
BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

Beyond LMS: Expanding Course Experience
with Content Collaboration and Smart

Assignment Feedback
doi:10.3991/ijet.v5i4.1321

I. Bosnić, M. Orlić and M. Žagar
University of Zagreb, Zagreb, Croatia

Abstract—Tools for content collaboration among students
and teachers and automated assignment verification have
been introduced to students of a third-year computing
course. Collaborative work on lecture slides promotes con-
tent openness to students via a new open perspective and
improves the quality of lectures among other benefits. As-
signment verification helps students resolve most common
problems giving immediate feedback on their submissions.
WikiPres and ORVViS applications developed to assist in
these tasks are introduced and presented.

Index Terms—e-learning, content collaboration, assignment
verification

I. INTRODUCTION

This paper discusses our experiences with tools for con-
tent collaboration and automated assignment verification
developed and introduced to our students in a course on
Open computing. The breadth of the course topics and
emphasis on giving the students an overview of a wide
range of concepts and related technologies made it diffi-
cult to keep track of all recent technological developments
in the field. To address numerous student comments and
give them the opportunity to take part in the course crea-
tion, WikiPres application was developed. The main goal
of the application is to enable collaboration on lecture
notes in a Wiki environment, originally created as presen-
tations.

In the practical part of the course, students are given as-
signments to work on from home, and to try out various
concepts introduced in the lectures. These assignments
require students to use numerous technologies in a limited
time, which results in different problems – from environ-
ment setup, configuration issues to common problems
associated with learning a new language (programming
language like PHP, or descriptive language like XML). A
typical student response to these problems is time-
consuming trial and error with numerous questions posted
on course forums, often repeating from year to year. To
help students overcome most common problems, auto-
mated verification of student assignments with ORVViS
was introduced.

The paper is organized as follows: the Open computing
course and the base activities in LMS are described in
section 2. The efforts in making the content available for
collaboration, with the WikiPres application are described
in section 3. Section 4 gives the overview of automated

verification of course assignments with ORVViS. Current
issues observed in initial usage are given in section 5.

II. COURSE OVERVIEW

The Open computing course is given to ~70 third-year
students of computing at our University. The students are
introduced to the concepts of open systems, open tech-
nologies and their importance, as well as the nature of
open culture and open licences. Some basics in open sys-
tem security are also explained. The course gives a brief
overview of openness in hardware, software and user ex-
perience, with an emphasis on standards, their purpose
and means of establishing them in the world of distributed
and interactive information services.

On the practical side, students can experience how vari-
ous open technologies comprising the modern information
services (web was taken as an example of user-oriented
client-server computing) fit together technically over pro-
tocols (Internet and web protocols such as HTTP), and
languages (HTML, PHP, XML, JavaScript, Java). Having
a course focusing on openness forces us to illustrate the
described concepts on our own example –lecture notes are
prepared using an open source licensed OpenOffice.org
suite, course content is published under the Creative
Commons licence, and course assignments are carried out
using open technologies and programming languages.

The course is divided into three cycles, each lasting 4-5
weeks. The first cycle deals with basic terms of open sys-
tems and client-side technologies. The second cycle is
oriented towards server-side technologies, while the third
is focused on topics of integration, user interfaces, dy-
namic aspects, security and open licences. Each cycle
consists of:
 weekly lectures,
 bi-weekly course assignments (laboratory exercises),
 mid-term written exam after each course cycle.

These course elements are carried out in the classroom,
as the course is designed like a mixed-mode e-learning
course. However, these elements are interconnected to e-
learning activities, which can be divided in two groups:
core CMS/LMS elements and extended activities, which
are the focus of this article. The following section shortly
describes the core usage of CMS and LMS in our course.

A. Elementary LMS experience
For base course services, the Faculty’s Content Man-

agement System – FER E-Campus is used, as in all of the

http://dx.doi.org/10.3991/ijet.v5i4.1321�

BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

courses at the Faculty. The news, educational resources
and forums for students’ questions on assignments are
published there. CMS is integrated with Moodle LMS on
both data and authentication level [1]. The usage of two
systems, CMS and LMS, is due to the requirements of
uniformity for all the courses, as different courses at the
faculty have different levels of technology usage in educa-
tion. Courses which use less e-learning concepts, publish
just the content and course information through the CMS
and do not use LMS. Courses with higher level of e-
learning implementation increase the use of online activi-
ties with the students. Different tools, such as RSS feeds,
enable us to reduce the possible ambiguity of systems, e.g.
course news or repository updates from CMS are mirrored
in LMS.

In this course, LMS is mainly used for the following
tasks:
 embedding the lectures published on the SlideShare

service, as a means to open our educational content
to the public;

 delivering the course assignments to the students and
collecting student submissions, in order to check on
the submissions before the actual face to face meet-
ing with the students.

These systems lack the features of content collaboration
and assignment verification, which we find important for a
better course quality. The following chapters describe our
motivation for improving the course with these elements,
along with the overview of applications which implement
these activities.

III. CONTENT COLLABORATION

A significant part of course efforts is dedicated to mak-
ing content both open and available to collaboration. The
need for open content is a logical extension to the general
course topic. Course lectures are made publicly available
under the Creative Commons licence, which initiated the
Faculty decision to recommend such a licence for educa-
tional content at the whole institution. With this approach,
we try to come closer to the complete Open Educational
Resources model [2]. We have also started to publish the
course lectures to SlideShare to make them widely avail-
able in an online, easily-embeddable form.

In addition to teaching staff creating the content, our
long-term effort is to change the students’ role in the
course: instead of being passive consumers of presented
content, we see them as co-creators and co-editors of
course content. This can be accomplished by offering the
students to work, together with the teaching staff, on cur-
rent lecture slides.

A. Collaborative work on lecture slides
The possibility of collaborative work on lecture slides

brings the following benefits:
 Promote the openness on the content level, as one of

the indirect course goals.
 Improve the lectures’ quality by collaboratively cor-

recting mistakes.
 Added content to the teacher’s version of the slides,

such as related links to tutorials, examples or differ-
ent explanations. Additional content related to the

slides, relevant to a student, can also be helpful to his
colleagues dealing with the same topic issues.

 Enable discussion on lecture content outside lecture-
time constraints. As the time for the face to face lec-
tures is rather limited, collaborative work on slides
helps students to get introduced to the topics and
solve initial problems before the lectures. Also, it can
foster further discussions, not only through the
course forums, but directly related to the specific
slides of the content.

 Keep content up-to-date, which is often a problem
with evolving modern technologies. Content needs to
be changed from year to year, due to the significant
changes in the field being taught. Students who have
practical experience with technologies used in this
course can correct mistakes, give practical advices, or
help other students or staff in analyzing these topics.

The most typical use case for such collaborative work is
described as follows: The teaching staff publishes the
course presentation slides, through the system which sup-
ports collaborative activities. The users (staff and stu-
dents) view the presentations in different forms, as a slide-
show, a table of slides, or slide by slide. Upon finding the
part which is unclear, contains mistakes, or can be im-
proved, the users can either comment or directly edit the
content (if permitted by the staff). In case of commenting,
other users see the comments together with the additional
content. In case of editing, the content is automatically
refreshed. The teaching staff can additionally export the
presentations and view them offline, including all the
comments and changes made by students.

The prototype implementation of such application is
described in the following section.

B. WikiPres application
In order to enable teachers and students to create, com-

ment and edit lecture slides, the WikiPres application was
implemented. The characteristics of Wiki in general, such
as collaboration possibilities, quick content editing, focus
on content instead on design, and revision history, provide
a good basis for our use case. The application is designed
as a MediaWiki extension to build upon this most popular
Wiki-based system. Some of the WikiPres features are:
 presentation importing in ODP or PPT format,
 detection of presentation chapters based on master

slides and slide layouts: useful in situations when
presentations have a large number of slides,

 categorization of presentations and per-category
permission granting,

 commenting the whole presentation, presentation
chapters and individual slides,

 editing the slides in WikiMedia markup,
 presentation and individual slide overview (shown in

Figure 1),
 presentation exporting in either ODP, PPT, or PDF,

with an option to also export the comments for the
slides, chapters, and presentation,

 slideshow: a feature that enables a slideshow view of
the presentation (adaptive to the screen resolution).

BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

Figure 1. Presentation overview in WikiPres

Figure 2. WikiPres data flow

After uploading the ODP or PPT presentation, the pres-
entation is divided into chapters based on algorithms
which analyze use of master slides and slide layouts. Fig-
ure 2 shows the process of converting content from slides
to WikiMarkup and back. The presentation content is con-
verted into an intermediary XML, and converted to Wiki-
Markup with the help of XSL transformations and PyUNO
bridge for OpenOffice.org, written in Python [3]. The
slides become the regular Wiki pages, with the additional
pages for the presentation overview and chapters. The
users can browse the presentation using thumbnail images,
generated using ImageMagick. If the slide is edited, its
content is compared to the previous version to preserve as
much slide formatting as possible for future exporting.
The new slide screenshot is generated, so the users can see
the changes immediately. In addition, the XML content of
the slide in ODP format is generated upon editing, so that
the export process is quick even for large presentations.

IV. SMART ASSIGNMENTS VERIFICATION

Assignments in the Open computing course are de-
signed to illustrate concepts introduced in the lectures.
Assignments cover a wide range of technologies to illus-
trate the openness of protocols and technologies underly-
ing the modern web. When all assignments are completed,
they come together to form a small dynamic web site. In
general we can divide the assignments in two main groups
– illustrating client- and server-side technologies (during

the first two course cycles). Final assignments focus on
integration of information sources and enhancing the ex-
perience for fictitious users of the web site.

Introductory assignments require students to create a
few skeleton web pages (client-side) which are then aug-
mented with dynamic web functionalities towards the end
of the course. Server-side oriented assignments focus on
integration of various technologies: PHP and Java Serv-
lets for backed processing and XML-related technologies
to transfer and query data. Throughout the course, lectures
are used to introduce students to new concepts, briefly
illustrating related technologies, while assignments require
students to put these technologies to use. The lack of ex-
perience with newly introduced technologies and detailed
configuration, required for some assignments, have been
the most common source of problems for students.

To help students with their assignments ORVViS, an as-
signment verification system linked with Moodle LMS,
was developed. After students submit their assignments to
LMS, ORVViS verifies the submissions and reports errors
to students, to help them fix the errors before the assign-
ment is due. The introduction of ORVViS greatly reduced
a number of common problems student had with assign-
ments, such as invalid HTML, CSS or servlet configura-
tion files, therefore reducing the number of assignment-
related questions in forums, often posed in odd hours of
the night. ORVViS has been tailored to provide separate
validation for each file type the submission requires. The

BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

Figure 3. Detected submission similarity with threshold levels of 20% (left) and 80% (right).

reports students receive contain aggregated validation
reports obtained from common validation tools (HTML
and CSS validators, Java compiler and such). The descrip-
tion for each assignment also lists useful validation tools
that students can use themselves. However, before ORV-
ViS was introduced, most students would first post ques-
tions on the course’s forums and then try validating their
files, or would even submit invalid files to LMS.

In addition, ORVViS prepares submissions for plagia-
rism detection tools [5]. Since the introduction of ORV-
ViS, we have observed a gradual decline of (detected) as-
signment plagiarism, as ORVViS helped students to re-
solve most common problems and successfully complete
assignments with less effort.

A. Assignment verification
A typical use case for our students follows. Student

should first read the assignment description and related
documents, and use provided code snippets or examples as
a head start for her own assignment solution. After she
had created a solution that meets all of the requirements,
the student will submit it to LMS. In a short while, she
will have received an e-mail message containing submis-
sion validation results from ORVViS, and correct reported
errors. After several iterations to remove reported errors,
the submission can be marked as final in the LMS. The
student will then present her solution to teachers on desig-
nated laboratory time and answer questions related to the
assignment.

Automated assignment verification tool ORVViS con-
sists of two main units: verification core and Moodle LMS
integration modules. In order to seamlessly introduce
ORVViS to students, verification was integrated with
LMS using Moodle APIs to fetch student submissions and
create an ORVViS administration block plugin for LMS
pages. The verification part of ORVViS is configured to
run verification tasks on specific assignments from LMS.
Each task lists verification plugins that will be run for
each file type submitted. Tasks are run periodically, fetch-
ing newly submitted assignments and reporting to stu-
dents.

When the assignment deadline is reached, a cumulative
report is created for the course administrators. These re-

ports contain bulk overview statistics for all submissions
(number of submitted assignments, number of success-
fully validated assignments and such). If configured, ad-
ministrative reports can also contain reports of plagiarism
detection tools (Sherlock plagiarism detection based on
digital signatures is used [4]).

However convenient, fully automated plagiarism detec-
tion is not appropriate for all assignments as large chunks
of source code are meant to be reused by students in some
assignments. ORVViS prepares submission files for super-
vised analysis. Files from student submissions are re-
named and organized by their type (i.e. CSS files are sepa-
rated from HTML files) to allow detailed analysis using
other tools such as (identically named) Sherlock from the
BOSS package [5]. Setting an adequate threshold for de-
tection requires manual review of detected submission
pairs to detect false positives occurring at lower threshold
levels, as seen on Figure 3.

B. ORVViS application
The two parts of the ORVViS application are developed

to act as background processes administered with a simple
administrative interface (illustrated on Figure 4). ORVViS
periodically polls Moodle LMS for new submissions using
Moodle API, downloads the archives with student submis-
sions and verifies the contained files using configured
validation plugins. Plugins for validation have been de-
veloped using freely available validators for HTML, CSS,
XML, XSL(T), DTD, PHP, Java and JavaScript files, such
as Tidy (HTML), DOM (XML, XSL), JavaScript Lint
(JavaScript) and PMD (Java). ORVViS administrator con-
figures associates plugins with specific files in student
submissions using filename patterns.

After validation of student submissions is complete,
each student receives a detailed report listing validation
status for each file and warning and error messages re-
ported by the corresponding validator. Some validators
have been set to be more sensitive and report more de-
tailed warnings than a typical compiler would. This has
proven effective in cases where students used newer com-
piler and runtime versions (e.g. of Java) than those avail-
able on our servers, as additional warnings would give
students a pointer where to start looking for problems.

BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

Figure 4. Task administration in ORVViS

V. LESSONS LEARNED

This section outlines some of the non-technical issues
observed while testing the prototypes of WikiPres and
ORVViS applications.

The main issue related to collaborative content editing
is the students’ motivation. Although initial surveys car-
ried out among students of various program years showed
the need and the will for such way of learning [6], in real-
ity it is still hard to motivate them for such a collaboration.
This year, the teaching staff did not insist on using
WikiPres, as it was still a prototype; we rather wanted to
find out would the students use it without external encour-
agement and strictly defined rewards, in terms of course
points or similar. Several students tested it, but due to dif-
ferent obligations on this and other courses, for them it
was more important to participate in obligatory activities
which were clearly awarded by course points. Another
possible reason was that the students are generally not
used to give and defend their opinions in an open setting
where the teaching staff is also present. As an example,
students are not used to publicly point the errors of the
official lecture notes as a part of the course activities. This
open expression of opinion should be additionally encour-
aged.

The teaching staff should be prepared to listen to the
students' comments and work closely with them in im-
proving the current content without prejudice. This can
sometimes require the staff to change the approach to edu-
cation, with a goal of changing the teaching perspective
from transmissive to developmental [7]. In the future
years, we plan to encourage students by taking these ac-
tivities into account when grading.

The students’ awareness of the proper Wiki work ethics
and their responsibilities when collaborating on editing the
course content is an additional issue. As we strive to be
open, monitoring (and sanctioning) the students should be
on a minimal level. In the extreme cases in which damage

to the content has been made, the system provides a way
to revert to the old versions of presentations.

ORVViS verification focuses mainly on syntactic vali-
dation of submitted files and plagiarism detection. As-
signment requirements are specified loosely with the in-
tent of allowing a large degree of freedom for students to
play with. When students present their solutions, it is
fairly easy for teachers to inspect its correctness with re-
spect to these requirements. After ORVViS was introduced
to the course, we have seen an increase in the ratio of
valid submissions from 61% to 89% for two slightly
modified introductory assignments. During assignment
presentations, we have observed that additional time stu-
dents gained by not having to trace common errors gave
students an opportunity to better understand which parts
of the assignments are dictated by standards and which
parts they need to produce. Automated verification has a
downside as students tend to overly depend on ORVViS to
report on all but the most serious errors. After ORVViS has
been unavailable for a few days due to server failure, the
ratio of valid submissions dropped to 43% with many mi-
nor errors and warnings still existing in solutions during
the system outage. Part of the students didn’t even try to
use independent validation tools instead of ORVViS.

Not surprising, unlike WikiPres, we had to invest very
little to motivate our students to use ORVViS and follow
suggestions from its reports, as they could clearly see the
benefits of such a system. Initial ORVViS versions tested
by students were not completely integrated with the Fac-
ulty’s LMS as this was a risk to the production system.
For testing, students were asked to upload their submis-
sions to both the “official” and “ORVViS” LMS installa-
tions, which they did enthusiastically – for as long as they
considered validation reports to be useful, but stopped to
do so as soon as we experienced problems with validation
plugins. This experience strengthened our belief that the
verification system needs to be integrated with the official
LMS and invisible to the students.

BEYOND LMS: EXPANDING COURSE EXPERIENCE WITH CONTENT COLLABORATION AND
SMART ASSIGNMENT FEEDBACK

VI. CONCLUSION AND FUTURE WORK

With regard to technical issues in WikiPres, users pro-
posed easier slide comments handling, and navigation
more appropriate to the presentation format. While ad-
dressing these, one should be careful about integrating the
different paradigms of content formats: presentations on
one side, and the Wiki way of working with content on the
other. For future releases, implementation of plugins for
the most common office suite presentation software
(OpenOffice.org Impress, Microsoft PowerPoint) is
planned, to aid in uploading and conversion of presenta-
tions conversions. Integration of WikiPres with LMS
would be useful, as the students would have a common
place to access both the versions of the content: the initial
one and the one improved as the course advances. Re-
searching of the ways which would allow recommending
of learning resources to be included in the content is al-
ready being carried out. There are other interesting topics,
pointing in the direction of increased students’ activity as
a combination of online and face to face teaching. For
instance, asking questions or providing related content
during the lectures through the Twitter service, as the ma-
jority of students follows the lectures while using their
laptops, etc.

Most of the ideas for ORVViS improvements came from
the teaching staff, as students have very little contact with
the system itself and were generally satisfied with verifi-
cation reports received. One of suggested improvements
was to fully integrate ORVViS administration in Moodle
LMS, to avoid the need to administer verification tasks
and plugins in a separate interface. We also plan to im-
plement additional plugins to verify semantic properties of
student submission, instead of concentrating mostly on
syntax. Open computing course focuses on the benefits of
clearly defined interfaces on various levels of the applica-
tion to achieve openness. Test cases checking various
properties of student solutions can be used for automated
testing, and distributed to students to give them the oppor-
tunity to see the benefits of the approach of reflection in
action over the more common trial and error [8]. The
heterogeneity of technologies used in our assignments
makes it difficult to further integrate ORVViS into devel-
opment tools that students use (as demonstrated by [9]),
but it is a path we intend to investigate.

ACKNOWLEDGMENTS

We would like to thank our students Ivan Ačkar, Anto-
nio Poščić, Zvonko Žibrat and other students in the
WikiPres project group on Distributed Software Devel-
opment course held jointly with Mälardalen University.

We would also like to thank our student Darko Ronić and
other students under his supervision for their work on
ORVViS application.

REFERENCES
[1] S. Tomić,.; K. Zimmer, M. Žagar, V. Paunović, I. Voras, “Living

The E-Campus Dream”, Proceedings of the EDEN Conference, A.
Szucs and I. Bo, Vienna, Austria: European Distance and E-
Learning Network, pp. 644-650, 2006

[2] S. d'Antoni,. C. Savage: Open Educational Resources: Conversa-
tions in Cyberspace, EU Report, 2009.

[3] OpenOffice.org Wiki.: PyUNO bridge.
http://wiki.services.openoffice.org/wiki/PyUNO_bridge

[4] Sherlock: Plagiarism Detector.
http://www.cs.su.oz.au/~scilect/sherlock/

[5] University of Warwick.: BOSS Online Submission System.
http://www.dcs.warwick.ac.uk/boss/

[6] I. Bosnić, A. Pošćić, I. Ačkar, Z. Žibrat, M. Žagar, “Online Col-
laborative Presentations”, Proceedings of the 32nd International
Conference on Information Technology Interfaces - ITI 2010, Cav-
tat/Dubrovnik, Croatia: pp. 1-6,. 2010,

[7] D.D. Pratt, “Five Perspectives on Teaching in Adult and Higher
Education”, Krieger Publishing Company, 1998.

[8] S.H. Edwards: “Using software testing to move students from
trial-and-error to reflection-in-action”, ACM SIGCSE Bulletin,
vol. 36, 2004, p. 26. doi:10.1145/1028174.971312

[9] A. Allowatt, S. Edwards, “IDE Support for test-driven develop-
ment and automated grading in both Java and C++”, Proceedings
of the 2005 OOPSLA workshop on Eclipse technology eXchange -
eclipse '05, 2005, pp. 100-104.

AUTHORS

Ivana Bosnić is a PhD student and research/teaching
assistant at the University of Zagreb, Faculty of Electrical
Engineering and Computing, Department of Control and
Computer Engineering, Unska 3, 10000 Zagreb, Croatia
(e-mail: ivana.bosnic@fer.hr).

Marin Orlić is a PhD student and research/teaching as-
sistant at the University of Zagreb, Faculty of Electrical
Engineering and Computing, Department of Control and
Computer Engineering, Unska 3, 10000 Zagreb, Croatia
(e-mail: marin.orlic@fer.hr).

Mario Žagar is a tenure professor of computing at the
University of Zagreb, Faculty of Electrical Engineering
and Computing, Department of Control and Computer
Engineering, Unska 3, 10000 Zagreb, Croatia (e-mail:
mario.zagar@fer.hr).

This work is supported in part by the Croatian Ministry of Science, Edu-
cation and Sports, under the IT project e-learning Now, and research
project Software Engineering in Ubiquitous Computing.
Submitted, October, 22, 2010. Published as resubmitted by the authors on
November 22nd, 2010.

http://dx.doi.org/10.1145/1028174.971312�

