
Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

Programming Learners’ Perceptions of Interactive

Computer Tutors and Human Teachers

https://doi.org/10.3991/ijet.v15i09.12445

Ruiqi Shen (), Donghee Yvette Wohn, Michael J. Lee
New Jersey Institute of Technology, New Jersey, USA

rs858@njit.edu

Abstract—People often learn programming in face-to-face courses or from

online tutorials. Interactive computer tutors—systems that provide learning con-

tent interactively—are becoming more common in online tools such as those

teaching computer programming. Studies have shown that teachers, interactive

computer tutors, and the combination of both are efficient and effective in

teaching programming. However, there is limited understanding of the compar-

ative perspectives of those learning from these two different sources. We con-

ducted an exploratory study using semi-structured interviews and recruited 20

participants with programming experience from both teachers and interactive

computer tutors. Speaking with our participants, we surfaced factors that learn-

ers like and dislike about the two learning resources and discussed the strengths

and weaknesses between the two. Based on our findings, we discuss implica-

tions for designs that programming educators and interactive computer tutor de-

velopers can use to improve their teaching effectiveness.

Keywords—Tutors, interactive computing tutors, student perspectives, compu-

ting education, human teachers

1 Introduction

Learning to program is considered a difficult process and requires continuous prac-

tice much like learning natural languages. However, unlike natural languages that can

be used in different situations of everyday life, learners typically program within the

constraints of a computer screen [1]. The difficult nature of programming may in-

crease the dropout rate in both classrooms [2], [3] and massive open online courses

(MOOC) [4]. In addition, the quality of programming teachers and MOOCs can also

serve as a factor affecting dropout rates [5].

Learning from either teachers or computer tutors may have obvious advantages and

disadvantages. Individual tutoring is an ideal strategy for teaching and learning pro-

gramming—human tutoring is one of the most effective ways to overcome program-

ming obstacles [6], but the lack of computer teachers continues to be a concern of

researchers and educators [7]. Many learners have limited access to in-person and

personalized programming courses. Even for those who have access to courses, a

large lecture-based format is not an ideal setting for teachers to pay attention to the

iJET ‒ Vol. 15, No. 9, 2020 123

https://doi.org/10.3991/ijet.v15i09.12445

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

individual needs of each of their students [8]. More recently, MOOCs have a become

popular alternative or supplement for traditional classroom lectures, as they are often

cheaper, more accessible, and can support more students simultaneously than tradi-

tional classrooms [9]. However, the limited amount of interaction with teachers and

limited extrinsic motivators are major constraints and future development opportuni-

ties for MOOCs.

For the purposes of this paper, we only focus on MOOCs that offer instructions

through virtual agents or interactive computer tutors (rather than those that primarily

provide instructions through text or video). Farrell et al. were among the first to intro-

duce an interactive computer tutor (ICT) to teach programming [10]. They described

it as a two-component system: a “problem solver” (which can interpret learners’ code

and provide feedback) and an “advisor” (which provides guidance to learners

throughout the learning process). Systems for teaching programming such as Co-

decademy, Datacamp, and Treehouse are similar to the ICT described by Farrell,

which include a problem solver and an advisor. We use Farrell’s definition of ICTs in

this paper and examine systems with these features. We choose to focus on ICT-

enabled MOOCs instead of other types of MOOCs because the literature suggests that

the former type of environments can provide effective programming instruction [11],

[12] and are gaining more popularity with learners [13], [14].

Although learning programming from either ICTs or teachers have shown positive

learning outcomes for learners, few studies explicitly examine learners’ perceptions of

the experience of using and comparing the two approaches. Exploring these ideas can

surface important features to better design and highlight the effective techniques that

learners seek when learning to program.

This paper describes a qualitative, exploratory study examining learning experi-

ences from the perspective of learners and compares their views on learning from an

ICT and from a teacher in a classroom. Although we compare the pros and cons of

ICTs and teachers, our goal is not to suggest one is better than the other. Instead, we

aim to find ways to improve all learners’ educational experience by exploring the best

practices, qualities, and techniques used by teachers to apply to and improve ICTs,

and vice-versa.

2 Related Work

2.1 Learning from interactive computer tutors

Mastering programming skills requires extensive practice and making mistakes

[15]. Many MOOC websites, such as Codecademy and Khan Academy, integrate

tutorials with extensive exercises using code editors with feedback systems [16]. Em-

pirical studies show that students who learn programming interactively through well-

designed computer systems can achieve good learning outcomes and higher self-

efficacy [10], [12]. However, what are the good features of an ICT for delivering

educational programming content? Early research by Reiser et al. developed an intel-

ligent tutor that teaches LISP programming. The main goal of this tutor, called

124 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

GREATERP, was to structure students’ problem-solving episodes and provide feed-

back and guidance adaptively. This tutor was demonstrated to be more effective than

traditional classroom instruction [17]. More recent work by Staubitz et al. proposed

five requirements for an ICT to deliver programming courses: Versatility (support

multiple programming languages), Novice-Friendliness (UI catered for beginners),

Scalability (support for many users), Security (secure students’ submis-

sions/assessments), and Interoperability (integrate into existing infrastructures) [18].

Pritchard & Vasiga summarized that built-in coding environments are beneficial for

students’ continuity in learning-by-doing [16]. While most educators will agree that a

mentor is essential in the initial learning process for beginners, Liyanagunawardena et

al. showed that in an online course, the learners’ community itself can act as a mentor

and could possibly mitigate the issue of not having enough teachers for students [19].

Users can also identify the benefits of features such as deliberate instructional design

(designed instructions), learning analysis (self-reflecting information), and instant

feedback [20]. Our study expands on these works, aiming to explore whether these

commercial systems (such as Codecademy and DataCamp)—which include features

such as the ones mentioned above—can be considered good ICTs, and what users of

these systems think about them.

2.2 Learning from teachers

Unlike ICTs which have a relatively short history in education, human teachers

have been a part of education for centuries. Many studies have shown the effective-

ness of human teachers [21], [22]. A teacher can guide students and can effectively

time how much thinking a student should do before providing hints or answers [23].

This is especially important for novices, who can benefit more from interactions with

teachers [24]. Teachers can also intervene at the right time to prevent students from

becoming too frustrated [22], which is especially important in the early stage of learn-

ing, when learners have a higher likelihood of quitting [2]. Robins et al. concluded

that an effective programming class should raise students’ interest and participation

by setting clear goals and actively involving participants in course materials and prob-

lem-solving activities [25]. However, questions remain about what specific teaching

methods contribute to an effective programming class. Pears et al.’s overview of pro-

gramming classes found little systematic evidence to support any particular teaching

approach that answers this question [26]. Tan et al. conducted a survey to gain insight

on the learners’ perspective and discovered that programming learners found the prac-

tical application of programming to be the most difficult, and therefore considered lab

sessions with consultation more helpful than lectures [27]. However, questions such

as what kind of lab sessions they like and whether they could get sufficient consulta-

tion opportunities remain largely unknown to us.

2.3 Comparing / combining interactive computer tutors and human Teachers

Means et al. conducted an extensive literature review comparing online learning

and face-to-face learning [28]. They found that on average, students in online learning

iJET ‒ Vol. 15, No. 9, 2020 125

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

situations (including teachers teaching in an online setting) outperformed those in

face-to-face situations. Merrill et al. were the first to give a comprehensive compari-

son between the effectiveness of human tutors and computer tutors, focusing primari-

ly on feedback. They found that feedback from both human tutors and computer tutors

help students detect and fix errors and overcome obstacles. However, human tutors

outperformed computer tutors in communicating the diagnosis of the errors to stu-

dents, and therefore, the highly interactive nature of tutor-student communication led

to better motivational benefits compared to computer-student communication. Human

tutors also outperformed in encouraging students to spend more effort to solve prob-

lems. Another major difference of feedback is that human tutors can strategically

moderate their intervention while most of the computer systems cannot. As a conclu-

sion, they suggested that computer tutors could be improved by capturing the features

of a human tutor in a model-tracing way, and they further encouraged more empirical

research on the differences in motivational outcomes of feedback from both computer

and human tutors [22].

For teaching programming specifically, Warren et al. compared the feedback from

both computer tutors and teachers in a classroom setting [29]. They observed that

though computers could give instant feedback on whether students were correct or

not, they could not accurately describe where and why answers were wrong. Further-

more, computers are unable to suggest different types of coding styles the way a

teacher could. Conversely, it may be difficult for teachers to give individual feedback

in a timely fashion, especially when they have a large number of students with com-

plex assignments.

Since both computers and teachers exhibit positive and negative qualities, re-

searchers are trying to blend the two methods and prove its validity. Heffernan &

Koedinger proposed an intelligent computer tutor built based on observation of expe-

rienced human tutors. This intelligent tutor, called Ms. Lindquist, could not only

model trace students’ actions, but could also do more human-like activities such as

hold conversations and provide explanations on request [30]. Deperlioglu & Kose

found that a combination of computer learning and face-to-face learning achieved

more effective and efficient educational experience than traditional face-to-face clas-

ses in terms of delivering programming education [31]. Beyyoudh et al.’s work also

indicated that a combination of intelligent tutoring system and human tutors increased

learners’ motivation [32].

2.4 Learning from the learners' perspective

Based on our literature review, we found a gap in knowledge examining learners’

perspectives on receiving instruction from either ICTs or teachers. It is important to

examine learners’ perceptions of the differences between computers and teachers, and

their preferences when interacting with either of these choices when learning pro-

gramming. The chosen educational guide can influence their perception of the topic

and activity and therefore may affect retention rates and learning experience.

Therefore, our overarching research objective is to better understand the learners’

perspective towards ICTs and human teachers, and how we can use this knowledge to

126 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

improve both ICTs and human instruction in classrooms. To address this goal, we

raise the following research questions which we will explore in this article:

RQ1: What do learners (a) like, and (b) dislike, about learning programming from

ICTs?

RQ2: What do learners (a) like, and (b) dislike, about learning programming from

teachers?

RQ3: What do learners think are the pros and cons of feedback from ICTs and

teachers?

RQ4: Do learners prefer to learn programming from ICTs or teachers?

3 Method

To answer these research questions, we conducted 20 in-person, semi-structured

interviews. We chose to use interviews as our means of data collection as they are a

commonly used in exploratory work [33], [34], especially when there is limited re-

search in the literature to gain an in-depth perspective into subjects’ views and experi-

ences [23]. We used a snowball sampling method to recruit our participants [35],

where we asked each participant to recommend people they knew that met our inclu-

sion criteria and that they thought would be a good candidate for us to interview. The

initial six participants were students who responded to recruitment e-mails sent to

mailing lists at two different public universities in the northeastern United States

(US). Subsequent participants were classmates, alumna, or professional colleagues of

these initial six participants, representing a wide range of demographics (e.g., gender,

ethnicity, age, job/major), distributed across the US.

One researcher conducted all the interviews. 16 interviews were conducted in-

person and 4 occurred over the phone. All interviews were audio recorded, averaging

29 minutes per interview. The inclusion criteria for participants was that they had

experience learning programming from both teachers and ICTs. We defined a teacher

as a human instructor in a classroom setting, and used Farrell et al.’s two-component

definition for ICTs (see introduction and [10]). We intentionally did not constrain

ICTs to certain systems any further, as we wanted our participants to talk broadly

about the different technologies they had used without being limited to a specific ICT.

The interview questions were divided into two main parts:

1. Behavioral questions that asked participants about their occupations, majors, cod-

ing experience, and coding-related behaviors (e.g., “In general, how long have you

been programming?”)

2. Research-related questions that probed participants about their experiences learn-

ing programming from both ICTs and human teachers (e.g., “What problems did

you encounter, and how did you resolve them?”).

All of the recorded interviews were transcribed and coded using NVivo. Two re-

searchers conducted the coding, using the three-stage coding process outlined by

Cambell et al. in their work describing how to measure intercoder reliability for semi-

structured interview studies [36]. This was done iteratively until the two researchers

iJET ‒ Vol. 15, No. 9, 2020 127

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

came to a consensus on codes and a sufficient level of intercoder reliability and inter-

coder agreement (stages 1 and 2); then the full set of transcripts were analyzed (stage

3). Since participants could state their likes, dislikes, and preferences in every re-

search related question, we read through all the transcriptions and assigned tags to any

emergent patterns (e.g., code editors, content design, flexibility, and efficiency). After

assigning the initial tags, we read through those tagged texts, and consolidated similar

tags into one tag (i.e., code families), or split one tag into different tags. Finally, we

identified 19 themes (each research question has several themes) and more than 50

tags. We reached a high level of intercoder reliability (.87) and intercoder agreement

(.92). We note that while well-established in quantitative work, there is no community

consensus about the applicability of inter-rater/coder reliability measures for qualita-

tive studies [37][38], so we include our scores for completeness for the analysis of 20

interview transcripts. Next, we present representative quotes from participants to

better explain our themes.

4 Results

Our participants included 9 females and 11 males, ranging from 22 to 32 years old

(median 26). Everyone was from a STEM field/major or job, consisting of 13 students

(6 females and 7 males) and 7 working professionals (3 females and 4 males). Their

programming experience ranged from 1 to 15 years (median 4.5).

4.1 RQ1a: what do learners like about learning programming from ICTs?

Provides a code editor: A code editor that is embedded with the ICT, which al-

lows learners to write and run their code directly within the system. There are three

main reasons that made our participants consider this helpful: First, a code editor

dismisses the need to set up a local programming environment. 7 out of 20 partici-

pants mentioned that they only wanted to learn some basics, and that they did not

want to spend time and effort to set up a local environment. Therefore, an embedded

code editor saves time and effort from having to set up a local programming environ-

ment.

Second, a code editor provides one-window convenience. Participants mentioned

that they liked embedded code editors because they displayed tutorials, examples, and

exercises in the same browser pane, which was more convenient for them to do exer-

cises, rather than switching windows/tabs/applications between tutorials and coding

tools. P9 told us how she found embedded code editors to be convenient: “If I follow

YouTube, it’s not convenient because I code on my local computer, I watch the video,

then switch to my software. But in Dataquest, the screen is separated in two parts.

You can see the instruction and at the same time, you can type your code.”

Third, a code editor provides a similar, but better-than-real environment. Two par-

ticipants mentioned that they liked the embedded code editor because it was similar to

a real coding environment (e.g., a local programming environment) but better because

a code editor in an ICT gives customized feedback while a real environment does not.

128 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

Content design: The course materials and the way ICTs organize and deliver in-

formation, broken down into important components: outline, practice, and examples.

First, ICTs have a clear outline organizing and displaying lessons. The outline al-

lows users to see exactly where they are in the learning process (i.e., curriculum). P20

described how the organization was useful in Dataquest: “The lessons are very simpli-

fied. They are broken down into different modules, so it makes it very easy to con-

sume.”

Second, opportunities for practice are provided immediately after each lesson, so

learners can (re)apply what they learned into practice promptly. P3 elaborated how

immediate practice was useful: “for the W3 school, you’ll first grab the same concept,

but immediately you will use the ‘try it yourself’ demo page. You can put this

knowledge into real world practice. That’s why I like it.”

Third, examples provided along with each lesson. Participants mentioned that the

examples from ICTs were very helpful to understand lessons. As a novice program-

mer, P5’s biggest concern was that he could not visualize his code’s output. He de-

scribed how examples in Codecademy helped him learn web development: “It [Co-

decademy] has an example to show you the final version, you can test again and com-

pare your code to the example, that will help you to improve your code.”

Flexible: This allows learners to go at their own pace whenever and wherever they

want using ICTs. 8 participants mentioned that learning from ICTs satisfied their

desire to learn at their own pace. P2 told us that he preferred online learning for this

reason: “For [classroom] lectures [that are] 3 hours long, if you don’t understand

something an hour in, then you kind of waste two hours. Whereas you can make sure

you understand it online before proceeding onto the next section or the next concept.”

Participants also highlighted flexibility in location, such as P20, who said: “Like, I

don’t have Python installed on my phone and I can still do my lessons [on Dataquest]

even if I’m in transit traveling somewhere.” In the case of P8, he was a full-time stu-

dent who also held a part-time job. He told us how time flexibility helped him learn.

“I could do it at 2am if I want. A teacher is not available at 2am,” he said.

Efficient: ICTs helped with learning more efficiently compared to other resources.

When comparing the time spent learning from an ICT and from a teacher in a class-

room, two participants felt that being present in a classroom physically was time-

consuming, just as P19 told us: “Because if I want to go to school and take a class,

that’s going to be very time-consuming.”

When comparing ICTs with textbooks, four participants thought that learning from

ICTs helped them apply skills more efficiently than reading textbooks. For example,

P7 told us: “I think for textbook resource, one annoying thing is it doesn’t show you

like all the command[s] and what it does. So, you have to waste time reading it your-

self, but for Codeacademy, they just teach you each command. It’s a faster way to

learn it.”

Provide sufficient help: ICTs provide in-context resources within the system to

help if needed. There are three specific functions that provide sufficient help for

learners:

1. Hint systems

iJET ‒ Vol. 15, No. 9, 2020 129

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

2. Staff help

3. Discussion panels

A hint system provides general help (usually generated automatically), and usually

the very first type of assistance learners receive. P14 gave us an example on a hint

system: “you can just get the hints and they’ll give you a hint and then you can either

get the answer or you can just continue trying, but you’re not just stuck there if you

really can’t figure it out.”

Although the next two kinds of help require some type of human intervention, we

report them since they were emergent themes. Currently, it appears that ICTs do not

have the capability to supply some types of help that learners want (but humans can

provide). However, this may change with advancements in natural language pro-

cessing and machine learning, where systems might better detect and understand the

context of their users’ need for help [39], [40].

If the hint system fails to address learners’ problems, some ICTs provide (human)

staff help (also known as course experts). P1 gave us an example: “They have two or

three hints that they give, after that, they even say if you have any issues, ‘we have

[real] people who would help you out,’ and you can send your queries to them.”

Discussion panels are built-in forums that provide a place for learners to discuss

questions and ask for help. P9 described how ‘community’ in Dataquest helped her:

“Because in Dataquest, they also have something called ‘the community.’ You can

search [for] your questions in the community and the community members will post

the answers. You can refer to their answers.”

Designed for various learner levels: Some ICTs provide different pathways based

on skill-levels. It is helpful for learners to find courses matching their experience. P16

said: “For Codecademy, they have levels, like ‘did you just start learning code,’ ‘you

already have some experience,’ ‘you're an expert.’ So that helps because if you al-

ready know some coding you don’t need a simple example because it’s too easy.”

Interestingly, one participant mentioned that he liked the feature of Codecademy

which locks access to next module until he finished the current module. He had one

year of programming experience, and he emphasized many times his anxiety as a

beginner. This feature forced him to learn step-by-step. Another participant mentioned

that he liked the short video tutorials provided by Treehouse. The short videos relieve

the cognitive load of learners when compared with a long video tutorial.

4.2 RQ1b: What do learners Dislike about learning programming from ICTs?

Content design: This again refers to the course materials and the way ICTs organ-

ize and deliver information. Although 15 out of 20 participants liked the content pro-

vided by ICTs, there were also participants who did not like the content design. Those

who did not like it thought that the tutorials and practice exercises were too basic to

be useful. They liked ICTs but wished they could provide more advanced content. P2

considered himself as having a good understanding of programming basics since he

had 4 years of programming experience. He explained his concern to us: “I was doing

130 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

C++ [online], but I kind of stopped because I thought it was too easy and too basic

[...] They just teach you such basic concepts and they don’t go in-depth.”

Another reason for the dislike was that the sections were redundant. One partici-

pant mentioned this to us: “At the beginning, I find they are pretty useful, but like 4-5

lessons after, I find the content to be very dry, meaning it’s really the same thing over-

and-over again, I’m not really learning a lot of things that weren’t [covered] there

before.”

We noticed that those who considered the content to be too basic were experienced

learners (who had at least 3 years of programming experience), however, other junior-

level learners mentioned that sometimes, information was too brief to understand

sufficiently. Some ICTs only provide short introductions without really explaining the

logic behind the material. P11 started programming 2 years ago, and was struggling to

understand the complex logic behind certain concepts. “For me, I don’t like reading

introduction[s online], because they want to simplify their content and the introduc-

tion is so brief. Sometimes I don’t fully understand the [programming] language,” she

said.

Locks access to more advanced concepts: Some ICTs require learners to finish

the current module to unlock the next one. While we mentioned that one participant

liked this feature earlier, four participants disliked this feature. All of them had prior

programming experience and had clear goals on what they had to learn. Their learning

efficiency was limited by this feature. P13 was learning programming for fun during

his leisure time at work. He had been learning programming for 2 years. He com-

plained to us: “I already know what this is, and I want to skip it to [go to] the next

module. I’m not able to do that, because I got to complete the first module, and then

go to the second module. So, I didn’t find that to be very user-friendly.”

Does not provide sufficient help: Although 9 out of 20 participants reported they

could get sufficient help from ICTs, other participants held a different opinion. These

participants reported that ICTs could not guide them to understand the logic behind

problems effectively. P5, a novice programmer who often got stuck on problems in

Codecademy, shared his experience with us: “They [Codecademy] will actually show

me the right answer. I still don’t know what’s wrong with my answer and it didn’t

show me or highlight the mistakes that I made, so I still don’t know the answer.”

4.3 RQ2a: What do learners like about learning programming from

Teachers?

Has real life programming experience: Teachers who are willing to share their

real-life programming experience were favored by our participants. These experiences

include: how to avoid common mistakes, how to style code, tips on interviews, and

how to become a good programmer. P5 was a beginner in programming, he said:

“They [professors] always try to tell you how to avoid mistakes.” Another example is

P11, who had 2 years of programming experience, but was anxious about being a

novice. She enjoyed learning from her teachers. “They teach some things about the

languages and they also tell some real experience for coding, and even some tips

about interview and future working. They told us how a good programmer should do

iJET ‒ Vol. 15, No. 9, 2020 131

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

their job,” she said. One participant observed that teachers are not only experienced in

programming, but also in teaching. Teachers know about and can focus on parts that

most students find difficult to understand.

Provides solid learning experience: Participants believed that they could learn

programming with teachers more concretely and systematically than from ICTs.

Teachers introduce new concepts along with background information and logic about

these concepts. Teachers also help students stay on track. As an experienced pro-

grammer with 10 years’ programming experience, P4 suggested beginners to start

programming with a good teacher. He said: “I believe a good teacher will teach you

knowledge in a systematic way. If you have zero knowledge, the best way is to learn

from a teacher, because if you learn from an online app, your knowledge is scattered,

and it’s not systematic. You learn piece-by-piece, [so] you might miss some bigger

parts.”

Provides conversations: Learners pointed out that conversations with teachers are

invaluable because they can discuss ideas, explain their specific problems, and have

someone to relate and/or look up to. P17 was an experienced programmer, and was

full of project ideas that he liked to discuss with his advisor. He said: “When you

communicate with him, firstly you can solve your problem. And secondly if you have

some ideas, you can talk with him and since he’s experienced, he’ll give you some

feedback on your ideas and you know how to improve yourself or your program.”

Another 3 participants thought that conversations let teachers better understand

students’ problems. Since learners can use different methods to express themselves in-

person (e.g., drawing, writing, gesticulating), face-to-face conversation with experts is

a more efficient way to get problems solved than exchanging emails or searching for

answers elsewhere. P10 told us that she could show her code directly to teachers when

communicating face-to-face, so that the teachers can better understand her questions

and help her line-by-line.

Provides real-time help: When in class with teachers, learners can usually have

their questions answered immediately. It is common to have bugs and errors when

learners program. However, if these errors or bug are not solved immediately, it may

lead to other issues that cause the learner to get stuck. ICTs often cannot provide real-

time, customized help for specific questions, while teachers can. P11, a beginner in

programming pointed out this advantage to us: “I think it is better with a teacher.

Because if there are any questions you can immediately ask for help.” Another more

advanced programmer, P16, said: “[Learning] in-person is more instant, and I can do

some things right away and get out the way whatever question I have.”

4.4 RQ2b: What do learners dislike about learning programming from

teachers?

Not efficient: Most participants reported that learning from teachers was less effi-

cient. Teachers usually take more time in assigning practice and giving feedback,

while online tools do these immediately and on-demand. As P2 told us: “Because at

the same time a teacher, you don’t get assignments as quickly as you would online.

132 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

So, the feedback comes in once a week as opposed to maybe you could literally do the

whole course in a day if you want.”

The teacher’s lecturing style can also be less efficient than reading the course mate-

rials by learners themselves. P6 had 15 years of programming experience. Most of his

teachers would just read straight from the textbooks. He expressed his frustration with

these types of teachers since he could just read from the textbooks himself at home.

In addition, three participants felt that it was easier to access materials through

ICTs than teachers. For example, P13 stated that online materials could be accessed

immediately, while for teachers, he needed to register and pay for a course first, and

even be physically present in the class.

Does not follow pace with students: Learners also have a big concern about

teachers’ speed of instruction. 9 out of 20 participants reported their experience of

being unable to keep up with their teachers’ pace. This occurred when the teachers

delivered the content too quickly, or when students had difficulties understanding

some content, but the teachers kept moving forward. For example, P20 was a novice

programmer with only one year of experience; she once had a fast-paced program-

ming course and could not keep up with the teacher’s progress, so she turned to online

courses to learn the same content. She said: “And with class, things go by so quickly,

we met only once a week and we have to cover so much. So, I feel like I'm lagging

behind, I’m not catching up fast enough with the professor in the class, so I went to do

something online where it can go at my own pace.”

Two participants had the opposite experience—they found classes were far behind

their progress. P16 was a student who always learned things quickly, and so, she often

felt bored when she took a class but was ahead of the teacher’s pace. She said: “The

class gets boring, because you already know. [...] there are students around you that

are still asking questions and they don’t get it, it’s very hard for them to understand.”

Provides Inflexible Curriculum: The content taught in a class were not always

what learners expected. P12 had learned programming for years. He recalled his expe-

rience in college, when he selected a C++ course, expecting to learn something ad-

vanced, but the teacher only taught basic concepts. He told us how disappointed he

was: “what he taught during lecture, I already know, and what he taught was just the

basic syntax, but he did not introduce those advanced [content] which [...] I already

learned from another way. That’s why I say he is not very helpful.” While P10, who

was less experienced than P12, told us that she expected to learn something basic, but

what she got in class was too advanced to understand. She said: “I figured I will get a

tutor to teach me the basics, because he [professor] didn’t teach us the basics.”

Is not responsive: Some participants complained that they lacked teacher attention

in large classes. “They [professors] are always busy; your problems might not be

solved in time,” P18 said. Teacher’s personal style may also be attributed to the lack

of responsiveness. P17 told us one of his teachers who never replied his emails, he

said: “one of my professors never replied [to] my e-mails. The only way you’ll find

him is in his class. So, I will only have limited chances to ask questions.”

Participants also had concerns that their teachers’ skills were not up-to-date since

programming skills and technologies are constantly changing. For example, P12 had a

solid foundation in programming; he found that teachers in school did not satisfy his

iJET ‒ Vol. 15, No. 9, 2020 133

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

needs because his goal was to always learn about the newest technologies. “I think the

teacher is usually far behind the current progress [...] But what I want to learn, is al-

ways something new,” he said.

4.5 RQ3: What do learners think are the pros and cons of feedback from

ICTs and teachers?

Pros of feedback from ICTs: The biggest positive feature of ICTs is the immedi-

acy of feedback. Getting feedback immediately helps learning-by-doing. P5 just start-

ed learning programming and he believed that getting feedback immediately was

important. He said: “I think the most useful feature is that you can test immediately

and get feedback. That’s the most important one.” P6 was more experienced than P5

but expressed something similar, saying: “When you use an interactive tool to learn

the programming language, you can get feedback immediately [...] You can learn it

immediately, so that you can improve your programming skill very fast.”

Some ICTs can provide step-by-step feedback, which is good in a way that the ma-

chine lets learners reflect on the errors as much as possible before giving them the

correct solutions. Just as P19 told us: “The application lets you rethink about one

point by giving you only a little bit of information to help. And if you still don’t know

the answer, they will ask you whether you want a hint.” An even better interactive

system can highlight the learners’ errors, which helps them pinpoint errors quickly.

P17 elaborated this point: “They will show the result for your wrong code, and the

result for the right code. And they will let you know which part you did wrong. So,

it’s quite clear. I think this feedback is useful. [...] If I did something wrong, it will

highlight that specific part.”

Cons of Feedback from ICTs: The major problem of ICTs is that they often only

tell the learners whether the final output is right or wrong. When learners generate the

wrong output, the systems only tell them that they are wrong but do not specify where

in the code an error exists (or when they do, it is typically a list of compile-time or

run-time errors with an unhelpful error message), and why it is wrong. For example,

P15 told us: “If I did the exercises correctly, it will let you know you are correct. If I

did something wrong, it will tell me to try again, [with] no specific instructions.”

Even when learners generate the right output, ICTs will often only tell them that

they are right, but will not give any additional feedback that a human teacher might

(e.g., suggestions about coding style or alternative ways to solve a problem). P8 was a

software engineer and knew the importance of a program’s running speed in real-

world scenarios and how important coding style can affect a group’s efficiency. He

said: “There’s code that’s faster and then there’s also code that’s more efficient and

then there’s also code that takes up less space and you’re basically looking for the

[most] efficient one where it takes into account time and space. I mean the Treehouse

and all these coding websites don’t give you that kind of feedback.”

Pros of feedback from teachers: Compared with ICTs, participants expressed that

teachers’ feedback were more specific and focused. As mentioned above, participants

thought that it was important not only to understand where in their code error were,

but also why it was an error so that they can better learn how to resolve it and avoid

134 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

similar errors in the future. P5 told us a general impression on teacher’s feedback:

“The professor is more specific and is more accurate. You can ask your professor to

check your code line-by-line, and then he will point out your error, and will explain

more. Maybe he will give you a reference.” P7 had a nice and patient teacher who

gave him detailed explanations for his problems. He said: “For SQL, I think at that

time most of the problems we had is when we had to join table, and so she’d try to

help me to understand. She will basically just draw out a table and then show me what

my wrong code would produce as the output, and how it would be different from my

input.”

In addition, teachers can suggest and discuss different solutions of a problem with

the students. Students can learn better solutions that can make their code run more

efficiently. P3 gave us a comparison between feedback from ICTs and from teachers:

“You write a sorting algorithm and you think it is correct. If you tried on the website,

it is also right, you think it is a perfect solution, but for the professor, he will tell you

that there’s a better sorting algorithm, so you will learn something better. But for the

online tutorial, it only tells you if it is right or not.”

Cons of feedback from teachers: Five participants mentioned that it took a long

time to get feedback from their programming teachers. If learners do not get feedback

in a timely manner, the benefits of learning-by-doing might not be realized since stu-

dents might have forgotten about the specifics of the task(s) by the time they get the

feedback. P8 shared his thoughts with us: “With the teacher setting, you’re submitting

an assignment, waiting a week for them to look at it. So that it’s a long process. Like

it takes a while just to even know what you did wrong.”

4.6 RQ4: In Terms of Learning Programming, do Learners Prefer to Learn

from ICTs or Teachers?

Prefer to learn from ICTs: 11 out of 20 participants reported that they preferred

learning from ICTs. Among the 11 participants, one had 1-year programming experi-

ence, and the others had 3 or more years of experience. Most of them were self-

identified as having good knowledge in programming basics. During the interview,

most of them showed confidence on their self-learning abilities. Participants ex-

pressed that they liked to study at their own pace and in a more efficient way. In this

sense, ICTs are better than teachers. This reasoning was more commonly seen with

our experienced programmers. For example, P4 had 10 years of programming experi-

ence; when he learned a new skill or function, he aimed at applying it quickly to solve

real problems. For him, learning from a teacher from the basics was not as efficient

and flexible as learning from computer tutors. He said: “Because I don’t have time to

spend a whole hour to sit in a classroom to take a course. Learning from a teacher, the

time is not flexible, usually, I would prefer that I can learn this language this morning

and I can use it this afternoon. It is not efficient to learn from a teacher. A teacher will

teach you language from scratch. I already know some common sense about pro-

gramming language, and the teacher will not personalize the course for you.”

P20 was a more junior programmer than P4, but she had some foundation in pro-

gramming. The interactive tool she used gave her a positive experience in learning

iJET ‒ Vol. 15, No. 9, 2020 135

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

programming, she expressed her preference for using it to learn: “[I prefer] computer

applications. It’s sectioned so that it’s easier to consume. And I can go at my own

pace.”

Two participants thought that the skills and knowledge provided by ICTs were

more up-to-date, while some teachers’ skills might not. For example, P12 told us: “I

would prefer to learn through the [computer] application but not teacher. I think the

teacher is usually far behind the current progress, because a teacher needs to learn this

programming language first and then he can teach you. But what I would learn, is

basically always something new.” P19, a more junior programmer held the same

view. She was a working professional; her work required her knowing new skills. She

felt that what programming skills she learned at school could not apply to the prob-

lems she encountered at work, whereas what she learned from ICTs were always

helpful. She said: “The stuff you learn from school was more like standard ones, that

everybody needs to learn. That’s the basics. But actually, whatever you’re doing in

work or in life, it’s totally different than what you learned from school. It doesn’t

really help.”

Prefer to learn from teachers: Three participants expressed that they preferred to

learn programming from teachers. They all had 1-2 years of programming experience.

During the interview, they tended to be more anxious about any questions dealing

with learning more programming. They thought that they needed more expert help to

guide them through the process of learning programming. For example, P11 told us:

“I personally prefer someone to tell me. Not just that I go to read. For coding, I prefer

following some examples, it doesn’t matter if it’s with the teacher or with the video,

but I think it is better with a teacher. Because if there are any questions you can im-

mediately ask for help.”

Prefer to learn from both in combination Instead of learning programming from

a single method, some participants said that they preferred to learn from both in com-

bination. They liked to learn from computers because they could grasp basic concepts

efficiently and at their own pace. But they also liked to learn from teachers because

they could discuss questions and advanced ideas with them. They agreed that a com-

bination would be ideal. P1 elaborated her preference: “[I] like a hybrid kind of thing,

take a course online and then just meet my professor once a week to discuss what

issues I had or just shoot out an e-mail saying that ‘I was doing this particular section

and I feel this could be done this way.’ But just sitting there and just talking with the

machine, I think it feels less personal. So, if it’s a hybrid thing, you have the feasibil-

ity of doing the course and taking the course whenever you want to, and plus having

the chance of speaking to a teacher gives you a broader platform to discuss your is-

sues.”

Preference depends on different situations: One participant said that his prefer-

ence depended on his knowledge of the language. He said: “It depends on what I try

to achieve. If it’s a new type of programming that I have no knowledge about at all,

then I’ll probably prefer to learn from a teacher. If I sort of know what it is about, I’ll

probably start with a computer-based method, and I’ll go from there.”

Another participant said that his preference for learning between an ICT or teacher

depended on how deeply he wanted to learn. If he wanted to learn something thor-

136 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

oughly, he preferred learning from a teacher; if he only needed to understand others’

code at work, he would rather use an online interactive tool to understand the basics.

He said: “If I just want to know the programming language, so that I can understand

other people’s code, I think a computer application is good enough, because it teaches

you basic syntax, basic logic, and I think that’s all you need to be able to read and

understand other people’s code. But if you actually want to program by yourself, I

would prefer taking a class with a professor.”

One participant said that it depended on the teachers’ teaching competency. If the

teacher was experienced and willing to help, he would rather learn from them instead

of an ICT. He said: “If your professor is good at the language he is teaching, and if his

skill is up to date, I think it’s more helpful than learning yourself [with an ICT].”

5 Discussion

We identified several features that learners like or dislike when learning program-

ming from ICTs and teachers. Learners cared most about the following three factors:

efficiency, feedback, and practice. We discovered that most of our participants’ pri-

mary learning goal was to apply new programming skills quickly into their work or

studies, so learning efficiency was their biggest concern. Most of them also believed

that learning-by-doing was the best way to master programming skills, so immediate

practice was an important factor to consider when choosing learning methods. In

addition, due to the complexity of programming skills, learners preferred to get de-

tailed feedback as quickly as possible. Designers of ICTs and teachers can benefit

from this knowledge by focusing efforts on improving on these three aspects when

teaching programming.

For ICTs, the biggest strength, which most participants mentioned, was the embed-

ded code editors and immediate practice, while a major weakness was the content

design (too basic, repetitive, or brief). To address this issue, designers could take

advantage of code editors to provide more advanced, practice-oriented tutorials.

We also identified another factor to consider during our interviews, which was the

existence of both basic and advanced levels of learners. While a few ICTs might sepa-

rate their content for different experience levels of learners, most ICTs we are aware

of do not; one beginner programmer liked when the (ICT) system forced him to learn

step-by-step (by locking content until finishing the current activity), whereas four,

more experienced learners, did not like this feature. A key design consideration is to

gauge a learner’s experience at the beginning of the course/tutorial/activity so that the

teacher or ICT can deliver content in a manner consistent with one’s experience.

According to our findings, ICTs are efficient at delivering content with immediate

practice, while teachers did a better job in providing customized help with real life

experience. Both ICTs and teachers can benefit from these observations. First, ICTs

can incorporate human experts to provide help when requested by online learners.

Experts can also interact with learners in the system’s online learning community,

such as having conversations with learners or posting guides to address learners’ con-

cerns.

iJET ‒ Vol. 15, No. 9, 2020 137

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

Second, we learned that teachers who are experienced in teaching were especially

good at paying extra attention to students’ needs when introducing content that stu-

dents typically find difficult. ICTs can improve from this observation by gathering

data from learners’ learning logs in every course section (e.g., how many tries does

someone take to write the correct code, or how much time do they spend on a con-

cept) and provide extra instruction, help, or practice for the parts that most learners

have difficulties with.

Third, our participants valued having conversations with teachers. They used these

opportunities to gain coding tips, learn about real life experience as programmers,

exchange project ideas, and get help with questions. Listening to long lectures without

minimal interaction was boring and meaningless to learners. Since we found that

existing ICTs are good at delivering basic concepts and exercises, we believe it is

beneficial to integrate them into programming classes to compliment teachers. Teach-

ers can have ICTs deliver basic information (e.g., concepts, syntax) outside of class,

and spend the time saved having more conversations with students regarding prob-

lems, projects, and real-life programming experience (e.g., using the “flipped class-

room” model [41]).

Lastly, the comparison of feedback between ICTs and teachers suggests design op-

portunity for ICTs. It may not be feasible for teachers to give immediate feedback to

students for all assignments/tasks, but ICTs can benefit from what we learned about

feedback from teachers. This includes commenting on, giving suggestions, and show-

ing alternative coding styles and run-time issues (such as code execution efficiency).

6 Limitations and Future Work

Our study has limitations that present further research opportunities. First, the

snowball sampling method we used may have introduced a sampling bias. However,

our participants represented a broad range of demographics, including years of expe-

rience with coding. Second, having 20 participants may raise questions about the

representativeness of our sample and generalizability of our results. We reached data

saturation [42] on our 16th interview and verified that our additional participants did

not provide significantly different information from previous participants. Third, we

found that there are factors that may affect how learners evaluate their learning expe-

rience, for example, learning environment (e.g., summer camp, college course, voca-

tional training) and learning goals (e.g., learning for work, school practice, or personal

interest). We will further investigate whether learning environments and learning

goals, or even other factors (e.g., gender, age, job, level of experience, order of learn-

ing from a specific type of tutor), will cause effect on how learners evaluate their

learning experience(s). Fourth, our study defined and examined ICTs within a specific

subset of MOOCs. Furthermore, our study specifically examined only human teach-

ers. There may be different types of ICTs and MOOCS that people have used to learn

programming. Similarly, people may have learned from non-professional teachers or

professors, such as informal tutors, friends, or relatives. These different types of

ICTs/MOOCs and human teachers were deliberately excluded from this study to

138 http://www.i-jet.org

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

maintain a viable scope. However, our future work can include discussion about peo-

ple’s use of these other learning resources, which may reveal different findings and

preferences from what was found here. Lastly, when presenting the quotes, we de-

scribed the participants using their self-reported number of years in programming

(e.g., “P11 had 2 years of programming experience”). However, self-reported years of

experience may not be a good indicator of participants’ real programming ability or

expertise. We will further study the relationship between years of experience and

programming expertise. Other objective measures (e.g., test of knowledge) can be

used to gauge learners’ programming ability and experience level.

7 Conclusion

In this paper, we explored learners’ perspectives on receiving instruction from hu-

man teachers versus interactive computer tutors when learning programming. We

found that efficiency and practice are the two main factors that learners care about

when choosing between these two types of instruction. Our findings also suggest the

strengths and weaknesses of learning from interactive computer tutors and teachers,

which we use as a basis for design suggestions for these types of instruction.

8 Acknowledgement

This material is based upon work supported by the National Science Foundation

under grants DRL-1837489 and IIS-1657160. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science Foundation.

9 References

[1] R. Moser, “A fantasy adventure game as a learning environment: why learning to program

is so difficult and what can be done about it,” in ACM SIGCSE Bulletin, 1997, 29:3, 114–

116. https://doi.org/10.1145/268809.268853

[2] A. Yadin, “Reducing the dropout rate in an introductory programming course,” ACM in-

roads, 2011, 2:4, 71–76. https://doi.org/10.1145/2038876.2038894

[3] P. Nuankaew, “Dropout Situation of Business Computer Students, University of Phayao,”

Journal of Emerging Technologies in Learning, 2019, 14:19. https://doi.org/10.3991/ijet.

v14i19.11177

[4] D. F. Onah, J. Sinclair, and R. Boyatt, “Dropout rates of massive open online courses: be-

havioural patterns,” EDULEARN, 2014, 5825–5834.

[5] R. Shen, D. Y. Wohn, and M. J. Lee, “Comparison of Learning Programming Between In-

teractive Computer Tutors and Human Teachers,” in ACM CompEd, 2019, 2–8. https://

doi.org/10.1145/3300115.3309506

[6] P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for computer program-

ming,” in ACM UIST, 2015, 599–608. https://doi.org/10.1145/2807442.2807469

iJET ‒ Vol. 15, No. 9, 2020 139

https://doi.org/10.1145/268809.268853
https://doi.org/10.1145/2038876.2038894
https://doi.org/10.3991/ijet.v14i19.11177
https://doi.org/10.3991/ijet.v14i19.11177
https://doi.org/10.1145/3300115.3309506
https://doi.org/10.1145/3300115.3309506
https://doi.org/10.1145/2807442.2807469

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

[7] M. Guzdial, “Limitations of MOOCs for Computing Education-Addressing our needs:

MOOCs and technology to advance learning and learning research,” Ubiquity, 2014. https

://doi.org/10.1145/2591683

[8] J. R. Anderson and E. Skwarecki, “The automated tutoring of introductory computer pro-

gramming,” Communications of the ACM, 1986, 29:9, 842–849. https://doi.org/10.1145/

6592.6593

[9] T. Tang, S. Rixner, and J. Warren, “An environment for learning interactive program-

ming,” in ACM SIGCSE, 2014, 671–676.

[10] R. G. Farrell, J. R. Anderson, and B. J. Reiser, “An Interactive Computer-Based Tutor for

LISP.,” in AAAI, 1984, 106–109.

[11] B. L. F. Daku and K. Jeffrey, “An interactive computer-based tutorial for MATLAB,” in

IEEE FIE, 2000.

[12] K. M. Y. Law, V. C. S. Lee, and Y.-T. Yu, “Learning motivation in e-learning facilitated

computer programming courses,” Computers & Education, 2010, 55:1, 218–228. https://

doi.org/10.1016/j.compedu.2010.01.007

[13] B. B. Morrison and B. DiSalvo, “Khan academy gamifies computer science,” in ACM

SIGCSE, 2014, pp. 39–44. https://doi.org/10.1145/2538862.2538946

[14] R. Murphy, L. Gallagher, A. E. Krumm, J. Mislevy, and A. Hafter, “Research on the use of

Khan Academy in schools: Research brief,” 2014.

[15] C. Alario-Hoyos et al., “Interactive activities: the key to learning programming with

MOOCs,” European Stakeholder Summit on Experiences and Best Practices in and

Around MOOCs, EMOOCS, 2016, 319.

[16] D. Pritchard and T. Vasiga, “CS circles: an in-browser python course for beginners,” in

ACM SIGCSE, 2013, 591–596. https://doi.org/10.1145/2445196.2445370

[17] B. J. Reiser, J. R. Anderson, and R. G. Farrell, “Dynamic Student Modelling in an Intelli-

gent Tutor for LISP Programming.,” in IJCAI, 1985, 85:1, 8–14.

[18] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards practical pro-

gramming exercises and automated assessment in Massive Open Online Courses,” in IEEE

TALE, 2015, 23–30. https://doi.org/10.1109/tale.2015.7386010

[19] T. R. Liyanagunawardena, K. O. Lundqvist, L. Micallef, and S. A. Williams, “Teaching

programming to beginners in a massive open online course,” 2014.

[20] A. M. F. Yousef, M. A. Chatti, U. Schroeder, and M. Wosnitza, “What drives a successful

MOOC? An empirical examination of criteria to assure design quality of MOOCs,” in

IEEE ICALT, 2014, 44–48. https://doi.org/10.1109/icalt.2014.23

[21] B. S. Bloom, “The 2 sigma problem: The search for methods of group instruction as effec-

tive as one-to-one tutoring,” Educational Researcher, 1984, 13:6, 4–16. https://doi.org/10.

3102/0013189x013006004

[22] D. C. Merrill, B. J. Reiser, M. Ranney, and J. G. Trafton, “Effective tutoring techniques: A

comparison of human tutors and intelligent tutoring systems,” Journal of the Learning Sci-

ences, 1992, 2:3, 277–305. https://doi.org/10.1207/s15327809jls0203_2

[23] P. Gill, K. Stewart, E. Treasure, and B. Chadwick, “Methods of data collection in qualita-

tive research: interviews and focus groups,” British Dental Journal, 2008, 204:6, 291. https

://doi.org/10.1038/bdj.2008.192

[24] Z. A. A. Muhisn, M. Ahmad, M. Omar, and S. A. Muhisn, “The Impact of Socialization on

Collaborative Learning Method in E-Learning Management System (eLMS),” Internation-

al Journal of Emerging Technologies in Learning, 2019, 14:20, 137–148. https://doi.org/

10.3991/ijet.v14i20.10992

140 http://www.i-jet.org

https://doi.org/10.1145/2591683
https://doi.org/10.1145/2591683
https://doi.org/10.1145/6592.6593
https://doi.org/10.1145/6592.6593
https://doi.org/10.1016/j.compedu.2010.01.007
https://doi.org/10.1016/j.compedu.2010.01.007
https://doi.org/10.1145/2538862.2538946
https://doi.org/10.1145/2445196.2445370
https://doi.org/10.1109/tale.2015.7386010
https://doi.org/10.1109/icalt.2014.23
https://doi.org/10.3102/0013189x013006004
https://doi.org/10.3102/0013189x013006004
https://doi.org/10.1207/s15327809jls0203_2
https://doi.org/10.1038/bdj.2008.192
https://doi.org/10.1038/bdj.2008.192
https://doi.org/10.3991/ijet.v14i20.10992
https://doi.org/10.3991/ijet.v14i20.10992

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

[25] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming: A review

and discussion,” Computer Science Education, 2003, 13:2, 137–172. https://doi.org/10.10

76/csed.13.2.137.14200

[26] A. Pears et al., “A survey of literature on the teaching of introductory programming,” in

ACM SIGCSE Bulletin, 2007, 39:4, 204–223. https://doi.org/10.1145/1345375.1345441

[27] P.-H. Tan, C.-Y. Ting, and S.-W. Ling, “Learning difficulties in programming courses:

undergraduates’ perspective and perception,” in ICCTD, 2009, 42–46. https://doi.org/10.11

09/icctd.2009.188

[28] B. Means, Y. Toyama, R. Murphy, M. Bakia, and K. Jones, “Evaluation of evidence-based

practices in online learning: A meta-analysis and review of online learning studies,” 2009.

[29] J. Warren, S. Rixner, J. Greiner, and S. Wong, “Facilitating human interaction in an online

programming course,” in ACM SIGCSE, 2014, 665–670. https://doi.org/10.1145/2538862.

2538893

[30] N. T. Heffernan and K. R. Koedinger, “An intelligent tutoring system incorporating a

model of an experienced human tutor,” in International Conference on Intelligent Tutoring

Systems, 2002, 596–608. https://doi.org/10.1007/3-540-47987-2_61

[31] O. Deperlioglu and U. Kose, “The effectiveness and experiences of blended learning ap-

proaches to computer programming education,” Computer Applications in Engineering

Education, 2013, 21:2, 328–342. https://doi.org/10.1002/cae.20476

[32] M. Beyyoudh, M. K. Idrissi, and S. Bennani, “Towards a New Generation of Intelligent

Tutoring Systems,” International Journal of Emerging Technologies in Learning, 2019,

14:14, 105–121. https://doi.org/10.3991/ijet.v14i14.10664

[33] H. J. Rubin and I. S. Rubin, Qualitative interviewing: The art of hearing data. Sage, 2011.

[34] R. S. Weiss, Learning from strangers: The art and method of qualitative interview studies.

Simon and Schuster, 1995.

[35] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical Statistics, 1961, 148–

170.

[36] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-depth semistruc-

tured interviews: Problems of unitization and intercoder reliability and agreement,” Socio-

logical Methods & Research, 2013, 42:3, 294–320. https://doi.org/10.1177/004912411350

0475

[37] D. Armstrong, A. Gosling, J. Weinman, and T. Marteau, “The place of inter-rater reliabil-

ity in qualitative research: an empirical study,” Sociology, 1997, 31:3, 597–606. https://

doi.org/10.1177/0038038597031003015

[38] K. A. Hallgren, “Computing inter-rater reliability for observational data: an overview and

tutorial,” Tutorials in Quantitative Methods for Psychology, 2012, 8:1, 23. https://doi.org/

10.20982/tqmp.08.1.p023

[39] A. Yan, M. J. Lee, and A. J. Ko, “Predicting abandonment in online coding tutorials,” in

IEEE VL/HCC, 2017, 191–199. https://doi.org/10.1109/vlhcc.2017.8103467

[40] M. J. Lee, “(Re)Engaging Novice Online Learners in an Educational Programming Game,”

Journal of Computing Sciences in Colleges, 35:8, 2020.

[41] B. Tucker, “The flipped classroom,” Education Next, 2012, 12:1, 82–83.

[42] K. Malterud, V. D. Siersma, and A. D. Guassora, “Sample size in qualitative interview

studies: guided by information power,” Qualitative Health Research, 2016, 26:13, 1753–

1760. https://doi.org/10.1177/1049732315617444

iJET ‒ Vol. 15, No. 9, 2020 141

https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/1345375.1345441
https://doi.org/10.1109/icctd.2009.188
https://doi.org/10.1109/icctd.2009.188
https://doi.org/10.1145/2538862.2538893
https://doi.org/10.1145/2538862.2538893
https://doi.org/10.1007/3-540-47987-2_61
https://doi.org/10.1002/cae.20476
https://doi.org/10.3991/ijet.v14i14.10664
https://doi.org/10.1177/0049124113500475
https://doi.org/10.1177/0049124113500475
https://doi.org/10.1177/0038038597031003015
https://doi.org/10.1177/0038038597031003015
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/10.1109/vlhcc.2017.8103467
https://doi.org/10.1177/1049732315617444

Paper—Programming Learners’ Perceptions of Interactive Computer Tutors and Human Teachers

10 Authors

Ruiqi Shen is a Ph.D. candidate in the Informatics Department at the New Jersey

Institute of Technology (NJIT), New Jersey, USA. Her area of focus is in Computing

Education.

Donghee Yvette Wohn is an Assistant Professor in the Informatics Department at

the NJIT, where she directs the Social Interaction Lab. Her research area is Human-

Computer Interaction in the context of social media, focusing on non-conscious use of

technology, such as media habits, and their relation to psychological well-being and

interpersonal relationships.

Michael J. Lee is Lee is the Dorman-Bloom Assistant Professor of Informatics at

the New Jersey Institute of Technology (NJIT), where he directs the Gidget Lab. His

research is in the area of Computing Education and Human-Computer Interaction,

where he mainly focuses on how to improve novices’ engagement and knowledge in

learning programming.

Article submitted 2019-11-20. Resubmitted 2020-01-07. Final acceptance 2020-01-13. Final version
published as submitted by the authors.

142 http://www.i-jet.org

