd $TMP_HOME 
22 $BWA aln -t $NUM_THREAD $REF $INPUT_FILE > 
     out.sai 
23 $BWA samse -r $REF out.sai $INPUT_FILE|  
     $SAMTOOLS view -Su -F 4 - | \ 
24 $SAMTOOLS sort - aln.flt 
25 # start indexing aln.flt.bam file 
26 $SAMTOOLS index aln.flt.bam 
27 # partition aligned data 
28 for i in {1..22} 
29 do 
30 CHR=chr$i 
31 $SAMTOOLS view -b -o $CHR.bam aln.flt.bam  
     $CHR 
32 output_file=/genome/dnaseq/output/$ANALYSIS_ID/ 
       $CHR/$KEY.$CHR.bam 
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33 $HADOOP_HOME/bin/hadoop fs -put $CHR.bam 
     $output_file 
33 done 
34 # do the same thing for X, Y and M chromosomes 
35 $SAMTOOLS view -b -o chr23.bam aln.flt.bam chrX 
     chrY chrM 
36 output_file=/genome/dnaseq/output/$ANALYSIS_ 
     ID/chr23/$KEY.chr23.bam 
37 $HADOOP_HOME/bin/hadoop fs -put chr23.bam 
     $output_file 
38 exit 0 
 

The provided shell script handles non-paired data only. 
If the input files are paired, then the preceding lines 25–27 
are replaced by the following code in. 
Alignment phase: paired input 
1 $BWA aln -t $NUM_THREAD $RE $INPUT_ 
      FILE_1 > out1.sai 
2 $BWA aln -t $NUM_THREAD $REF $INPUT_ 
     FILE_2 > out2.sai 
3 $BWA sampe -r $INFO_RG $REF out1.sai out2.sai 
     $INPUT_FILE_1 $INPUT_FILE_2 | \ 
4 SAMTOOLS view -Su -F 4 - | $SAMTOOLS sort 
     - aln.flt 
 
4.1.1.2  Reducer for the alignment phase 

For the alignment phase, there will be exactly 23 reduc-
ers (one reducer per chromosome). 

The reducer key will be a composite key of 
<chrID><;><analysisID>, where the chromosome ID is 
labeled {01, 02, 03, ..., 23}. Note the chromosome ID of 
23 includes chrM, chrX, and chrY. Each reducer will 
merge all aligned .bam files into a single merged 
chr<i>.bam file: 
chr<i>.bam = merge the following files: 
chr<i>.bam.0000 
chr<i>.bam.0001 …. 
chr<i>.bam.0437 …. 

After merging all the files into a single chr<i>.bam file, 
we partition chr<i>.bam into many small .bam files to be 
fed to the recalibration mapper of step 2. The partitioned 
files will be: chr<i>.bam.j (j = 1, 2, 3, ..., 100+) 

The reduce ( )   function  for the  alignment  phase  is 
presented as follow. 
Alignment phase: reduce() function 
1 * @param key is a <chrID><;><analysis_id> 
2 * where chrID is in (1, 2, 3, ..., 23) 
3 * @param value is ignored (not used) 
4 reduce(key, value) { 
5 DNASeq.mergeAllChromosomesAndPartition(key); } 
 

The bulk of the work lies with the 
DNASeq.mergeAllChromosomesAndPartition( ) method, 
which merges all aligned .bam files for a specific chromo-
some as shown in the following example. As mentioned 
previously, the final merged file is then partitioned for 
further processing by the recalibration phase (step 2). 

 

mergeAllChromosomesAndPartition() method 
1 * reducerKey=<chrID>;<analysis_id> 
2 * where chrID=1, 2, ..., 22, 23 (23 includes chrM, 

chrX, chrY)  */ 
3 public static void mergeAllChromosomes 
                                 AndPartition(String reducerKey) 
4 throws Exception { 
5 // split the line: each line has two fields (fields are 
      separated by ";") 
6 String[ ] tokens = reducerKey.split(";"); 
7 String chrID = tokens[0]; 
8 String analysisID = tokens[1]; 
9 Map<String, String> templateMap =  
                                       new HashMap<String, String>(); 
10 templateMap.put("chr_id", chrID); 
11 templateMap.put("analysis_id", analysisID); 
12 mergeAllChromosomesBamFiles(templateMap); 
13 partitionSingleChromosomeBam(templateMap);} 
 

As we can see from the mergeAllChromosomesAnd-
Partition( ) method, both of the helper methods, mer-
geAllChromosomesBamFiles( ) and partitionSingleChro-
mosomeBam( ), use the FreeMarker template engine to 
pass the required Java objects and then execute shell 
scripts on behalf of the reducers. The definition of the 
mergeAll ChromosomesBamFiles( ) method is given in 
the following Example. 
mergeAllChromosomesBamFiles( ) method 
1 * This method will merge the following files and create 
      a single chr<i>.bam file 
2 * where i is in {1, 2, ..., 23}: 
3 * HDFS: /.../chr<i>/chr<i>.bam.0000 
4 * HDFS: /.../chr<i>/chr<i>.bam.0001 
5 * ..., 6 * HDFS: /.../chr<i>/chr<i>.bam.0437 
7 * Then merge all these (.0000, .0001, ..., .0437) files 
        and save the result in 
8 * /data/tmp/<analysis_id>/chr<i>/chr<i>.bam 
9 * Once chr<i>.bam is created, then we partition it into 
         small .bam files, 
10 * which will be fed to RecalibrationDriver (step 2 of 
        DNA sequencing)    */ 
11 public static void mergeAllChromosomesBamFiles 
     (Map<String, String> templateMap) 
12 throws Exception { 
13 TemplateEngine.initTemplatEngine( ); 
14 String templateFileName = <freemarker-template-file- 
      as-a-bash-script>; 
15 // create the actual script from a template file 
16 String chrID = templateMap.get("chr_id"); 
17 String analysisID = templateMap.get("analysis_id"); 
18 String scriptFileName = createScriptFileName(chrID 
     , analysisID); 
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19 String logFileName = createLogFileName(chrID, 
                                         analysisID); 
20 File scriptFile = TemplateEngine.createDynamic 
                                ContentAsFile(templateFileName, 
21 templateMap, scriptFileName); 
22 if (scriptFile != null) { 
23 ShellScriptUtil.callProcess(scriptFileName, 
                                                 logFileName);}} 

The TemplateEngine.createDynamicContentAsFile( ) 
method does the magic: it takes two inputs (templateFile-
Name and templateMap) and produces a scriptFile Name. 
Basically, all parameters are passed to templateFileName 
and then a new shell script is generated as a scriptFile-
Name, which is then executed on a reducer’s behalf. 

There are two important classes, ShellScriptUtil and 
TemplateEngine, that merit some discussion. The Shell-
ScriptUtil.callProcess() method accepts a shell script file 
(first parameter), which it executes. It then writes all logs 
from the script execution to a logfile (second parameter). 
Logging is asynchronous, meaning that as you execute the 
script, the logfile immediately becomes available. 

The TemplateEngine class is defined in the following 
Example. It just implements the basic notion of a templat-
ing engine: it accepts a template (as a text file with key 
holders) and key-value pairs as a Java map and then cre-
ates a brand new file in which all keys in the template are 
replaced by values. 
TemplateEngine class 
1 import java.io.File; 
2 import java.io.Writer; 
3 import java.io.FileWriter; 
4 import java.util.Map; 
5 import java.util.concurrent.atomic.AtomicBoolean; 
6 import freemarker.template.Template; 
7 import freemarker.template.Configuration; 
8 import freemarker.template.DefaultObjectWrapper; 
9 public class TemplateEngine { 
10 private static Configuration 
     TEMPLATE_CONFIGURATION = null; 
11 private static AtomicBoolean initialized =  
                             new AtomicBoolean(false); 
12 private static String TEMPLATE_DIRECTORY = 
                                               "/home/dnaseq/template"; 
13 public static void init() throws Exception { 
14 if (initialized.get()) { 
15 return; } 
16  initConfiguration ( ); 
17 initialized.compareAndSet(false, true); } 
18 static { 
19 if (!initialized.get( )) { 
20 try { init( ); } 
21 catch(Exception e) {theLog-

ger.error("TemplateEngine init failed at initializa-
tion.", e);}}} 

22 private static void initConfiguration ( )  
     Throws Exception TEMPLATE_CONFIGURATION 

= new Configuration( ); 
23 TEMPLATE_CONFIGURATION.setDirectoryFor 
                                                       TemplateLoading ( 
24 new File(TEMPLATE_DIRECTORY)); 
25 TEMPLATE_CONFIGURATION.setObjectWrapper 
                                        (new DefaultObjectWrapper()); 
26 TEMPLATE_CONFIGURATION.setWhitespace 
                                                            Stripping(true); 
TEMPLATE_CONFIGURATION.setClassicCompatible(
true); } 
61 public static File createDynamic ContentAsFile ( 
                                                                            ...){...} 
 

The most important method of the TemplateEngine 
class, createDynamicContentAs File( ), is defined in the 
following Example. This method accepts a template file 
that has key holders and a set of key-value pairs and then 
generates a new file by substituting the given keys in the 
key holders. 
 
TemplateEngine.createDynamicContentAsFile() meth-
od * @param templateFile is a template filename such as 
script.sh.template 
* @param keyValuePairs is a set of (K,V) pairs 
* @param outputFileName is a generated filename from 
templateFile 
public static File createDynamicContentAsFile(String 
templateFile, 
Map<String,String> keyValuePairs, 
String outputFileName) 
throws Exception { 
if ((templateFile == null) || (templateFile.length() == 0))  
{  return null; } 
Writer writer = null;  try { 
 Template template = 
TEMPLATE_CONFIGURATION.getTemplate(template
File); 
File outputFile = new File(outputFileName); 
writer = new BufferedWriter (new FileWriter 
                                                     (outputFile) ); 
template.process (keyValuePairs, writer); 
writer.flush ( );  return outputFile;} 
finally {if (writer != null) {writer.close();} 
 
A.2 Step 2: Recalibration 

Recalibration is the second phase of our MapReduce 
DNA sequencing pipeline. In the recalibration step, each 
map( ) function will work on a specific aligned chromo-
some. 

The mapper will perform duplicate marking, local rea-
lignment, and recalibration. The goal of map( ) is to create 
a local recalibration table filled with covariates. These 
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local covariates will be merged by the single reducer to 
create the final single global file (recalibration table) that 
will be used by the map( ) function of the third and final 
step of DNA sequencing, variant detection. 

Following the alignment phase, we create special 
metadata to be used by the recalibration mappers. This 
metadata has the following format: 
<counter><;><partitioned-bam-file><;><ref_genome> 
                                                           <;><analysis_id> 
The recalibration mapper is presented in the following 
Example. 
Recalibration phase: map() function 
 
 // key is MR generated, ignored here 
 // value is: <counter><;><partitioned-bam-file> 
   <;><ref_genome><;><analysis_id> 
 map (key, value) { 
 // actual file location will be: 
// /data/dnaseq/align/ANALYSIS_ID/merged.bam. 
   <KEY> 
 Map<String, String> tokens = 
 DNASeq.tokenizeRecalibrationMapperInput(value); 
 String reducerKey = tokens.get("analysis_id"); 
 DNASeq.recalibrationMapper(tokens); 
 emit(reducerKey, value);} 
 public static void recalibrationMapper(Map<String, 
     String> templateMap) 
 throws Exception { 
 TemplateEngine.init(); 
 String key = templateMap.get("key"); 
 String analysisID = templateMap.get("analysis_id"); 
 String scriptFileName = createScriptFile-
Name("recalibration_mapper", key, 
analysisID); 
String logFileName = createLogFile-
Name("recalibration_mapper", 
key, analysisID); 
 File scriptFile = TemplateEngine.createDynamic 
    ContentAsFile( 
"recalibration_mapper.template", templateMap, 
 scriptFileName); 
 if (scriptFile != null) { 
 ShellScriptUtil.callProcess(scriptFileName, 
     logFileName); }} 
 

The recalibration mapper template is defined as follow. 
Recalibration mapper template 
#!/bin/bash 
### Recalibration mapper template 
 ### call snp (get variants) up to calculation of 
           ...recal.table.csv 
### once recal.table.csv is created, it will be saved in 

          HDFS 
### input file: aligned bam file (partitioned from a 
          chr<i>.bam) 
## input file: aligned bam file (partitioned from a 
          chr<i>.bam) 
## copy HDFS_BAM_FILE to LOCAL_BAM_FILE 
HDFS_BAM_FILE=${hdfs_bam_file} 
BAM_FILE='basename $HDFS_BAM_FILE'; 
$HADOOP_HOME/bin/hadoop fs –copyToLocal 
     $HDFS_BAM_FILE. 
# 
# put 4.recal.table.csv into GLOBAL/SHARED 
     directory 
# 
export SHARED_RECAL_DIR= 
                                    /dnaseq/recal/${analysis_id} 
## marking duplicates 
java -Xmx4g\Djava.io.tmpdir=$JAVA_IO_TMPDIR \ 
-jar $PICARD_JAR/MarkDuplicates.jar \ 
I=$BAM_FILE \ 
O=2.mark.out.bam \ 
M=2.mark.out.metrics \ 
AS=true 
## local realignment 
samtools index 2.mark.out.bam 
java -Xmx4g \ 
-Djava.io.tmpdir=$JAVA_IO_TMPDIR \ 
-jar $GATK_JAR/GenomeAnalysisTK.jar \ 
-T IndelRealigner \ 
-I 2.mark.out.bam \ 
-o 3.realigned.out.bam \ 
-R $REF \ 
-targetIntervals $DBSNP/dbsnp_indel.intervals \ 
-known $DBSNP/dbsnp_indel.vcf \ 
--consensusDeterminationModel KNOWNS_ONLY \ 
-LOD 0.4 
## base quality recalibration 
 java -Xmx4g \ 
-Djava.io.tmpdir=$JAVA_IO_TMPDIR \ 
-jar $GATK_JAR/GenomeAnalysisTK.jar \ 
-T CountCovariates \ 
-I 3.realigned.out.bam \ 
-recalFile 4.recal.table.csv \ 
-R $REF \ 
-knownSites $DBSNP/dbsnp.vcf \ 
-cov QualityScoreCovariate \ 
-cov ReadGroupCovariate \ 
-cov PositionCovariate \ 
-cov DinucCovariate 
# copy result to shared directory 
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cp -f 4.recal.table.csv $SHARED_RECAL_DIR/ 
     $KEY.4.recal.table.csv 
## we also need to save 3.realigned.out.bam (which  
## will be needed in variant_detection_ 
                                                        mapper.sh.template) 
cp -f 3.realigned.out.bam $SHARED_RECAL_DIR/  
      $BAM_FILE.3.realigned.out.bam 
### so we will have: 
### $SHARED_RECAL_DIR/$KEY.4.recal.table.csv 
             for KEY=1, 2, 3, .... 
### $SHARED_RECAL_DIR/$BAM_FILE.3.  
            realigned.out.bam for KEY=1, 2, 3, .... 
### (will be input to variant_detection_ 
                                                           mapper.sh.template) 
The recalibration reducer template is defined in the fol-
lowing Example. 
Recalibration reducer template 
1 #!/bin/bash 
3 ### Merge all -.4.recal.table.csv files (generated by 
          individual .bam files) 
4 ### into a single recal.table.merged.final.txt file. 
5 ### 
6 ### Once recal.table.merged.final.txt is created, it will 
          be saved in 
7 ### /dnaseq/recal/${analysis_id}/ and will be fed into 
          VariantDetectionMapper. 
8 # All -.4.recal.table.csv files are in $SHARED_ 
                                                 RECAL_ DIR  directory 
9 export SHARED_RECAL_DIR=/dnaseq/recal/ 
     $ANALYSIS_ID/ 
100recal_files='find $SHARED_RECAL_DIR –name 
     '*.4.recal.table.csv' | sort' 
11 num_of_recal_files='find $SHARED_RECAL_DIR – 
     name '*.4.recal.table.csv' | wc -1' 
12 ### NOTE: all calculations will take place at 
            $SHARED_RECAL_DIR 
13 # prepare java input files 
14 java_input_files="" 
15 for file in $recal_files 
16 do 
17 echo "preparing java input file=$file" 
18 java_input_files="$file $java_input_files" 
19 done 
20 cd $SHARED_RECAL_DIR 
21 current_dir='pwd' 
22 export MERGE_COVARIATES= 
                                            JavaMergeCovariates 
23 $JAVA_HOME/bin/java -Xms4g -Xmx12g 
     $MERGE_COVARIATES \ 
24 -i "$java_input_files" -o recal.txt.unsorted 

25 # sort the file accordingly 
26 /bin/sort -t, -k 2,2n -k3,3n -k4,4 recal.txt.unsorted > 
      recal.txt.sorted 
27 # The recal.txt.sorted file will be used by the Variant 
        Detection Mapper. 

AStep3: Variant detection 
Variant detection (also known as SNP calling) is the fi-

nal phase of DNA sequencing. The goal of this step is to 
generate variants in VCF (variant call format; developed 
by the 1000 Genomes Project). The map() function will 
use the BAM file generated by the map() function of the 
recalibration step, and the final single “recalibration table” 
file. The map() function will use open source tools (such 
as GATK and SAMtools) to generate partial variants 
(which are raw BCF—binary call format—files). The 
reducer will concatenate (sort and merge) the raw BCF 
files to generate a single VCF file. 

Once the VCF file is created, it can be used by many 
analytical algorithms, such as allelic frequency (covered in 
Chapter 21), family analysis, and the Cochran-Armitage 
trend test. 

Variant detection is the process of finding bases in the 
NGS (next-generation sequencing) data that differ from 
the reference genome, such as hg18 or hg19; these refer to 
the version of the human genome assembly and determine 
the version of the corresponding reference annotations (for 
details, see http://bit.ly/build_36_1_genome). 
 

B. DNA sequence alignment 
The mapper accepts a chunked “realigned .bam” file 

and performs the following transformations on it: 
• Base quality recalibration 
• Variant calling and filtering 
The bulk of the work is done by the 

DNASeq.theVariantDetectionMapper( ) method, which 
accepts the required parameters and creates a proper shell 
script from a given template.  

Finally, it executes the shell script. The mapper for the 
variant detection phase is provided in the following Ex-
ample. 
Variant detection phase: map( ) function 
1 // key: ignored, not used 
2 // value: <counter><;><3.realigned.out.bam. 
                  <key>><;><ref_genome><;><analysis_id> 
3 // index < 0 > < 1 > < 2 > < 3 > 
4 // value example-1: 0001;/<dir> 
                                  /realigned.out.bam.0001;hg19;208 
5 // value example-2: 0007;/<dir> 
                                  /realigned.out.bam.0007;hg19;208 
6 // NOTE: THERE WILL BE ONE SINGLE REDUCER 
       for variant detection: 
7 // the key for output of reducer will be <analysis_id> 
8 map(key, value) { 
9 Map<String, String> tokens = DNASeq.tokenize 
                                 TheVariantDetectionMapper(value); 
10 String reducerKey = tokens.get("analysis_id"); 
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11 DNASeq.theVariantDetectionMapper(tokens); 
12 emit(reducerKey, reducerKey); } 
 

The theVariantDetectionMapper( ) method, shown in 
following Example, accepts as a parameter the analysis_id 
(which uniquely identifies all file directories for a specific 
DNA sequencing run). 
 
theVariantDetectionMapper( ) method 
1 public static void theVariantDetectionMapper 
                                   (Map<String, String> template-
Map) 
2 throws Exception { 
3 TemplateEngine.init( ); 
4 // create the actual script from a template file 
5 String scriptFileName = "/dnaseq/variant_detection_ 
    mapper_" + 
6 templateMap.get("analysis_id") + "_" + 
                                        templateMap.get("key") +".sh"; 
7 String logFileName = "/dnaseq/variant_detection_ 
    mapper_" + 
8 templateMap.get("analysis_id") + "_" + templateMap. 
                                                             get("key") +".log"; 
9 File scriptFile = TemplateEngine.createDynamic 
    ContentAsFile( 
10 "variant_detection_mapper.template", templateMap, 
       scriptFileName); 
11 if (scriptFile != null) { 
14 ShellScriptUtil.callProcess(scriptFileName,logFile 
      Name); }} 
 
Portions of the variant_detection_mapper.template are 
provided as follow. 
Variant detection mapper template 
 
1 #!/bin/bash 
4 # 1. perform base quality recalibration: 
5 # GATK required that the BAM file extension has to be 
     .bam 
6 samtools index $REALIGNED_OUT_BAM_FILE 
7 # 
8 java -Xmx4g \ 
9 -Djava.io.tmpdir=$JAVA_IO_TMPDIR \ 
10 -jar $GATK_JAR/GenomeAnalysisTK.jar \ 
11 -T TableRecalibration \ 
12 -I $REALIGNED_OUT_BAM_FILE \ 
13 -o 4.recal.out.bam \ 
14 -R $REF \ 
15 -recalFile $SHARED_RECAL_DIR/recal.table. 
      merged.final.txt 
17 # 2. variant calling and filtering 

18 samtools mpileup -Duf $REF -q 1 4.recal.out.bam | 
      bcftools view -bvg ] - > \ 
19 $REALIGNED_OUT_BAM_FILE.raw.bcf 

 
C. DNA sequence alignment 

As noted previously, there will be only one reducer for 
all mappers. This is because we will be merging values to 
create a single output: a VCF file. Accordingly, the reduc-
er does only one thing: creates a VCF file. 
 
Variant detection phase: reducer() function 
1 // key: <analysis_id>, which identifies all data uniquely 
2 // values: ignored 
3 reduce(key, values) {430 | Chapter 18: DNA Sequenc-
ing 
4 DNASeq.theVariantDetectionReducer(key); 
5 emit(key, key);} 
 
 theVariantDetectionReducer( ) method 
1 public static void theVariantDetectionReducer(String 
                                                                        analysisID) 
2 throws Exception { 
3 TemplateEngine.init( ); 
4 Map<String, String> templateMap =  
                                       new HashMap<String, String>(); 
5 templateMap.put("key", "-"); 
6 templateMap.put("analysis_id", analysisID); 
7 // create the actual script from a template file 
8 String scriptFileName = 
                             "/dnaseq/variant_detection_reducer_" + 
9 templateMap.get("analysis_id") +".sh"; 
10 String logFileName = "/dnaseq/variant_detection_ 
      reducer_" + 
11 templateMap.get("analysis_id") +".log"; 
12 File scriptFile = TemplateEngine.createDynamic 
                                ContentAsFile( 
13 "variant_detection_reducer.template", 
14 templateMap, 
15 scriptFileName); 
16 if (scriptFile != null) { 
17 ShellScriptUtil.callProcess(scriptFileName 
                                                     , logFileName); }} 
 

Portions of the variant_detection_reducer.template are 
provided as follows. 
 
Variant detection reducer template 
 
1 #!/bin/bash 
2 ... 
3 # call snp (get variants) 
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4 # concatenate all $KEY.raw.bcf files 
5 # 
6 FINAL_BCF_FILE=$FINAL_DIR/all.raw.bcf 
7 VCF_FILE=$FINAL_DIR/var.flt.vcf 
8 ... 
9 ## 
10 ## Concatenate BCF files. The input files are required 
          to be 
11 ## sorted and have identical samples appearing in the 
     same order. 
12 ## 
13 ALL_BCF_FILES='find $RECAL_DIR/ -name 
     '*.raw.bcf' | sort' 
14 $BCFTOOLS cat $ALL_BCF_FILES > 
     $FINAL_BCF_FILE 
15 # 
16 # begin bcftools & create final VCF file 

17 BCFTOOLS view $FINAL_BCF_FILE | $VCFUTILS 
varFilter > $VCF_FILE 
 

VI. CONCLUSION 
This paper provided a unified computational Map-

Reduce/Hadoop analytical framework to ease the devel-
opment of efficient and robust analysis tools for next-
generation DNA sequencers using the functional pro-
gramming philosophy of MapReduce to enable various 
analyses, particularly population genetic analyses. This 
paper also presented a MapReduce solution for DNA 
sequencing, a very important task in the genome analysis 
ecosystem. Typically, DNA sequencing can be done by a 
powerful computer in 70 hours, but this time can be de-

creased to minutes by a Map-Reduce solution on a cluster 
of 100 nodes. The propose programming framework ena-
bles developers and analysts to quickly and easily write 
efficient and robust NGS tools, many of which may be 
incorporated into large-scale sequencing projects like the 
1000 Genomes Project and The Cancer Genome Atlas. 
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