
A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

A Formative Assessment Tool for Conceptual
Database Design Using UML Class Diagram

doi:10.3991/ijet.v5i3.1402

J. Soler, I. Boada, F. Prados, J. Poch and R. Fabregat
University of Girona, Spain

Abstract—Database design is one of the main topics of any
introductory database course. Traditionally, for teaching it
entity-relationship diagrams (ERD) are used. However, in
the last years, Unified Modeling Language (UML) has
emerged as an effective modeling tool for database design.
In this paper we present a web-based tool designed to give
support to teaching and learning conceptual database design
using UML class diagrams. The proposed UML environ-
ment is an effective tool for formative assessment since it is
capable of correcting automatically UML class diagrams
exercises providing immediate feedback to the student. The
tool is part of a more general framework, denoted ACME,
which provides the main functionalities of an e-learning
platform. The tool has been used in a first experimental
group of an introductory database course.

Index Terms—Computer based assessment, conceptual da-
tabase design, formative assessment, UML class diagrams,
web-based tools.

I. INTRODUCTION

Assessment is one of the most important tasks in the
learning process. Its aim is to determine if the student has
achieved the objectives/competences of the course. As-
sessment can be classified as summative or formative ac-
cording to its aim and function.

Summative assessment qualifies or certifies the level of
the student when the topic/course is completed. It does not
consider the learning process or how the student has ac-
quired his/her knowledge. On the contrary, formative as-
sessment takes into account all the learning process apply-
ing methods that establish what progress a student is mak-
ing during learning and also returning feedback to en-
hance the student learning process. The benefits of forma-
tive assessment are clear, as reflected in [1][2]. However,
a good formative assessment requires many resources and
effort. To track the students’ progress throughout the
course different activities have to be proposed, corrected
and feedback has to be returned to the students. This effort
increases when the number of students increases too.
Therefore formative assessment is difficult to apply.

To overcome this limitation computer based assessment
(CBA) systems have been proposed [2]. The aim of CBA
is to automate, as far as possible , in learning and teaching
tasks. Therefore the functionalities of these systems,
amongst others, are the delivery of materials for teaching
and assessment, the input of solutions by the students, the
automated assessment process and the delivery of feed-
back. All these are achieved through an integrated online
system.

Over the years different e-learning tools have been pro-
posed to give support to the assessment process. However,
the majority of them have been designed to support the
automatic correction of exercises with pre-defined an-
swers, such as multiple choice or test exercises. In general,
these tools are used for evaluating the lowest levels of
Bloom's taxonomy (knowledge and comprehension) [3].
The evaluation of intermediate (application and analysis)
or highest (synthesis and evaluation) levels requires more
specialized environments able to support more complex
activities where no predetermined answers are given.

In this paper, we focus our interest on conceptual data-
base design using class diagram. We propose a new envi-
ronment designed to support the formative assessment of
this topic.

The paper has been structured as follows. In Section 2
conceptual modeling is revised, In Section 3, related work
on UML class diagrams and the ACME-DB e-learning
environment are presented. In Section 4, the proposed
correction UML tool is described. In Section 5, the first
results obtained with the use of the tool are given. Finally,
in Section 6, conclusions and future work are presented.

II. CONCEPTUAL MODELING

Traditionally, a database course uses entity-relationship
diagrams (ERD) when teaching conceptual modeling.
Describing ERD and how to use them to illustrate concep-
tual database design is one of the main objectives of an
introductory database course [4]. But, despite the popular-
ity of ERD, in the last years, different authors have pro-
posed the UML (Unified Modeling Language) class dia-
gram as an alternative to be used instead of ERD notation.

The UML [5] is the standard language for modeling ob-
ject-oriented applications and is commonly used in the
development of software applications. Although, this
methodology was developed mainly for software design, a
major part of software design involves designing the data-
bases that will be accessed by the software modules.
Hence, an important part of the UML is the class dia-
grams. A class diagram is a type of diagram that describes
the static structure of a system by showing the system's
classes and the relationships between them. Therefore, it
can be considered that class diagrams are similar to ERD
in many ways [6]. Moreover, UML provides an advantage
with respect to entity-relationship model (ER) since it is
widely understood within the computing community,
whereas ER is limited primarily to the database commu-
nity.

In non-academic environments, UML has emerged as
an effective modeling tool for database design. However,
it is still rare to see UML class diagram as the primary

iJET – Volume 5, Issue 3, September 2010 27

http://dx.doi.org/10.3991/ijet.v5i3.1402�

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

notation when teaching conceptual data modeling [7]. In
academic textbooks the primary modeling techniques are
based on ER notation. However, this tendency is changing
in recent versions of the books, and chapters presenting
UML methodology for conceptual modeling are included
[8]. There are also different books focused only on the use
of UML for database design [9,10]. These books claim
that UML make a closer database design with real busi-
ness applications.

We agree with [11,12] that this new tendency has to be
taken into account in basic database courses, and hence
UML class diagram notation has to be taught as well as
ERD. Since building UML class diagrams is a complex
process, we decided to develop a web-based tool to sup-
port its teaching and learning. This tool has been inte-
grated in a more general e-learning framework, denoted
ACME-DB, used in database courses in our university.
The ACME-DB is used as a support for teaching and
learning the main topics of the course, amongst them, en-
tity-relationship diagrams, relational database schemas,
database normalization, SQL and relational algebra.

The proposed UML environment is an effective tool for
formative assessment since it provides the functionalities
required to automatically correct exercises providing im-
mediate feedback to the student. The purpose of this paper
is to present the UML developed tool and how it is used
for formative assessment in a database course.

III. RELATED WORK

In this section, we review the main concepts of UML
class diagrams and their equivalences with ERD. Then,
we present previous work on UML modeling tools and
finally, the ACME-DB environment where our proposed
tool has been integrated.

A. UML class diagram and ERD
There are many similarities between UML class dia-

grams and ERD [6]. Below we describe them by consider-
ing the examples extracted from [8] and illustrated in Fig.
1 and 2, where the same database has been modeled using
UML and ERD, respectively.

 The entity types in ER are modeled as classes in UML
notation. An entity in ER corresponds to an object in
UML. In UML class diagrams, a class is displayed as a
box that includes three sections: the class name, the attrib-
utes and the operations that can be applied to these ob-
jects. Operations are not specified in ERD.

Relationship types in ERD are called associations in
UML terminology, and relationship instances are called
links. A binary association is represented as a line con-
necting the participating classes and optionally may have
a name. A relationship attribute is placed in an association
class that is connected to the association’s line by a dashed
line.

The cardinality in ER model is equivalent to multiplic-
ity in UML terminology and denotes the number of ob-
jects that can participate in the relationships. Multiplicities
are specified in the form min..max, and an asterisk (*)
indicates no maximum limit on participation. Possible
multiplicities are 0..1, 1..1 (or 1), 1..*, n..m and 0..* (or *).

In UML, there are two types of relationships: associa-
tion and aggregation. An aggregation is meant to represent
a relationship between a whole object and its components
parts. In UML, it is graphically represented as a hollow

Figure 1. Entity-Relationship diagram of a company database from [8]

Figure 2. UML class diagram of a company database from [8]

diamond shape on the containing class. A composition is a
stronger form of aggregation where the part is created and
destroyed with the whole. The composition is drawn like
the aggregation, but this time the diamond shape is filled.
UML also distinguishes between unidirectional associa-
tions, which are displayed with an arrow to indicate that
only one direction for accessing related objects is needed,
and bidirectional, which are the default. Weak entities in
the ER model can be modeled using the construct called
qualified association in UML which can represent both the
identifying relationship and the partial key, which is
placed in a box attached to the owner class. UML has the
ability to specify methods, but when modeling a database,
this feature is not needed as we only deal with data.

The UML is the standard notation for modeling busi-
ness and software application needs. The main advantage
of UML with respect to ER is that it can serve as a unify-
ing framework that facilitates the integration of database
design with the rest of a system design.

B. UML modeling tools
Building diagrams is a complex process and different

modeling tools have been proposed for creating them. The
majority of these tools has been designed for advanced
users and only gives support to diagram drawing require-
ments. For teaching purposes, these tools are not appro-
priate since more advanced features are required.

28 http://www.i-jet.org

http://en.wikipedia.org/wiki/Rhombus�

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

The teacher desires a CBA system capable of assigning
activities to the students and correcting them as well as
providing support to all assessment needs. Moreover, most
of the current systems only correct fixed-response ques-
tions, such as multiple choice or test-questions, and can
only be used for evaluating basic skill levels of Bloom's
taxonomy (knowledge and understanding). The evaluation
of intermediate (application and analysis) or upper (syn-
thesis and evaluation) levels requires more specialized
environments able to support more complex activities
where no predetermined answers are given. The design of
specialized CBA environments is not trivial. The main
difficulty is with the development of the correction strate-
gies. These require a high degree of specialization to sat-
isfy the needs of the area to be evaluated.

On the other hand, in our context the student desires a
friendly tool where he/she can practice and improve
his/her skills on conceptual database modeling. In this
section, we will focus on teaching/learning tools that can
be very valuable in the academic context. Below we de-
scribe some of them.

Hoggarth and Lockyer [13] proposed an automated stu-
dent diagram assessment system that provides a verifica-
tion mechanism where the student manually compares
his/her solution with the one designed by the teacher. At
the end of the comparison process, the system generates a
list with the differences with comments that can be used
by the student to improve his/her diagram. H.Ali et al [14]
proposed a UML class diagram environment using nota-
tion extraction which compares two Rational Rose files.
The first file is a description of the UML class diagram
proposed by the student and the second one the descrip-
tion of a correct solution defined by the teacher. The sys-
tem compares these files line by line and generates a list
with the differences. Feedback is returned according to
this list. Baghaei, Mitrovic and Irwin [15] presented a
constraint-based tutoring system for learning UML class
diagrams. The system observes students’ actions and
adapts to their knowledge and learning abilities. The sys-
tem compares the student’s solution with the ideal one
proposed by the tutor. The comparison process is based on
a set of rules. They proposed a single user and also a col-
laborative version of the tool. Virvou and Tourtoglou [16]
proposed an environment for the adaptive support to a
software engineering trainer. It considers two users, the
trainer, considered an expert, and the student. The system
assigns a degree of knowledge to the student and also an
expert to monitor his/her work. N.Le [17] proposed an
extension of the ArgoUML tool that allows for the crea-
tion of UML class diagrams in a free-form way, i.e., with
any restriction with respect to the name of the classes or
the attributes. The system provides a set of guidelines for
the student to create the diagram.

Despite the capabilities of these tools, in the academic
context, it is desired that the e-learning tools provide not
only the functionalities for which they have been designed
but also other functionalities related with academic issues
such as continuous assessment, tracking student work, etc.
Another limiting factor of these tools is that all of them
need to be installed and the majority require an additional
software for drawing the diagrams [13,14,17]. On the
other hand, the tools are independent in the sense that they
can not be integrated in a more general framework for
giving support to different topics of database courses.

C. The ACME environment
ACME is a CBA system developed in our university to

give support to the teaching and learning of different sub-
jects. Originally, it was designed for teaching mathematics
in engineering and technical degrees. ACME has a com-
mon repository of problems. The teacher can select prob-
lems from it and the system automatically generates
workbooks. The student enters solutions and the system
corrects them returning feedback. All the work is stored in
a database and the teacher can extract information for
formative assessment. For a detailed description of the
platform please see [18].

The good academic results obtained when applying
ACME, encourages us to extend the platform in order to
support other subjects. Currently, amongst others, it sup-
ports mathematical [18], computer programming [19],
database problems, etc.

The set of modules of the platform related with data-
base topics is denoted ACME-DB. We started to develop
this environment in 2005 with the development of the
relational database schemas module [20]. Since then,
normalization [21], entity-relationship diagrams [22], SQL
and relational algebra [23] correctors have been developed
and integrated in the environment.

Compared with other e-learning platforms, ACME-DB
presents, amongst others, the following advantages: (i) It
integrates in a single environment, different tools for dif-
ferent database topics; (ii) supports automatic correction
of exercises, providing feed-back and (iii) supports auto-
matic student assessment.

Taking into account the limitations of current UML
class diagrams tools and the advantages of our environ-
ment, we decided to develop the modules required to sup-
port the formative assessment of UML class diagram ex-
ercises. Such functionality will be a very valuable tool for
teaching and learning conceptual database design in data-
base courses.

IV. THE UML CLASS DIAGRAM TOOL

In this section, we present the proposed tool for teach-
ing UML class diagrams. First, we introduce the main
design decisions that have been taken into account to de-
velop the tool. Then, we describe the tool from a technical
perspective, giving a detailed description of the main
modules that compose it.

A. Design decisions
The proposed tool has to be capable of automatically

correcting UML class diagram exercises in order to rein-
force the teaching and learning of the topic. To design this
tool, we consider that our system has to be able to assign
UML class diagram exercises and also the tools required
for the students entering the solution, i.e., a graphical in-
terface that allows UML class diagram to be drawn.

A second main requirement is the ability to support
online correction. The system has to be able to automati-
cally correct the exercises solved by the students. That is,
when students enter a solution to a UML problem, it is
desired that the system returns immediate feedback with
detailed information about errors.

The system has to allow students to enter more than one
solution until the correct one is obtained or a deadline is
reached. The system has to record all student work, i.e. all

iJET – Volume 5, Issue 3, September 2010 29

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

attempts entered until the correct one is obtained. Such
information will be very valuable for the teacher to carry
out a tracking of student progress. The information re-
corded in the system can be used for continuous assess-
ment purposes. In addition usability requirements are also
desired. For instance, the tool has to be easily accessible
for teachers and students, no special installation has to be
required, only a web browser. The system has to provide a
communication channel that enhances student-teacher
contact, whether students ask about doubts or teachers
give hints about how to solve diagrams.

The ACME environment provides some of the desired
requirements, such as, easy access, a record of student
work, continuous assessment and the student-teacher
communication channel. Therefore, to reach our objective
we have to focus on the functionalities not provided by the
environment and required to support the correction of
UML class diagram exercises.

At a broad level, we can reduce our problem as illus-
trated in Fig. 3. Our system has to propose exercises, the
student will enter solutions, the system will provide feed-
back according to the correctness of the solution, and this
process will be repeated until a certain deadline or the
correct solution is obtained. Hence, we have to design two
main modules: the class diagram student interface and the
class diagram correction module. Both are described in
detail in the next sections.

B. The problem structure
Previous to the definition of the different modules that

will compose our tool, we have to determine the structure
of a UML class diagram problem. This structure is crucial
for defining the correction strategy that has to be applied.

We define the problem structure following the guide-
lines used for the definition of the database problems that
are also supported by ACME-DB. It is important to take
into account that a UML class diagram problem can have
more than one correct solution. The proposed structure is
illustrated in Fig. 4. There is a first part with a description
of the problem that has to be solved. It consists of a set of
requirements for a real life application. A constraint of our
approach is that attributes have to appear in the problem
descriptor with a specific name and in brackets. Although
the identification of attributes is an important skill to be
acquired, for students of introductory database courses we
consider the ability to properly group attributes in the cor-
rect class or attach to the corresponding relationships more
important.

For each problem we also store a set of possible correct
solutions. In Fig. 5, we illustrate the information codified
for each solution. We have to specify all the classes and
the relationships that define it. We assign one name to
each of the classes and also the list of all its attributes. In
the case of association classes, we have to enter also the
Name of the association to which it is related. For the rela-
tionships, we have to specify its name, the related classes,
its multiplicity and the direction (unidirectional or bidirec-
tional). We also have to indicate if it is an association,
aggregation, composition or a generalization. In the case
of qualified associations, we have to indicate the qualified
class and the qualifier attribute.

The teacher enters the problems and the solutions into
the system using a specific editor integrated in the tool
that makes this task easier. Each problem is recorded in an

Figure 3. Main functionalities to be considered for the design of the

UML class diagram correction tool.

Figure 4. Main parts of a UML class diagram problem.

Figure 5. Parameters recorded for each correct solution

independent file, and once it has been created the system
verifies that all the parameters have been entered cor-
rectly. If the system detects that the entered file does not
fit the expected structure, it generates a message indicat-
ing where the error is.

Problems are stored in a common repository and once
saved they are available to be assigned to the students’
workbooks. For creating the workbooks, the teacher se-
lects exercises from the repository and then the generation
module assigns it to the students. Once the student has
assigned a workbook, he can select exercises and solve
them using the module presented in the next section.

30 http://www.i-jet.org

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

C. Class diagram interface
Before presenting the UML class diagram student inter-

face, just to put it into context, we briefly describe how
the information is showed to the student. Students enter
into the ACME environment by using their username and
password. Then, the system presents a list of topics and
one of them corresponds to UML class diagram exercises.
The student selects this and then accesses the list of class
diagram exercises that have been assigned to his/her
workbook. When he/she selects one of these exercises, an
interface appears with all the information and the tools
required to solve it.

In Fig. 6 we illustrate the student interface. Its main
parts are: (i) At the top, the problem descriptor area, which
is the space where the system displays the problem de-
scriptor. (ii) On the left, there is a button bar with the
drawing tools that contains a set of buttons where all the
elements required for creating a diagram are represented.
(iii) In the middle, the working area where the student
design the UML class diagram. In this example we show
the UML class diagram designed for a database problem
from [8]. Since the dimension of the class diagram can be
larger than the working area, there is a zoom button to
select the part of the diagram that has to be displayed in it.
(iii) At the bottom, there is an area with different tabs,
each one related to a diagram element. This space is de-
signed for entering the information and the main parame-

ters related to it. For example, when defining a class we
enter the attributes, for an association the multiplicity, the
type of association, etc. In this example, the association
between the two highlighted classes has been selected and
hence the corresponding tab allows the type of associa-
tion, related classes, etc. to be entered.

The student enters the solution and then presses the cor-
rect button. At this moment, the correction process (de-
scribed in the next section) starts and when it finishes it
returns feedback to the student. Feedback messages ap-
pear in an independent window jointly with the sent solu-
tion. If the solution is not correct, the returned message
gives some advice on how to solve it (see Table I).

TABLE I.
ERROR MESSAGES GENERATED WHEN AN INCORRECT

SOLUTION IS PROPOSED

TYPE OF ERROR RETURNED MESSAGE

Number of classes is incorrect More/less classes are required

Number of associations is incor-
rect

More/less associations are required

Incorrect class Class named … is not correct

Association type not correct Association named … is not correct

Multiplicity error
Multiplicity of association named …
is not correct

… …

Figure 6. Student interface designed for entering a UML class diagram.

iJET – Volume 5, Issue 3, September 2010 31

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

D. Correction module
The correction strategy is based on a comparison

process that proceeds as follow. The solution entered by
the student is compared with the possible correct solu-
tions of the problem stored in the repository of the sys-
tem. If any one of the correct solutions coincides with
the one of the student’s, the solution is considered in-
correct. In this case the feedback module selects the
solution from the repository which is most similar to the
one proposed by the student and sends a feedback mes-
sage to the student. The content of the message aims at
directing him/her to the selected correct solution. The
student can enter a new solution and repeat the process
until the correct solution is obtained or a deadline has
been reached.

The key of the correction process strategy is on the
name of the attributes. Note that the only restriction that
has been imposed to design the solution is that only
attributes marked in brackets in the problem descriptor
can be used. There is no restriction on the names of the
class nor the relationships. Classes are corrected by
considering the set of attributes attached to them.
.Relationships are evaluated in terms of the classes they
relate to, their multiplicity and their type (associations,
aggregations, compositions and generalization).

The differences between the correct solution and the
student solution determine the message that has to be
sent. We have classified the different types of errors
that can be found and we have assigned a message to
each one of them. The feedback module maintains this
set of possible messages and according to the type of
error detected by the correction module, it automatically
selects the message to be sent. In Table I, we present
some of the message errors.

E. Integration in the ACME-DB
All presented modules have been integrated in the

ACME-DB platform. The modularity of the platform
allows such integration to be done easily.

The main advantage of this integration is that
ACME-DB becomes a framework capable of giving
support to the main topics of a database course. The
student can use it to solve entity-relationship diagrams,
relational database schemas and normalization, SQL
and relational algebra queries. With the integration of
the new tool, now it can also solve UML class dia-
grams. As far as we know, this is the only environment
that integrates all these features in a single framework.

V. EXPERIMENTAL RESULTS

To evaluate the proposed tool we consider two
groups of students of an introductory database course.
The 48 students of the course were divided into two
groups of 24 students. In the first one, we used the pro-
posed tool and in the second one any tool was used. In
both groups to teach UML, we spent the same number
of hours. The teacher introduced the main UML con-
cepts and then the same exercises were proposed to the
students to acquire practice. These exercises, in order to
be solved, require UML class diagrams with a number
of classes that range from four to eight and from six to
twelve associations.

In the first group (group A), the teacher introduced
some example exercises through the proposed UML
tool. Then, a personalized workbook with four different
UML exercises was assigned to each student. In the
second group (group B), the teacher presented the same
examples as group A, but without using the tool. The
students solved the exercises by hand. The teacher en-
couraged students to solve all the exercises and in case
of questions, to go to his office.

For each group we collected the number of student
and the number of exercise that they solved correctly.
The obtained results are reported in Table II. Note that
the best results are obtained using the tool.

We also evaluate the advantages of the tool from the
teacher’s point of view. The tool provides information
of the type of student errors. For instance, we detected
that 34.2% of errors are multiplicity errors, 31.3% are
association type errors, 17.5% are definition class errors
and 17.0% other errors. We also detect that to solve a
problem correctly the student requires on average 3.2
attempts. The students sent solutions to 95.8% of the
problems and 84.3% of the problems were solved cor-
rectly.

At the end of the UML sessions, students of both
groups have to pass an exam. The exam consists of one
exercise similar to the exercises assigned to the stu-
dents. The exam was the same for both groups. In Table
III, we illustrate the obtained results, where capitals
from A to D represent excellent to failing the exam,
respectively. In these first experiments, we detect that
the students that used the tool obtained better results
than the other ones.

TABLE II.
NUMBER OF STUDENTS AND NUMBER OF PROBLEMS CORRECTLY

SOLVED

Number of problems 4 3 2 1 0

Group A 16 4 2 1 1

Group B 10 2 4 4 4

TABLE III.
EXAM RESULTS

Mark A B C D

Group A 12 6 3 3

Group B 10 4 6 4

From the teacher’s first impressions, we can remark

that the environment is easy to use. It does not require
any installation, only a web browser. More importantly,
it provides gains with respect to the classical teaching
methodology in the sense that it offers a system for the
continuous assessment of the student’s progress, makes
personalized attention to the student easier and assesses
the degree of participation of the students.

The data obtained from our first experiment, although
it is satisfactory, we consider that it is not enough to
evaluate the quality of the proposed framework and a
deeper study has to be carried out.

From a pedagogical point of view, the benefits of the
CBA proposed tool, amongst others, are: it increases
assistance to weaker students because problems in
learning can be immediately traced and teaching strate-

32 http://www.i-jet.org

A FORMATIVE ASSESSMENT TOOL FOR CONCEPTUAL DATABASE DESIGN USING UML CLASS DIAGRAM

gies adapted accordingly; it provides immediate feed-
back which ensures that the student can internalize the
submission and feedback as one entity while both are
fresh in the mind; it increases student awareness about
the assessment process since students are more willing
to answer automatically generated results and, there-
fore, become interested in determining what the asses-
sor is looking for in a model solution; it increases stu-
dent confidence by allowing easy early exercises and by
demonstrating to students that they are performing well;
it encourages students to effectively manage their own
workload since students can increase their mark through
multiple submissions if they begin to submit before the
deadline;, etc.

From the teacher’s point of view it is important to
note that an effort has to be made when preparing the
exercises. Then the correction is done automatically and
since the system returns the errors, he/she can spend
time dealing with students’ difficulties.

The students’ impressions have also been positive
especially the fact that to access the system they only
need an internet connection. During the different ses-
sions students were asked to comment on the problems
they faced while using the system. The responses were
very positive. The students feel motivated to solve the
proposed problems. The possibility to correct a problem
in real time encourages them to work until a correct
solution is found.

VI. CONCLUSIONS

Formative evaluation requires CBA systems to be
able to automate the main procedures of the teach-
ing/learning process. In the case, of specialized sub-
jects, these systems have to provide advanced features
to fit the subject requirements. In this paper we have
presented a UML class diagram tool that provides sup-
port to the teaching and learning of conceptual database
design, which can be considered as an advanced sub-
ject. We have presented the tool and the first experi-
mental results that have been obtained. In addition we
have described the advantages provided by the tool.

REFERENCES
[1] B. Bligh, Formative computer based assessment in diagram

based domains. Ph.D. thesis, University of Nottingham. 2006.
[2] D. Charman and A Elmes, Computer based assessment (Vol-

ume 1): A guide to good practice. SEED Publications, Univer-
sity of Plymouth. 1998.

[3] B.S. Bloom, Taxonomy of educational objectives, Handbook I:
the cognitive domain. David McKay Co Inc., New York. 1956.

[4] M. Robbert and C.M. Ricardo, “Trends in the evolution of the
database curriculum,” in Proc. 8th Conf. on Innovation and
technology in computer science education ITiCSE, pp 139-143,
2003.

[5] I. Jacobson, G. Book, and J. Rumbaugh, The unified software
development process, Reading, Addisson Wesley Longman,
1999.

[6] J. Rumbaugh, “ER is UML,” J. Inform. Syst. Educ., vol. 17, no.
1, pp. 21-26, 2006.

[7] J. Suleiman and M.J. Garfield, “Conceptual data modeling in
the introductory database course: Is it time for UML?,” J. In-
form. Syst. Educ., vol. 17, no. 1, pp. 93-99, 2006.

[8] R. Elmasri and S.B. Navathe, Fundamentals of database sys-
tems, 5th Edition. Addison Wesley, 2007.

[9] J. Naiburg and R.A. Maksimchuk, UML for database design,
Addison-Wesley, 2001.

[10] R.B. Muller, Database design for smarties: Using UML for
Data Modeling, Morgan Kaufmann Publishers Inc., 2003.

[11] T.A. Carte, J. Jasperson, and M.E. Cornelius, “Integrating ERD
and UML concepts when teaching data modeling,” J. Inform.
Syst. Educ., vol. 17, no. 1, pp. 55-63, 2006.

[12] D. Golden and V. Matos, “Introducing the Unified Modeling
Language into the information systems curriculum,” J. Inform.
Syst. Educ., vol. 17, no. 1, pp. 83-92, 2006.

[13] G. Hoggarth and M. Lockyer, “An automated student diagram
assessment system,” in Proc. 6th Conf. on Innovation and tech-
nology in computer science education ITiCSE, pp 122-124,
1998.

[14] N.H. Ali, Z. Shukur, and S. Idris, “Assessment system for
UML class diagram using notations extraction,” Int. J. of Com-
put. Science and Network Security, vol.7, no. 8, pp. 181-187,
2007.

[15] N. Baghaei, A. Mitrovic and W. Irwin, “Supporting collabora-
tive learning and problem-solving in a constraint-based CSCL
environment for UML class diagrams,” in Int. J. Computer-
Supported Collaborative Learning, vol 2, pp 159-190, 2007.
doi:10.1007/s11412-007-9018-0

[16] M. Virvou and K. Tourtoglou, “An adaptive training environ-
ment for UML,” in Proc. 6th Int. Conf. on Advanced Learning
Technologies ICALT, 2006.

[17] N. Le, “A constraid-based assessmnet approach for free form
design of class diagrams using UML,” in Proc. 6th Int. Conf.
Intelligent Tutor Systems, ITS, 2006.

[18] J. Soler, J. Poch, E. Barrabés, D. Juher, and J. Ripoll, “A tool
for the continuous assessment and improvement of the stu-
dent’s skills in a mathematics course” in Proc. Int. Symp.
Technology of Information and Communication in Education
for engineering and industry, TICE, pp. 105-110, 2002.

[19] I. Boada, J. Soler, F. Prados and J. Poch, “A teaching/learning
support tool for introductory programming courses” in Proc.
Int. Conf. Information Technology based higher Education and
Training, pp. 604-609, 2004.

[20] F. Prados, I. Boada, J. Soler, and J. Poch, “An automatic cor-
rection tool for relational database schemas,” in Proc. Int. Conf.
Information Technology based higher Education and Training,
S3C pp 9-14, 2005.

[21] J. Soler, I. Boada, F. Prados, and J. Poch, “A web-based prob-
lem-solving environment for database normalization” in
Proc.8th Int. Symp. on Computers in Education SIIE, 2006.

[22] F. Prados, I. Boada, J. Soler, and J. Poch, “A web based-tool
for entity-relationship modeling,” in Proc. Int. Conf. Compu-
tacional Science and its Applications ICCSA 2006, LNCS
3980, pp. 364-372, 2006.

[23] J. Soler, I. Boada, F. Prados, J. Poch, and R. Fabregat, “An
automatic correction tool for relational algebra queries,” in
Proc. Int. Conf. Computational Science and its Applications
ICCSA, LNCS 4706, pp 861-872, 2007.

AUTHORS

J. Soler, I. Boada, F. Prados, J. Poch and
R. Fabregat are with the University of Girona, Spain.

Manuscript received July 23rd, 2010. Published as resubmitted by
the authors August 4th, 2010.

iJET – Volume 5, Issue 3, September 2010 33

http://dx.doi.org/10.1007/s11412-007-9018-0�

