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Abstract—One of the objectives of the performance measurement of grade-

based higher education is to reduce the failure rate of students. To identify and 

reduce the number of failing students, the learning activities and behaviors of 

students in the classroom must be continuously monitored; however, monitoring 

a large number of students is an extremely difficult task. A penetration of web-

based learning systems in academic institutions revealed the possibility of eval-

uating student activities via these systems. In this paper, we propose an early 

prediction scheme to identify students at risk of failing in a blended learning 

course. We employ a neural network on the set of prediction variables extracted 

from the online learning activities of students in a learning management system. 

The experiments were based on data from 1110 student who attended a compul-

sory, sophomore-level course. The results indicate that a neural-network-based 

approach can achieve early identification of students that are likely to fail; 25% 

of the failing students were correctly identified after the first quiz submission. 

After the mid-term examination, 65% of the failing students were correctly pre-

dicted.  

Keywords—Blended learning course, educational data mining, failure predic-

tion, higher education, neural network 

1 Introduction 

One of the main objectives of higher-education institutions is to provide high-

quality education to their students. Educational quality can be measured by the aca-

demic performance and success of students. The success rate of every individual sub-

ject can impact the overall completion rate of the educational program. To increase 

academic success, it is essential to identify students at risk of failing as early as possi-

ble. This can be achieved by monitoring the learning activities and achievements of 

students during the course. However, it is almost impossible to track student activities 

in conventional teaching environments, particularly if the number of students is rela-

tively large. An introduction of web-based teaching and learning systems in higher 
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education enabled the possibility of processing and evaluating activities in web-based 

educational settings [1, 2].  

Web-based educational systems, namely learning management systems (LMSs), 

generate a large amount of fine-grain data on student learning activities. In popular 

LMSs, instructors are able to check basic learning activity data. However, no func-

tions are available that can help instructors predict the possible outcome and identify 

students in need of assistance. Data-mining and machine-learning techniques have 

enabled the modeling of several time-variant and time-invariant features of students in 

online learning environments [3]. With the increased interest in using data-mining 

methods for educational purposes, several practices have been presented during the 

past two decades. Different data-mining techniques can be applied to LMS data, de-

pending on the desired application [4, 5].  

A primary area of application has been the usage of prediction methods for future 

outcomes. Beck and Woolf presented the successful implementation of a student 

model using previous user data to predict responses for problem solving [6]. Since 

then, prediction became one of the most dominant research domains in this field. 

Researchers have proposed different schemes in which various data-mining methods 

have been employed to predict student performance. Among the techniques used in 

student-performance prediction, the most popular ones are the decision tree, k-nearest 

neighbors, support vector machine, and neural networks [7]. These predictive models 

can be used in performance prediction as a warning system to inform students and 

instructors during the semester. Pistilli and Arnold have presented a leading example 

of an internally developed early warning system to accommodate the needs of at-risk 

students in academic institutions [8]. However, a significant amount of work should 

be conducted to achieve revolutionary prediction results using academic and web-

based learning environment data.  

In this paper, we present a prediction model for failure-prone students that uses 

neural networks in a blended learning course. Five years of data were used to train the 

models; the models were validated by using student data from the beginning of the 

semester for different academic years. Semester data-based cross-validation was con-

ducted to ensure generalization. The results were based on undergraduate student data, 

particularly LMS log data, online quiz scores, mid-term scores, and the final grade 

information of a compulsory, sophomore-level course of the Kumamoto University, 

Japan. In general, blended learning is considered as an efficient method in academic 

institutions to deliver distance education in terms of student experience, as well as 

instructor experience and preference. However, blended-learning courses have a lim-

ited degree of activities in LMS compared with pure online courses. This can raise 

challenges for educators in terms of analyzing LMS data and achieving results for 

action in the same manner that they would in e-learning courses. The accuracy of the 

results presented in this paper proves that there is great potential for early warning 

systems using blended learning course data in academic institutions. 

The remainder of this paper is organized as follows. In Section 2, the findings of 

related study literature are reported. The methodology of the study, namely the de-

scription of the course and dataset, and the details of machine learning techniques are 

described in Section 3. In Section 4, the experimental results are presented and their 
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limitations are discussed. Finally, Section 5 concludes the present work and presents 

the main findings, and the future research directions of this study are outlined. 

2 Related Work 

In the past decade, several institutions have started deploying analytical tools to 

achieve various goals [9]. A number of researchers have focused on performance 

prediction schemes in higher-education institutions. Several studies have been pub-

lished and are available for literature review. These studies can be categorized in 

terms of data used and methods applied for the prediction task.  

In studies in which a prediction of student performance was presented, a combina-

tion of student attributes was typically used, such as high-school background, de-

mographics, and academic data, e.g., the cumulative grade point average (CGPA) [10, 

11, 12, 13, 14]. Apart from using past data, in certain studies, attributes collected 

during the course were used. The engagement of a student in LMS and the assess-

ments during the progression of the course have revealed a dropout prediction accura-

cy of 75–85% in the first sections of the e-learning courses [15]. In a different study, 

similar course assessment attributes were used for the dropout prediction task with 

high accuracy in the early weeks of the course timeline [16]. Shahiri et al. reported 

that the internal course activity and assessment data can yield more accurate results 

regardless of the applied methods [7].  

In terms of the applied methods, researchers have used various data-mining classi-

fication techniques. Decision trees have been extensively used in several studies ow-

ing to their simple interpretation and assurance, even for a small amount of data [17, 

18, 19]. In several studies in the literature, the Naïve Bayes and/or the support vector 

machine (SVM) techniques have been employed to predict student performance [20, 

17, 21, 22]. Researchers tend to employ these methods together with other data-

mining techniques to compare the accuracy of the prediction.  

Neural networks are a popular machine learning technique. They are vastly used in 

educational data mining field owing to their high prediction accuracy for data with 

nonlinear variable dependencies. In the study of Lykourentzou et al., the results of the 

dropout prediction using a feed-forward neural network reached an overall accuracy 

of up to 96% [15]. This study was one of the successful examples of early prediction 

of at-risk students in e-learning courses. Arsad et al. used neural networks to predict 

the CGPA at the 8th semester of undergraduate students based on their grade points in 

fundamental courses [23]. Most recently, the study presented high accuracy results of 

performance prediction using neural networks in massive online course learner’s data 

[24]. The study, which reviewed research works on performance prediction reported 

that neural networks presented the highest prediction accuracy compared with other 

data-mining techniques [7]. 

Furthermore, certain studies exist on performance prediction, particularly on the 

prediction of whether students will pass or fail the course. In the study of Tanner and 

Toivonen, the results revealed an early prediction of students with a high risk of fail-

iJET ‒ Vol. 14, No. 19, 2019 79



Paper—An Artificial Neural Network Based Early Prediction of Failure-Prone Students in Blended … 

 

ing using a k-nearest neighbor algorithm [25]. Romero et al. proposed a failure-

prediction scheme based on attributes from online discussion forums [26].  

In a very recent study, an early prediction of the failure risk of the students apply-

ing four different methods was presented [27]. In this study, neural networks, SVMs, 

decision-trees, and Naïve Bayes methods were compared for failure prediction in 

terms of prediction effectiveness. The novelty of the study relied on experimental 

prediction results based on academic data from both e-learning and on-campus cours-

es.  

From the literature review, it is clear that different techniques deliver different pre-

diction accuracies depending on data characteristics. In this work, we will apply the 

method with the best-reported accuracies, namely a neural network, to identify stu-

dents with a high risk of failing in a blended learning course. 

3 Methodology 

3.1 Course setting 

In this study, we used data obtained from the blended learning style course “Digital 

Signal Processing”. It is a sophomore-level, compulsory-credit course taught in the 

Engineering Faculty of Kumamoto University. The course is offered once a year, i.e., 

in the Fall semester; data from six semesters were used in this study.  

The course is organized with face-to-face lectures, on-campus final examination, 

and online activities on LMS, including regular weekly quizzes, reading material, and 

monitored mid-term examination [28].  

The online activities are delivered through Moodle LMS, which is integrated to the 

university portal. The course contents are scheduled for a 15-week semester; however, 

LMS activities are prolonged until the final examination date. The weekly quiz sec-

tion consists of two to five multiple-choice questions, which are given as homework 

with a specific deadline. Every quiz allowed a maximum of five attempts for submis-

sion. The mid-term examination is a monitored online test after the winter break, 

which students can take in on-campus classrooms. The final examination is a conven-

tional paper-based on-campus examination. All online and on-campus activities con-

tribute to the final score, which ranges between 0–100; the grading system may grant 

students AA, A, B, C, and F. The final examination accounts for 50% of the overall 

grade and the LMS activities (including the mid-term examination) constitute the 

remaining 50%. To pass the course, the minimum requirement for the final grade (i.e., 

earn the credit) is to earn 60 points, which will be calculated for each student after the 

final examination by summing up the final-examination and the online-activity scores. 

Because the present study is focused on the failing students, we assume that the stu-

dent has failed if he/she has earned less than 60 points in total and has received an “F” 

grade.  

The course is a fundamental engineering course. Therefore, the contents of the 

course do not change significantly over the years. Moreover, the course structure is 

the same each year, i.e., the same number of quiz sections is provided and the exami-
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nations have similar characteristics. We conducted an exploratory data analysis to 

examine whether similarities exists among the LMS activities over the years. Figure 1 

presents the accumulated activity of students for six consecutive semester data. Be-

cause the course is offered in the Fall semester of the academic year, each set of se-

mester data comprises the activity between October 10th and January 21st. In Figure 

1(a), we may observe that each semester presents peak points around the second week 

of January, when the online mid-term examination took place. As expected, similarity 

exists among the semesters; the semester pattern is illustrated in Figure 1(b). The 

random positive and negative peaks in Figure 1(c) can be explained by the difference 

in the course schedule over the years (mid-term examination dates do not occur on the 

same date each year). The figure clearly shows that there is a similar activity pattern 

among the different annual offsets of LMS data, which implies similar activity charac-

teristics during each semester. This data behavior offers the possibility to obtain rea-

sonable results, which can be applied in future course semesters. 

 

Fig. 1. Accumulated activity in LMS (6 years data) 

3.2 Dataset description 

With due respect to privacy issues, all personal data were eliminated and every in-

dividual is anonymously presented in the dataset.  

The course data consist of: 

• The online activity data of the students from LMS  

• The final grades as the performance data of the students.  

In this study, six semester data within 2012–2017 were used; the total number of en-

rolled students was 1167. In the data-preprocessing step, students without any online 

iJET ‒ Vol. 14, No. 19, 2019 81



Paper—An Artificial Neural Network Based Early Prediction of Failure-Prone Students in Blended … 

 

activity were elimi- nated; hence, the failure prediction was solely based on the LMS 

activity of the students. As a result, the total number of students was 1110. Figure 2 

shows the number of participating and failing students. 

 

Fig. 2. The number of participating students and failing students 

From the LMS log files, time variant variables were extracted for different time pe-

riods during the course timeline. The quiz activities were found to be the most domi-

nant and influencing activities in the LMS. Owing to the ease of use and uniformity, 

all quiz scores were scaled to 100 points. The extracted variables used for training and 

validation are listed in Table 1. 

Table 1.  Variables used for the training and testing of neural networks 

Name Description Range 

Section activity Student activity in quiz section Greater than 0 

Quiz Attempts Number of attempts in quiz sections, accumulated Greater than 0 

Active days Number of days student was active in LMS Greater than 0 

Attempted quiz Number of attempted quizzes 0–13 

Completed quiz Number of quizzes with a completed mark 0–13 

Quiz score Average quiz score 0–100 

Quiz solving time Accumulated time spent on quiz submission Greater than 0 

Exam score* Mid-term examination score  

*Only used in after 12th quiz deadline 
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3.3 Training and validation 

The dataset was separated into two sets, i.e., a training set and a test set. It is com-

mon practice to split the entire dataset into training and test sets in a random manner 

using certain ratio; further cross-validation can be used to generalize the results [29]. 

According to the conventional separation of the training and the test set, we should 

have randomly formed the training and the test set from a total population of 1110 

students. Instead, we used one set of semester data as the test set and the data of the 

remaining years as the training set. The data were divided in this manner because we 

wished to examine the possibility of failure prediction using entire sets of separate 

semester data, where data from previous years would be used for the training of the 

model. This approach would give the opportunity for instructors to train the models 

using course data from previous years and to apply the resulting models to the upcom-

ing semester throughout the course. For generalization purposes, a six-fold cross-

validation was implemented. For example, D2012, D2013, D2014, D2015, and D2016 

(data obtained during 2012–2016) were used for the training of the model and D2017 

was used for the validation. Next, D2012 through D2015 and D2017 were used for the 

training and D2016 was used for the validation; the same process was followed for the 

remaining year ranges. If the prediction method and the aforementioned data splitting 

could produce valid results, it would prove that this approach would be a good gener-

alization and would enable further application using the data of the upcoming year.  

The training process consisted of 12 steps, which covered data from different peri-

ods of the semester. These periods were defined using the first 12 quiz sections as a 

deadline. Typically, the submission period for every quiz section is one week (or more 

for certain cases). In the first training step, the variables that had been acquired until 

the deadline of the first quiz section were considered. For the second step, the varia-

bles that had been collected from the beginning to the end of the second-quiz deadline 

were used (activities of the first and second quiz sections). For the twelve-step train-

ing, neural-network inputs were acquired from the beginning of the semester until the 

quiz-section deadline. In each training phase, 82.5–84.1% of the total student partici-

pants was considered.  

The testing process was conducted using the same scheme as that used in the train-

ing phase. The prediction variables were accumulatively extracted and tested for dif-

ferent semester time stamps. For the validation of the prediction models, the test set 

covered 15.9–17.5% of the total number of students. 

3.4 Neural networks 

A neural network is an information processing paradigm of an artificial intelligence 

field. A neural network consists of numerous processing nodes, referred to as neurons, 

and the connectivity between these neurons. In a neural network, the processing is 

performed as weights of connection among neurons and through its ability to learn 

from the training set. A neural network is organized in three layers of neurons, namely 

an input layer, a hidden layer, and an output layer. The transfer function  
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Fig. 3. Basic structure of a neural network 

of every neuron in each layer individually processes data in the input to the output. 

The hidden layer can consist of more than one sub-layers. More layers added in the 

hidden layer will result in a large network with an increased complexity in training the 

model. Figure 3 illustrates the simple architecture of the neural network. At present, 

neural networks are extensively used for various types of tasks, including recognition, 

prediction, signal processing, control, and anomaly detection. In this study, eleven 7-

3-1 networks and one 8-3-1 network were employed. Here, the each of the three net-

work configuration numbers indicates the number of neurons in the input layer, the 

number of neurons in the hidden layer, and the number of neurons in the output layer 

in the order of their appearance. The reason why different input neurons exist for the 

input layer is that we added mid-term examination score as an input variable at the 

12th step of training. The output of the network is binary, where 1 indicates a student 

whol failed and 0 for a student that is a completer. RStudio v.1.1463 was used for the 

processing and the visualization of the data used in this study.  
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3.5 Accuracy metrics 

To evaluate the accuracy of the prediction, the following metrics were examined: 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
  (1) 

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 𝑓1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  (4) 

where  

TP – True Positive: the number of students that were predicted to be at risk of fail-

ure and failed to pass the course 

TN – True Negative: the number of students that were predicted to be completers 

and successfully completed the course 

FP – False Positive: the number of students that were predicted to be at risk of fail-

ing but completed the course 

FN – False Negative: the number of students that were predicted to be completers 

but failed to pass the course 

4 Experimental Results 

In this section, the experimental results will be presented and discussed.  

The overall accuracy of the results is defined via Eq. (1). This metric evaluates the 

number of successful prediction results, including the prediction of the number of 

failures and completers.  

The overall accuracy of the test results is illustrated in Figure 4. As shown in the 

figure, the models present stable and significantly high prediction accuracy results (> 

84%) from the beginning of the semester. These results prove that the prediction 

method generalizes well.  

Moreover, it shows that student performance can be accurately predicted early in 

the semester, whether students eventually fail or complete the course, in a blended 

learning course. However, the overall accuracy does not fully represent the evaluation 

of the prediction capabilities.  

As defined in Eq. (1), the overall accuracy metric includes both the correctly pre-

dicted completers and the students who failed. Typically, the final grade distribution 

of the course is negatively skewed, which means that the number of completers is 

significantly higher than the number of students who have failed. The percentage of 

failing students in the datasets that were used in this study ranges between 7–17%.  
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Fig. 4. Overall accuracy of prediction results (176-194 students of test sets) 

 

Fig. 5. Sensitivity of prediction results (out of 12–32 failing students from the test sets) 

In this work, we focused on the failing students; our main task was the prediction 

of students at risk of failing. Therefore, sensitivity measures were considered to illus-

trate the prediction accuracy of the failing students. The sensitivity metric, which is 

defined in Eq. (2), measures the proportion of the correctly predicted at-risk students 
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from the total number of failing students. Figure 5 shows the sensitivity results of the 

prediction on the test sets. The results show the correct prediction over the total failure 

ratios of 4/19, 9/32, 5/19, 2/12, 10/31, and 7/25 for test-2017, test-2016, test-2015, 

test-2014, test-2013, and test-2012, respectively. On average, 25% of the failure-prone 

students can already be identified at the beginning of the semester. In the middle of 

the semester (Q8), the ratios increase to 11/19, 22/32, 9/19, 6/12, 10/31, and 16/25 

with an average sensitivity of 53%. After the mid-term examinations (and 12th quiz 

section), the ratios increase to 16/19, 27/32, 11/19, 8/12, 12/31, and 14/25; the average 

of the correctly predicted failing students was 65%. The relatively poor prediction 

results in a test set from 2013 may be attributed to the difference in the student body 

characteristics, i.e., the student efforts and achievements can change year by year. 

These results promise the possibility of early identification of failure-prone students 

by the instructors in order for instructors to take appropriate actions to notify, encour-

age, and support these students. We acknowledge that the accuracy obtained in this 

study is not as high as those reported in the literature, which are typically based on 

pure online-course data. However, we believe that this study can provide compelling 

evidence on the prediction of failure-prone students in a blended-learning course. 

An additional measure of the accuracy of the prediction is the precision. The preci-

sion of the prediction indicates the percentage of correct predictions among all posi-

tive outcomes. The precision results presented in Figure 6 indicate the extent to which 

the prediction model can accurately predict the failed students among students that  

 

Fig. 6. Precision of prediction results 

were predicted to be prone to failure. At the beginning of the semester, the FPs ranged 

between 0–6 students. At the end of the examined period (Q12M), the FP predictions 

ranged between 0–19 students. A total of 38 students (for 6 test sets) were incorrectly 
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predicted to be at risk of failure after the mid-term examination. The results are rea-

sonable; the performance of all these students was below average, except for one 

student with grade “A”. The anomalous result in the 2014 test set may be the result of 

irregular quiz submission deadlines that did not align with data from other years.  

To evaluate the overall effectiveness of the method, we examined the f-measure 

(i.e., the f1 score), which is the most common metric used in classification problems 

[30]. Equation 4 represents the f-measure estimation, in which both the precision and 

the sensitivity are considered. Figure 7 presents the estimated f-measure results of the 

test sets. The average f-measure value of the test sets ranges between 36–66%, from 

the beginning of the semester (Q1) to the end of 12th quiz section (Q12M). This result 

may be interpreted as follows: after the first quiz submission, the prediction model 

could identify students at risk of failure with an effectiveness of 36%. 

Limitations of the results: Although we admit that certain limitations exist, we 

think that the experimental results of the study reveal the possibility of being able to 

predict and identify the students who are at risk of failure in a blended learning 

course.  

The experimental results cannot be generalized for all blended courses because the 

data used in this study involve only the student learning activity in one particular 

course. The study can be extended using other course data and/or, more preferably, 

data from different institutions. Moreover, owing to the blended learning style, in this 

study, the failure prediction of the students was solely based on quiz-related activities. 

Our primary intention was to examine the possibility of failure prediction using  

 

Fig. 7. F1-score measures of the results 

One-semester enrollment data in the future. Owing to this reason, the training and 

test sets were not randomly split for cross-validation. Hence, the experimental results 
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presented irregular accuracy results for different test sets. The overall student charac-

teristics differed in each course enrollment, although the academic background was 

fairly the same.  

The prediction efficiency was not as high as the one reported in the literature. For 

early prediction purposes, later semester periods were not considered. Certain compel-

ling accuracy results in the literature were based on full-course data; high-efficiency 

results were mostly achieved in the later in the course. However, as per our intention, 

considering the application of the prediction results in upcoming semesters, the later 

semester periods would be too late for the instructors to take action and intervene or 

provide support to students at risk of failure.  

We did not fine-tune the method applied to the experimental results. There is a 

great possibility that the tuning structure and the parameters of the neural network can 

increase the overall effectiveness of the results.  

Moreover, other student characteristics may affect student performance. As far as 

educators are concerned, the relationship between the learning activity and the student 

performance can be quite complex. Different student characteristics and other extract-

ed variables may greatly impact the failure-prediction results. Therefore, examining a 

wide variety of variables is necessary for the improvement and validation of the re-

sults.  

5 Conclusion 

Presently, the online learning activities of students are a crucial part of their learn-

ing process; therefore, there is a definite requirement for developing an efficient 

method to monitor and report LMS activities. Norris et al. emphasized the power of 

academic data analysis in higher education and the possibility of data being used to 

take appropriate action [31]. The experimental results presented in this study showed 

how a machine-learning technique can be used to improve student performance in 

universities. More specifically, the results suggested the possibility of realizing an 

early warning system using the online activity data of a blended course in degree 

programs.  

It was fascinating that 25% of the failing students could be correctly predicted im-

mediately after the first quiz section. The prediction accuracy gradually increased 

week by week, reaching 53% after the 8th quiz and 65% after the mid-term examina-

tion.  

Future work should be conducted to overcome the limitations of the present study. 

First, in future works, other possible attributes should be investigated and datasets 

from other courses should be included to increase the accuracy and to generalize the 

results. In this study, the variable extraction and the data preparation steps are realized 

manually. An instructor-friendly plug-in tool could be developed to automate the 

entire procedure. These types of tools could assist in the acquisition and the pro-

cessing of data in a timely manner, and they could offer access to periodical (e.g., 

weekly) results to instructors and students. 
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