
Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

Construction of a Software Development Model for

Managing Final Year Projects in Information Technology

Programmes

https://doi.org/10.3991/ijet.v15i21.15401

Abdelrahman Osman Elfaki (), Zaid Bassfar
University of Tabuk, Tabuk, Saudi Arabia

a.elfaki@ut.edu.sa

Abstract—The final year project (FYP) is considered a capstone in infor-

mation technology (IT) programmes and involves the development of a soft-

ware product. Currently, students are using the traditional software develop-

ment life cycle approach to manage their FYPs. However, this approach can

cause many difficulties. This paper proposes an alternative software develop-

ment model for managing the FYP in an IT and IT-related degree programmes

of study. First, a benchmark exercise was undertaken to compare the software

developed for business purposes with that developed for educational purposes,

which took into account the ten project management knowledge areas. The re-

sult of this exercise indicated that the differences that exist between business

and educational software necessitate the development of a new software devel-

opment model that is specifically tailored to the development of educational

software. Therefore, capability maturity model integration (CMMI) was modi-

fied to generate a new version of CMMI – named educational CMMI – which

could be used to evaluate educational software projects and detailed mathemati-

cal descriptions of the proposed model were composed. As conclusions, the

proposed model was then assessed by students’ results and by questionnaire

feedback, the results of which showed that the proposed model was both useful

and applicable for its intended target users and context.

Keywords—Capstone Project, Software Developing Methodology, Project

Evaluation

1 Introduction and Motivation

Software is about developing not manufacturing [1]. This is a very famous state-

ment in the software engineering community, which reflects the special nature of

software. Moreover, it is recognized that developing software requires art skills in

addition to scientific skills. This special nature of software means that software engi-

neering differs from other engineering fields in terms of the required inputs and tools.

Hence, traditional project management methodologies are not suitable for software

projects and there is therefore a need for dedicated software project methodologies.

These software project methodologies are also known as software development meth-

4 http://www.i-jet.org

https://doi.org/10.3991/ijet.v15i21.15401%0d
mailto:a.elfaki@ut.edu.sa

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

odologies, system development methodologies, the software development life cycle

(SDLC) or the software development process.

A software development methodology can be defined as “a splitting of software

development work into distinct phases (or stages) containing activities with the intent

of better planning and management” [2]. Currently, the common and traditional soft-

ware development methodologies are waterfall, prototyping, iterative and incremental

development, spiral development, rapid application development and extreme pro-

gramming methodologies as well as various types of agile methodology [3]. The main

aim of all of these software development methodologies is to produce high-quality

software products. These methodologies comprise a set of processes that are designed

to work rigidly and sequentially. This strong hierarchical approach is intended to

guarantee a high level of control over software projects [4]. Software developers seek

to have high control over their projects in order to produce high-quality software

products. Meanwhile, from the business perspective, high-quality software is im-

portant because it can best satisfy customer needs.

On the other hand, there is another type of software development, which is the de-

velopment of software for educational purposes. University students enrolled on pro-

grammes of study in IT and computer science are required to take a compulsory sub-

ject called the graduate project [5]. To fulfill the requirements for passing this under-

graduate project, students must develop a software program. Hence, the purpose of

this software is completely different from that of other traditional software. In short,

the intention of the undergraduate software project is to achieve pedagogical and

educational outcomes.

Based on the above discussion, there are two different targets when developing

software:

i. Commercial or business

ii. Educational purposes

However, despite these two completely different targets, the project development

methodologies are the same. The lack of a specific software project methodology for

educational purposes causes many difficulties for students, such as not having access

to the correct guidance that should be provided by a development methodology.

Therefore, in section two of this paper, the problem of this lack of a specific software

development methodology for educational purposes is discussed in depth.

In this paper, for the reader’s convenience, we have labelled software that has been

developed for business purposes as ‘business software’ and software that has been

developed with an educational purpose in mind as ‘educational software’. We have

also labelled the graduation project or software capstone project which is a compulso-

ry component of an undergraduate (bachelor’s) degree in computer science, software

engineering and IT as the final year project (FYP).

In this paper, there is a tailored methodology that has been followed to complete

the requested work. In other words, we have designed our own methodology to devel-

op and prove the proposed model. The tailored methodology consists of:

iJET ‒ Vol. 15, No. 21, 2020 5

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

• Conducting a benchmarking exercise based on ten project management knowledge

areas, to compare the business software against educational software. The output of

this step has emphasized the necessity of developing new educational software de-

velopment model.

• Adjusting CMMI to generate a new version of CMMI which is educational CMMI.

The output of this step is the proposed model.

• Conducting experiments to evaluate the proposed model. The output of this is di-

rect assessment of the proposed model.

• Collecting and analyzing students’ feedback regarding the proposed model. The

output of this is indirect assessment of the proposed model.

The remainder of this paper is structured as follows: Section two presents a com-

parison of business and educational software, which is based on the ten project man-

agement knowledge areas. This section highlights the critical need for a new software

project methodology that is tailored specifically for software projects for educational

purposes. Next, section three reviews the related works and describes the research

gap. Then, section four provides a detailed description of the proposed model for

educational software development. After that, section five presents the implementa-

tion of the proposed model. Finally, section six discusses the outcomes of this study

and draws some conclusions.

2 Comparison of Business Software and Educational Software

According to [6-10], a number of difficulties are encountered when using standard

software development methodologies in the field of education. These include difficul-

ty in applying self-directed learning, difficulty in finding a project task that engages

all participants equally and difficulty in preparing some learning tasks (e.g., interper-

sonal and structural) for the project task. From this finding by [6], it can be concluded

that there is a critical need for a new software model for managing the FYP in IT and

IT-related programmes of study.

To highlight the differences between business and educational software, we com-

pared these two types of software according to the ten project management knowledge

areas defined by the Project Management Institution [11]. According to [12], any

development of software could be considered as a project. Therefore, these project

management knowledge areas were selected as the benchmark criteria for this com-

parison. In Table 1 below, each knowledge area in [11] is described from the business

software and educational software perspectives. These descriptions provide suitable

measurable conceptualizations by which to make the comparison.

6 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

Table 1. Differences between Business Software and Educational Software

Comparison criteria Business software Educational software

1
Project Integration Management:

Purpose

To satisfy stakeholders’

requirements

To satisfy learning objectives

2

Project Scope Management:

Software Requirement Specifi-
cation (SRS)

The SRS should be realistic

and extracted from real stake-
holders’ requirements and

should be approved by stake-

holders

The SRS represents a sample of

real requirements and should be
approved by the academic supervi-

sor

3
Project Time Management:

Time commitment

Has acceptable flexibility Does not have flexibility

4

Project Cost Management: Cost

commitment

Restricted in terms of the

planned cost. Receives the

highest level of attention

Flexible in terms of the planned

cost. Does not receive the highest

level of attention

5
Project Quality Management:

Quality commitment

Measured according to busi-

ness quality metrics

Measured according to academic

quality metrics

6

Project Human Resources

Management: Evaluation of the

role of each member in the team

Is not considered as a success

factor in a project evaluation

Is considered as an important

success factor in a project evalua-

tion

7
Project Communications

Management: Commutation plan

Related to satisfying specific

milestones

Related to the academic plan

8

Project Risk Management:

Testing

Is a crucial and significance

factor in acceptance of the

software

Is not a crucial factor

9

Project Procurement Manage-

ment: Procurement of software
and hardware

Critical and needs careful

planning

Done mainly by the academic

supervisor

10
Project Stakeholder Manage-

ment: Documentation

Process documentation for

internal usage, or user manual

An academic document in the form

of a thesis

Each of the above comparison criteria is discussed in detail below:

• Purpose: This criterion refers to the final aim of the developed software. Business

software is aimed at satisfying stakeholders’ requirements, the achievement of

which should be reflected positively in financial profit to the company. On the oth-

er hand, educational software is targeted at three issues: providing students with

technical knowledge, providing students with practical experience and evaluating

students’ knowledge. Thus, business and educational software have completely dif-

ferent purposes.

• Software Requirement Specification (SRS): In business software development,

the SRS must be realistic and should therefore be extracted from stakeholders’ ac-

tual requirements and needs. This element of the development process is regarded

as having the highest importance. In the case of educational software, the content

of the SRS mimics the problem domain rather than truly reflecting an actual case.

Although it is important to try to present a realistic SRS, representation of the prob-

lem is usually adequate. However, oftentimes, students waste much of their limited

time in focusing on this stage of the process.

• Time commitment: Although the amount of time needed to develop a software

solution for a real client should be mentioned in the contract for any business soft-

ware, there is still a degree of flexibility in the overall time frame due to the im-

iJET ‒ Vol. 15, No. 21, 2020 7

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

portance of the finished product achieving stakeholder satisfaction. On the other

hand, educational software is restricted by a definitive time frame because the de-

veloped software must be submitted for evaluation at a predefined point in time in

the programme of study – regardless of the level of progress achieved – in order

that it can be assessed and graded by the examiner/examining body for its contribu-

tion to the overall degree. Hence, it is clear that business software has acceptable

flexibility in regards to time commitment, whereas educational software does not.

• Cost commitment: The main target of developing business software is to achieve

a profit. Therefore, the costs involved in development are necessarily restricted.

Indeed, cost is the most important consideration in business software development.

In contrast, educational software is targeting academic benefits and is therefore

very flexible in respect of the cost.

• Quality commitment: The quality of business software is measured according to

standard business quality metrics, which are entirely different from the metrics

used to assess FYP software.

• Evaluation of the role of each member in the team: This criterion refers to

measuring the individual contribution of each member of the development team

toward the total effort exerted in the software development process. In the case of

business software, the distribution of roles between the team members is an inter-

nal issue that is considered only internally within the project management. The dis-

tribution of roles among the teams in business software development never appears

to be discussed or evaluated as a software project success factor. On the other

hand, in the case of educational software, the distribution of the roles among the

members of the student team and the evaluation of the contribution of each mem-

ber are both very important factors in the project evaluation process.

• Commutation plan: This criterion relates to moving from one phase of the devel-

opment process to the next phase: In the context of business software development,

the moving from one phase to another is controlled by some specific predetermined

milestones. Meanwhile, in the case of educational software, moving from one

phase to another is related to the academic plan and semester timetabling. The dis-

cussion time that has been defined by the academic plan is a sharp time for ending

the educational software. Nevertheless, in business software, the development pro-

cess cannot be finished until the customer accepts the software.

• Testing: In business software, testing is a crucial and significant issue. The final

acceptance of a software solution mainly depends on the user acceptance test in

which all the stakeholders’ requirements should be considered and validated. In the

educational software development process, testing should be implemented but it is

not a condition for acceptance. Rather, testing is considered as an academic issue.

• Procurement of software and hardware: In the business software domain, pro-

curement of original software and high-quality hardware is vital for a project’s

success. On the other hand, in the educational software domain, free and open

source software is preferable due to cost constraints. In fact, the majority of stu-

dents avoid purchasing expensive hardware and prefer instead to depend on simu-

lators.

8 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

• Documentation: In the case of business software, there are two types of documen-

tation: 1) documentation for internal usage inside the developer company, which is

confidential and 2) documentation for the users, or a user manual, which describes

how to use the software product. In the case of educational software, the only doc-

umentation is a scientific text in form of a thesis which is aimed at fulfilling aca-

demic requirements.

The above discussion clearly indicates that there are key differences between busi-

ness and educational software. Hence it is obvious that the current software develop-

ment methodologies are not sufficient to provide students with the necessary guidance

on how to develop educational software and that the traditional methodologies fall

short in some areas, particularly:

• Evaluating educational software based on educational objectives and functional

requirements

• Evaluating teamwork by evaluating the role of each member in a team

Thus, it can be concluded that there is a pressing need for a new software devel-

opment methodology that is designed specifically to guide the development of educa-

tional software. Therefore, in this paper, we propose a new software development

methodology that provides guidance for students and contains an evaluation process

that considers both the educational objectives and the role of each member in the

team.

3 Literature Review

This section summarizes the strengths and weaknesses of the related works and

thereby highlights the research gap and the contribution that this paper intends to

make to address that gap. Generally speaking, the FYP can be considered as both an

educational course and a software project [13, 14]. Hence some of the related works

deal with the FYP as an educational course, whereas others view it as a software pro-

ject. Therefore, in the following, the related works are classified into two groups

based on the nature of the proposed model, i.e., whether it addresses the FYP as an

educational course or as a software project. To collect the related works, we have used

Google Scholar as the main source and used the search string “(Final Year Project,

capstone, or final course) and (IT, software engineering, computer science, or compu-

ting)”.

3.1 Models that address the FYP as an educational course

Benton and Radziwill [15] developed an agile learning framework based on three

concepts: 1) the coevolution of the students and teachers, 2) self-management and 3)

continuous improvement. In spite of the relevance of the idea, its applicability in de-

veloping educational software is not clear, i.e., the steps involved in developing a

software solution are not mentioned. Rodríguez et al. [16] proposed software engi-

iJET ‒ Vol. 15, No. 21, 2020 9

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

neering teaching model based on the scrum and which they reinforced with agile

coaching. The proposed technique was compared to the rational unified process and

validated using the capability maturity model integration (CMMI) framework. Valida-

tion by CMMI proved that through this model students were able to achieve higher

coverage of software engineering practices. Although the Rodríguez et al. [16] model

was developed to support teaching software engineering, details of its impact in terms

of implementing the FYP are lacking. More recently, Fonseca and Gómez [17] pre-

sented their experience in teaching software engineering by using both problem-based

learning and an agile software engineering methodology. Fonseca and Gómez [17]

used real software projects as course topics. The real software projects were divided

into parts and distributed to cover the course topics. Nevertheless, in their model, the

evaluation of teamwork and the achievement of educational objectives are not consid-

ered.

On the other hand, Kennedy and Vossen [18] developed a scoring rubrics method

for assessing teamwork in software engineering projects. They used the split-join

invariance approach to split the overall team score into single student scores. Then

those student scores were joined by using aggregation and averaging functions to

calculate the result. However, the obvious drawback of this method is that it ignores

the individual contributions of the students. In contrast, in this paper, the proposed

model considers both teamwork and the individual contributions of students. Ciupe et

al. [19] presented evidence on the applicability and implication of agile methodolo-

gies in education through conducting a systematic mapping study. However, they do

not mention how they would overcome the difficulties of applying agile methodology

in IT FYPs.

Mkpojiogu and Hussain [20] proved the applicability and usefulness of using ana-

lytical rubrics in assessing student performance in the field of software requirements

engineering education. They used a four-point Likert-type rating scale to evaluate the

attributes of each artefact. Although their method was successful in evaluating the

whole job through evaluating each task, the evaluation of the individual effort made

by each team member is not considered. Furthermore, the authors do not focus on

how to manage the FYP. Yang and Yu [21] proved that dividing a software engineer-

ing class into teams of students and providing them with task-driven cases and pro-

jects could enhance the learning process. However, the measuring of the role of each

individual in the teamwork task is neglected in this work as well.

3.2 Models that address the FYP as a software project

Barrella and Watson [22], Mkpojiogu and Hussain [20], and Alcarria et al. [23]

proved the benefits of using rubrics in engineering projects. However, both studies

lack a complete methodology. Venkataraman et al. [24] proposed 40 metrics to meas-

ure quality in IT FYPs. These metrics categorized into nine groups: software require-

ments, planning, design, programming practices, testing, configuration management,

quality assurance and technology change management. While these metrics could

help instructors to evaluate the quality of IT FYPs, they cannot be used as a software

development methodology. In addition, [24] do not provide for the evaluation of

10 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

teamwork. Marques et al. [25] proposed a formative monitoring method involving

reflexive weekly monitoring for use in the software engineering FYP. This monitoring

method was found to improve the student learning experience. However, the study

neglects to evaluate the learning objectives.

Yilmaz, et al. [26] suggested a continuous feedback and delivery mechanism for

managing the life cycle of the FYP. This mechanism divides the FYP into 15 weeks,

and the task for each week is identified. While beneficial, we believe that this mecha-

nism needs to be more flexible to cope with a reality. Moreover, it does not link the

FYP to education objectives. Majanoja and Vasankari [27] presented some of their

reflections on the software engineering FYP and came up with five main recommen-

dations, which were to: 1) clarify the goals of the capstone project experience, 2)

highlight the importance of student commitment to the project and the team, 3) give

more focus to technical studies, 4) facilitate interaction between the capstone teams

and 5) provide assistant teachers and technical support. We considered these recom-

mendations when developing our proposed model and more details on how we dealt

with these recommendations can be found in section six of this paper.

Chowdhury et al. [28] investigated collaborative personality traits in undergraduate

software engineering teams. They measured the roles of individuals engaged in team-

work by using metrics that reflected the activities of members in the project manage-

ment online tool, Slack.com. However, the measurement of each individual’s role was

limited to their communication activities, which thus limited the usefulness of the

measurement. Therefore, in this paper we introduce a new method for measuring the

role of each individual in the whole project by classifying tasks into either individual

or group tasks. Vasankari and Majanoja [29] described a framework for organizing IT

capstone projects in computer science and software engineering. This framework

provides students with step-by-step guidance to complete the FYP but it lacks an

evaluation mechanism.

In light of the above discussion, which highlighted some of the key strengths and

weaknesses of the models and frameworks proposed in the related works, we aimed to

develop a software development methodology for the FYP that considered the two-

fold nature of the FYP and to overcome the identified drawbacks of the existing

methodologies. Firstly, by considering the FYP as an educational course, in our pro-

posed methodology we decided to measure the success of the FYP by its ability to

achieve its learning objectives. Secondly, by considering the FYP as a software pro-

ject, in our proposed methodology, we decided that it was also important to provide

step-by-step guidance for students to assist them in developing a successful FYP.

4 Structure and Evaluation of the Proposed Model

This section discusses in detail the structure of our proposed model for evaluating

the FYP in IT programmes of study at the undergraduate level. The model combined

of two methodologies: rubrics and CMMI [30]. In the current context, a rubric can be

defined as “a scoring guide used to evaluate the quality of students’ constructed re-

sponses” [31]. In this paper, we used CMMI as the scoring guide for evaluating the

iJET ‒ Vol. 15, No. 21, 2020 11

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

FYP. In the following section, first the structure of our proposed model is described

and then the evaluation mechanism incorporated into our proposed model is elaborat-

ed.

4.1 Structure of the proposed model

The proposed model breaks down the FYP into groups of phases, and each phase

contains a number of tasks. These tasks are classified into individual tasks or group

tasks. Individual tasks are executed by only one student, whereas group tasks are

executed by team work (definition 1), hence the FYP can be described as a group of

tasks. A phase in the FYP could be considered as a virtual container for a group of

tasks and illustrates a milestone that proving completion of its tasks. A phase is com-

pleted if and only if all of its tasks are completed (definition 2). The next phase cannot

be started until the previous phase is finished, i.e., the relationship between the phases

is “finish to start” (definition 3). The final result of the FYP is a summation of the

results of its respective phases (definition 4), while the final results of a phase is a

summation of the results of its respective tasks (definition 5). Like any regular course,

the FYP contains a selected set of learning objectives. These FYP learning objectives

are distributed within a number of FYP tasks according to predefined percentages,

and the student must achieve certain percentage scores to succeed in the project (defi-

nition 6). Hence, a project task must satisfy the set of FYP objectives in order to be

considered a complete task. This means that the end of a task is achieved by satisfying

its objectives by attaining a predefined acceptable percentage (definition 7).

Table 2 shows a detailed example of a FYP that explains the distribution of objec-

tives among the tasks and phases. In this example, the FYP consists of two phases.

Phase 1 consists of three tasks: task11, task12 and task13, where task11 and task13

are group tasks and task12 is an individual task. Phase 2 consists of two tasks: task21,

which is a group task, and task22 which is an individual task. This FYP has five ob-

jectives that must be achieved to successfully complete the FYP. As an instance from

Table 2, Task11 is designed to achieve 50% of the first objective and 20% of the third

objective with percentages 20, 50 and 30, respectively. Note that each objective must

be 100% satisfactory regardless of its distribution among the tasks.

The formal definitions of the structure for the proposed model are presented below:

Definition 1: ∀ FYP, Ph, T: FYP{Ph1{T1,…Tn},….,Phn{T1,…Tn}}, T {
𝑖
𝑔

.

Definition 2: ∀ Ph, T: complete (Ti) ∧ Ti ∈ Phi ⟹ complete (Phi)

Definition 3: ∀ Ph: complete (Phi) ⟹ start (Phi+1).

Definition 4: ∀ FYP, Ph: ∑ Ph ∧ Ph ∈ FYP ⟹ result (FYP).

Definition 5: ∀ Ph, T: ∑ T ∧ T ∈ Ph ⟹ result (Ph).

Definition 6: ∀ FYP, OBJ, T: ⟹ OBJFYP{obj1,…,objn} ∧ T(obj[P]) ∧ obj ∈

OBJFYP ∧ T ∈ FYP.

Definition 7: ∀ T, OBJ: T {objx(P),…,objn (P)} ∧ satisfy(T, obj) ⟹ complete(T),

where FYP denotes final year project, Ph denotes phase, T denotes task, T(i) denotes

individual task, T(g) denotes group task and P denotes percentage. The terms

12 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

complete () and start () are predicates that return true or false. The terms result () and

satisfy () are functions that return specific values.

Table 2. Example of Allocation of Task Objectives in a Final Year Project

Phase of FYP Task Objective Percentage

Phase 1

T11(g) Obj 1; Obj 3 50%; 20%

T12(i) Obj 2; Obj 1 30%; 20%

T13(g) Obj 4; Obj 3 100%; 50%

Phase 2
T21(g) Obj 1; Obj 5 30%; 70%

T22(i) Obj 2; Obj 3; Obj 5 70%; 30%; 30%

The FYP in the Table 2 example has five tasks: three tasks in phase 1 and two tasks

in phase 2. Thus, students should achieve five learning objectives by doing the FYP.

Those five learning objectives are distributed among the five tasks. For instance,

learning objective 1 is distributed among two tasks in phase 1 and one task in phase 2.

In summary, the structure of our proposed model consists of three steps: define the

FYP phases, divide each phase into groups of tasks, and distribute the learning objec-

tives within the tasks by specific percentages. Table 3 describes the steps of our pro-

posed model and output of each step.

Table 3. Describes the steps of our proposed model and output of each step

Step Output

1 Define the FYP phases
Number of phases with cost and schedule definition for
each phase

2 Divide each phase into groups of tasks
Description of a FYP in terms of tasks that facilities the
management of a FYP.

3
Distribute the learning objectives within the

tasks by specific percentages

Description of how the learning objectives could be

achieved in a FYP

4.2 The evaluation process in the proposed model

Evaluation is the most significant part of any academic activity because it reflects

what students have gained from the activity. Hence, the learning objectives were con-

sidered as the main evaluation target in our proposed model. As stated above, a FYP

should satisfy a specific set of learning objects that are distributed among the FYP

tasks. We used a rubrics technique as the evaluation mechanism so that each task

could be evaluated individually. As mentioned earlier, a rubric can be defined as a set

of criteria for grading assignments. The criteria that we chose for this model were

adopted from CMMI, which is composed of five levels. In the following, we justify

why the rubric and CMMI approaches were used in our proposed model.

Firstly, Dawson [32], Panadero et al. [33] and Fraile [34] demonstrated that rubrics

are useful techniques that assist students to improve their academic output by provid-

ing them with redirection and further possibilities that are arrived via a process of

self-assessment. These possibilities back to students' knowledge about the assessment

which allows self-corrections to be made before a final assessment. Secondly, CMMI

iJET ‒ Vol. 15, No. 21, 2020 13

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

is a well-established model that is used to evaluate software development companies

based on their performance in previous projects. Chen et al. [35], Siju and Patel [36],

Chari and Agrawal [37], and Cerdeiral and Santos [38] discussed and presented the

advantages of using CMMI in software projects. However, no work (to the best of our

knowledge) has used CMMI to measure academic projects. Although CMMI has been

extended from measuring the quality of software companies to measuring the quality

of software projects, both of these versions of the CMMI have the same structure

without any modifications. However, as indicated in section two, the differences be-

tween business and educational software projects require that CMMI should be modi-

fied to cope with educational software projects. The next subsection provides an

overview of the structure of CMMI. This is followed by a brief description of the

changes that were made to create a modified CMMI, which we named educational

CMMI.

Overview of capability maturity model integration: The five levels of CMMI

are as follows:

• Level 1: Initial: The development of software in this phase could be described as

chaotic. In other words, there is no standard process to follow during the develop-

ment process.

• Level 2: Managed: In this level, the requirements are managed by a standard tech-

nique. However, the standard might be different from process to process.

• Level 3: Defined: This level provides more technical details about processes than

the second level.

• Level 4: Quantitatively Managed: In this level, quantitative objectives, statistical

methods for ensuring quality and process performance are established and used as

criteria in managing processes.

• Level 5: Optimizing. This final level involves continually improving process per-

formance through both incremental and innovative technological improvements.

Educational CMMI: In this paper, we propose using CMMI to evaluate FYP

tasks. Therefore, it was crucial to adapt CMMI so that it would be suitable for appli-

cation to the FYP. The modification process took place after a brainstorming work-

shop that included software engineering instructors and FYP supervisors. Due to the

limitation of space, a description of the details of the modification process is beyond

the scope of this paper. However, in short, two fundamental changes were made. First,

the CMMI was reduced to four levels from five in order to create educational CMMI.

In traditional CMMI, level five is an advanced level that is usually achieved by well-

established IT companies. Hence it was judged that this level could be omitted with-

out affecting the academic evaluation process. Second, the focus of each level was

changed to correspond more closely with the educational project context. Primarily,

CMMI was modified so that each task could be evaluated individually. The four lev-

els of the proposed educational CMMI are outlined below:

• Level 1: Initial: At this level, students complete their task without using a prede-

fined plan. For instance, suppose the task is writing specific code, here the students

should write their code without following any standard. There are many standards

14 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

or best practices for writing code, such as standards for writing variables or stand-

ards for writing methods.

• Level 2: Managed: At this level, students should prepare preliminary requirements

before starting a task. For instance, before starting a test task, preliminary test cases

should have been prepared to manage the test task.

• Level 3: Defined: At this level, students should provide technical documentation

that describes the task after they have completed it. For instance, suppose the task

is to design an entity relationship diagram, here the students should provide a de-

tailed technical description of each entity.

• Level 4: Quantitatively Managed: At this level, students should validate their com-

pleted task. Validation can be accomplished through applied test cases, or from

feedback received from other students.

Table 4 illustrates how educational CMMI can be used for evaluating FYP by ap-

plying it to a unified example in which the task is to design a use case diagram.

Table 4. Application of Educational CMMI for Evaluating the FYP

Level Definition Example

Level 1: Initial
Lack of defined plan Design a use case diagram before defining the

main actors, or defining the scope of a system

Level 2: Managed
Existence of prelimi-

nary requirements

Define the roles and scope of each actor before

designing the use case diagram

Level 3: Defined
Existence of technical

documentation

Provide a scenario that fully describes the use

case diagram

Level 4: Quantitatively Managed
Providing testing after

completing a task

Test the use case diagram by running an example

In the next section, a description of the execution of our proposed model is pre-

sented.

5 Implementation of the Proposed Model

The proposed model was implemented as an experiment in the Faculty of Comput-

ers and Information Technology, where the thirty FYP were chosen as test cases for

the model. Each project was assigned in two sections, first section is managed by one

of tradition software development methodologies and second section is managed by

our proposed model. On other words, there are thirty projects; each project is handled

by two groups of students. First group is used our proposed model and another group

is used one of the traditional software development methodologies. Hence, the total

number of FYP involved in the experiments is sixty FYPs. Each one of the test-cases

FYPs consisted of three undergraduate students. The total number of students that are

involved in this experiment are 180 students. The purpose of conducting this experi-

ment is to evaluate the performance of the proposed model by running a comparison

between FYPs that are managed by our proposed model against the FYPs that are

iJET ‒ Vol. 15, No. 21, 2020 15

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

managed by traditional SDLC models. The results of this comparison are discussed in

section six.

In the following, evaluation of students’ work has been presented. One of our test

case FYPs has been selected as case study to explain the evaluation process. Table 5

presents a mathematical description of two phases and their respective tasks of a se-

lected FYP.

Table 5. General Description of the Selected Phases and Their Tasks

Phase 1 {T11(g), T12(i), T13(g)}

Phase 2 {T21(g), T22(i)}

Where: Tnm(x) means T represents task, n represents phase number, m represents task number, and where

X {
𝑖
𝑔

 , i is for the individual and g is for the group

As shown in Table 5, phase 1 of a FYP consisted of three tasks, where the first and

third tasks are group tasks and the second task is an individual task. Phase 2 contained

two tasks, where the first task is a group task and the second task is an individual task.

Each task was evaluated by educational CMMI, which means that the FYP was rated

from 1 to 4; with 1 being the lowest score. In the following, the values of the above

two phases and their respective tasks are presented in more detail.

Phase 1 consisted of performing an “analysis”, which required the completion of

task11 “design a flowchart”, task12 “design a data flow diagram” and task13 “write a

software requirement specification”. Phase 2 “Design”, consisted of task21 “design a

use case diagram” and task22 “design a class diagram”.

The three learning objectives that should be attained by completing these phases

and their respective tasks were as follows:

• Learning objective 1: Demonstrate usage of analysis methods

• Learning objective 2: Demonstrate usage of design methods

• Learning objective 3: Demonstrate teamwork skills

The percentage distribution of each of the objectives among the five tasks was as

follows:

• Objective 1 is completely satisfied (100%) by achieving 25% in task11 and in

task12, and 50% of task13.

• Objective 2 is completely satisfied (100%) by achieving 50% in task21 and in

task22.

• Objective 3 is completely satisfied (100%) by achieving 30% in task11, 30% task13,

and 40% task21.

Equations (1), (2) and (3) describe the satisfaction of objectives 1, 2 and 3, respec-

tively:

𝑂𝑏𝑗₁ (100%) = {𝑇𝑎𝑠𝑘 ₁₁(25%), 𝑇𝑎𝑠𝑘 ₁₂(25%), 𝑇𝑎𝑠𝑘 ₁₃(50%)} (1)

 𝑂𝑏𝑗₂ (100%) = {𝑇𝑎𝑠𝑘 ₂₁(50%), 𝑇𝑎𝑠𝑘 ₂₂(50%)} (2)

16 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

𝑂𝑏𝑗₃ (100%) = {𝑇𝑎𝑠𝑘 ₁₁(30%), 𝑇𝑎𝑠𝑘 ₁₃(30%), 𝑇𝑎𝑠𝑘 ₂₁(40%)} (3)

In our proposed model, teamwork was measured through the evaluation of the

group tasks. In other words, teamwork was evaluated by summation of all the group

tasks. The reason that we decided to define the teamwork evaluation as the summation

of all the group tasks is because the nature of the group tasks should reflect the efforts

made by all the team members. Therefore, a group task was evaluated by using the

average of the summation of the evaluations of all the students in the group. Defini-

tion 8 shows the equation used for evaluating group tasks:

Definition 8: ∀ Stu, Tg: Avg (∑ 𝑟𝑒𝑠𝑢𝑙𝑡(𝑆𝑡𝑢, 𝑇𝑔)) ⟹ result(𝑇𝑔)

Where Stu denotes student, Tg denotes group task, eva() is a function that returns

the evaluation of a student in a group task, Avg() is a function that returns the average

of the summation of the evaluations of all the students in the group, and result() is a

function that returns the evolution of the group task.

Table 6 shows the evaluation values for the tasks of one of our test-case FYPs.

These values were obtained according to the description of educational CMMI.

Table 6. The Evaluation Values for the Tasks of one of the Test-case FYPs

Phase Task Stu1 Stu2 Stu3

Phase 1 (Analysis)

T11(g)

Design a flowchart

3

4 2 3

T12(i)

Design a data flow diagram
3 2 2

T13(g)
Write a software requirement specification

2.3

2 3 2

Phase 2 (Design)

T21(g)
Design a use case diagram

2.7

3 3 2

T22(i)
Design a class diagram

3 2 2

From Table 6, it can be seen that students were able to achieve four, three, or two

marks for each task. A mark for each task was awarded based on the following crite-

ria:

• Four marks: Where a student satisfied preliminary requirements, provided a tech-

nical description, and provided validation, they were awarded four marks for the

task. Validation could be implemented by creating a scenario, for example, or run-

ning case.

• Three marks: Where a student satisfied preliminary requirements and provided a

technical description, they were given three marks.

• Two marks: Where a student was only able to satisfy preliminary requirements,

they were awarded two marks.

The final values for the group tasks were taken as the average of the individual stu-

dents’ marks. We adopted this calculation methodology as we considered that taking

the average as the value of the group task would reinforce the collaboration between

iJET ‒ Vol. 15, No. 21, 2020 17

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

students, which would in turn lead to strengthening the teamwork skills of each mem-

ber of the group.

In the next section, the evaluation of our proposed model is presented and dis-

cussed and some concluding remarks are made.

6 Discussion and Conclusion

The applicability of our proposal model has been evaluated by experiment that in-

volved sixty FYP. Each FYP implemented by group of three students.

As has been mentioned in section five, each FYP project was assigned to two

groups. The first group managed the FYP by using our proposed model, whereas the

second group managed the FYP by using the traditional SDLC. The two groups were

asked to complete an online questionnaire in order to gain their feedback on the two

methodologies. The questionnaire contained the following statements:

1. Working on this FYP improved my teamwork skills.

2. Working on this FYP improved my technical skills.

3. Working on this FYP taught me how to manage projects tasks.

4. Working on this FYP taught me how to control a project.

5. Working on this FYP helped me to understand learning outcomes.

The students were asked to respond to the statements on a Likert-type rating scale

ranging (1: strongly disagree, 2: disagree, 3: don’t know, 4: agree, 5: strongly agree).

Figure 1 shows the feedback received from the two groups of students, where group 1

was the group that completed the FYP by using our proposed model and group 2

completed the FYP by using the traditional SDLC. It is obvious from the figure that

group 1 was more satisfied with the model they had used as compared to group 2,

particularly in regards to statements 1, 3, 4, and 5.

Fig. 1. Feedback from the two groups of students.

18 http://www.i-jet.org

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

The students’ feedback therefore indicated that our proposed model was successful

from the students’ perspective. With regards to the feedback received for statement 2,

which was equal between the two groups, this indicated that our proposed model did

not support the students in improving their technical skills. This may be due to the

absence of a special task that focused on technical skills. This could be addressed by

including a task such as prepare a software tool or test the implementation environ-

ment. Hence, this feedback provides room for further research.

 Also, the students in group 1 were asked an additional question: What difficulty

did you have in using development model? The answers they gave were: 1) finding

suitable time for all members, 2) variation in technical skills, and 3) personnel con-

flicts. The answers given to this question drew our attention to the importance of

defining the factors for team selection, and this represents one direction we will fol-

low in our future work.

The other key finding of the comparison between the two groups was that the first

group achieved higher marks than the second group in the final mark awarded for the

FYP. Figure 2 shows the comparison of results average between the two groups.

Evaluation of our proposed model has been achieved by direct and indirect assess-

ment. Direct assessment is obtained from final results of the experiment FYPs, and

indirect assessment is obtained by questionnaire’s results.

According to this direct and indirect assessment, it can be stated that our proposed

model could be more successful in managing educational FYP than traditional SDLC.

On the other hand, it is plausible that our proposed model could provide a deeper

analysis of student performance than the SDLC methodology by, for example, using it

to examine the relationship between a student’s effort as an individual and as a group

member. This will therefore be a second direction that we will follow in our future

work.

Fig. 2. The comparison of results average between the two groups.

0

10

20

30

40

50

60

70

80

90

100

G1 G2

Avg(result)

iJET ‒ Vol. 15, No. 21, 2020 19

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

In conclusion, the contribution of this paper is threefold. The first contribution be-

ing highlighting the differences between business and educational software, and that

these differences necessitated the development of a new model tailored specifically to

educational software. The second contribution was our modification of CMMI to

produce educational CMMI, which was then used as part of a rubric for evaluating

students’ academic output. The third contribution was the proposed new model for

managing the FYP in undergraduate IT and IT-related programmes of study. This

proposed model was evaluated by academic results and by student feedback and the

results showed that the proposed model was able to achieve its targeted outcomes.

From previous discussion the contribution could be summarized as:

• Proving the inappropriateness of the software development methodologies which

are used currently in developing FYP.

• Modifying CMMI to be used for educational measurements. One of the biggest

pedagogical challenges in FYP is measuring the effort, or contribution of individu-

al in a teamwork task. Our proposed educational CMMI could handle this chal-

lenge.

• Proposed new model for developing educational software.

As future work, we are planning to apply the proposed educational software devel-

opment model in IT postgraduate studies.

7 Acknowledgement

The authors are thankful to the Deanship of Scientific Research (DSR), the Univer-

sity of Tabuk, Saudi Arabia, for financial support under the grant number S-0084-

1439

8 References

[1] Sommerville, L. (2015). Software Engineering (10th Edition). Pearson.

[2] Elliott, G. (2004) Global Business Information Technology: an integrated systems ap-

proach. Pearson Education. p.87.

[3] Robert, C. (2019). Clean Architecture: A Craftsman's Guide to Software Structure and De-

sign (Robert C. Martin Series). Prentice Hall.

[4] Whitten.J., Bentley,L. (2005). Systems Analysis and Design Methods. 7th edition. ISBN-

10: 0073052337. McGraw-Hill/Irwin.

[5] Tan, J., Phillips, J. (2005). Incorporating service learning into computer science courses.

Journal of Computing Sciences in Colleges (JCSC) vol 20 (4).

[6] Longmuss, J., Höhne, B., Oberländer, A. (2016). Agile learning: Bridging the gap between

industry and university A model approach to embedded learning and competence devel-

opment for the future workforce. 44th SEFI Conference, Tampere, Finland.

[7] Jacques, S., Bissey, S., & Martin, A. (2016). Multidisciplinary Project Based Learning

Within a Collaborative Framework: A Case Study on Urban Drone Conception. iJET, 11,

36-44. https://doi.org/10.3991/ijet.v11i12.5996

20 http://www.i-jet.org

https://doi.org/10.3991/ijet.v11i12.5996

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

[8] Tatyana I. Anisimova, Fairuza M. Sabirova, Olga V. Shatunova. (2020). Formation of De-

sign and Research Competencies in Future Teachers in the Framework of STEAM Educa-

tion. International Journal of Emerging Technologies in Learning (iJET). Vol 15, No 02.

https://doi.org/10.3991/ijet.v15i02.11537

[9] Sosa, E., Salinas, J., & De Benito, B. (2019). Emerging technologies (ETs) in education: A

systematic review of the literature published between 2006 and 2016. International Journal

of Emerging Technologies in Learning, 12 (5), p. 128-149. https://doi.org/10.3991/ijet.v12

i05.6939

[10] Zhanat Nurbekova, Vadim Grinshkun, Gaukhar Aimicheva, Bakyt Nurbekov, Kalima

Tuenbaeva. (2020). Project-Based Learning Approach for Teaching Mobile Application

Development Using Visualization Technology. International Journal of Emerging Tech-

nologies in Learning Vol 15, No 08. https://doi.org/10.3991/ijet.v15i08.12335

[11] Project Management Institute PMI (2017). A Guide to the Project Management Body of

Knowledge (PMBOK® Guide)–Sixth Edition. https://doi.org/10.1109/ieeestd.2011.608668

5

[12] Sadowski, C., Zimmermann, T. (2019). Rethinking Productivity in Software Engineering.

Apress.

[13] Garousi, V. (2010). Applying peer reviews in software engineering education: an experi-

ment and lessons learned. IEEE Transactions on Education, VOL. 53, NO. 2. https://doi.

org/10.1109/te.2008.2010994

[14] Ma, K., Teng, H., Du, L., & Zhang, K. (2014). Project-driven learning-by-doing method

for teaching software engineering using virtualization technology. International Journal of

Emerging Technologies in Learning, 9. https://doi.org/10.3991/ijet.v9i9.4006

[15] Benton, M. C., & Radziwill, N. M. (2011). A path for exploring the agile organizing

framework in technology education. Proceedings - 2011 Agile Conference, Agile 2011,

131–134. https://doi.org/10.1109/agile.2011.51

[16] Rodríguez, G., Soria, A., Campo, M. (2015). Supporting Assessment of Practices in Soft-

ware Engineering Courses, IEEE Latin America Transactions, VOL. 13, NO. 9. https://doi.

org/10.1109/tla.2015.7350070

[17] Fonseca, V.M.F., Gómez, J. (2017) Applying Active Methodologies for Teaching Soft-

ware Engineering in Computer Engineering. The IEEE Journal of Latin-American Learn-

ing Technologies (IEEE-RITA) vol. 12, no. 3, pp. 147-155. https://doi.org/10.1109/rita.20

17.2738178

[18] Kennedy, I., Vossen, P. (2017). Software engineering teamwork assessment rubrics: com-

bining process and product scoring. DeLFI 2017, Germany.

[19] Ciupe, A., Ionescu,R., Meza, S., Orza, B. (2018). Towards Agile Integration within Higher

Education:A Systematic Assessment, BRAIN. Broad Research in Artificial Intelligence

and Neuroscience, VOL. 9 NO 3.

[20] Mkpojiogu, E., Hussain, A. (2017). Assessing Students' Performance in Software Re-

quirements Engineering Education Using Scoring Rubrics The 2nd International Confer-

ence on Applied Science and Technology 2017 (ICAST’17). Kedah, Malaysia. https://doi.

org/10.1063/1.5005425

[21] Yang, Y., Yu, D. (2019). Task-driven Teamwork Teaching Strategies in Software Engi-

neering, International Conference on Education Reform, Management Innovation and So-

cial Science (ERMISS 2019), Beijing, China.

[22] Barrella, E. & Watson, M.K. (2016) “Developing a cross-disciplinary sustainable design

rubric for engineering projects”, 8th Conference on Engineering Education for Sustainable

Development, Bruges, Belgium.

iJET ‒ Vol. 15, No. 21, 2020 21

https://doi.org/10.3991/ijet.v15i02.11537
https://doi.org/10.3991/ijet.v12i05.6939
https://doi.org/10.3991/ijet.v12i05.6939
https://doi.org/10.3991/ijet.v15i08.12335
https://doi.org/10.1109/ieeestd.2011.6086685
https://doi.org/10.1109/ieeestd.2011.6086685
https://doi.org/10.1109/te.2008.2010994
https://doi.org/10.1109/te.2008.2010994
https://doi.org/10.3991/ijet.v9i9.4006
https://doi.org/10.1109/agile.2011.51
https://doi.org/10.1109/tla.2015.7350070
https://doi.org/10.1109/tla.2015.7350070
https://doi.org/10.1109/rita.2017.2738178
https://doi.org/10.1109/rita.2017.2738178
https://doi.org/10.1063/1.5005425
https://doi.org/10.1063/1.5005425

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

[23] Alcarria, R., Bordel, B., & de AndrÃ, D. M. (2018). Enhanced peer assessment in MOOC

evaluation through assignment and review analysis. International Journal of Emerging

Technologies in Learning (iJET), 13(1), 206-219. https://doi.org/10.3991/ijet.v13i01.7461

[24] Venkataraman, S., Al Hussein, A., Siddappa, M. (2017) Development of software metrics

for improving the quality of the under graduate student projects in computer science

/information science/information technology/computer engineering. International Journal

of Computer Science and Network Security, VOL.17 No.10,

[25] Marques, M., Ochoa, S.F., Bastarrica, M.C., Gutierrez, F.G (2018). Enhancing the Student

Learning Experience in Software Engineering Project Courses. IEEE Transactions On Ed-

ucation, Vol. 61, No. 1. https://doi.org/10.1109/te.2017.2742989

[26] Yilmaz M., Tasel F.S., Gulec U., Sopaoglu, U. (2018). Towards a process management

life-cycle model for graduation projects in computer engineering. PLoSONE

13(11):e0208012. https://doi.org/10.1371/journal.pone.0208012

[27] Majanoja, A-M. and Vasankari, T. (2018). Reflections on Teaching Software Engineering

Capstone Course.InProceedings of the 10th International Conference on Computer Sup-

ported Education (CSEDU 2018) - Volume 2, pages 68-77. https://doi.org/10.5220/000666

5600680077

[28] Chowdhury, S., Walter, C., Gamble, R. (2018). Toward increasing collaboration awareness

in software engineering teams. FIE 2018: San Jose, CA, USA. https://doi.org/10.1109/fie.

2018.8659198

[29] Vasankari T., Majanoja AM. (2019) Practical Software Engineering Capstone Course –

Framework for Large, Open-Ended Projects to Graduate Student Teams. In: McLaren B.,

Reilly R., Zvacek S., Uhomoibhi J. (eds) Computer Supported Education. CSEDU 2018.

Communications in Computer and Information Science, Vol 1022. Springer, Cham. https://

doi.org/10.1007/978-3-030-21151-6_16

[30] CMMI Product Team. (2010), Improving processes for developing better products and

services. CMMI for Development, Version 1.3. Technical report. Software Engineering In-

stitute. Carnegie Mellon University.

[31] Panadero, E., Jönsson, A.(2013). "The use of scoring rubrics for formative assessment pur-

poses revisited: A review". Educational Research Review. 9: 129–144. https://doi.org/10.

1016/j.edurev.2013.01.002

[32] Dawson, Ph. (2015). "Assessment rubrics: towards clearer and more replicable design, re-

search and practice Phillip". Assessment & Evaluation in Higher Education. 42 (3): 347–

360. https://doi.org/10.1080/02602938.2015.1111294

[33] Panadero, E., Jonsson, A., & Strijbos, J. W. (2016). Scaffolding self-regulated learning

through self-assessment and peer assessment: Guidelines for classroom implementation. In

D. Laveault & L. Allal (Eds.), Assessment for Learning: Meeting the challenge of imple-

mentation (pp. 311-326). New York: Springer. https://doi.org/10.1007/978-3-319-39211-

0_18

[34] Fraile, J., Panadero, E., Pardo, R. (2017). "Co-creating rubrics: The effects on self-

regulated learning, self-efficacy and performance of establishing assessment criteria with

students. Studies in Educational Evaluation. 53: 69–76. https://doi.org/10.1016/j.stueduc.

2017.03.003

[35] Chen, J. J., Su, W. C., Wang, P. W., & Yen, H. C. (2013). A CMMI-based approach for

medical software project life cycle study. SpringerPlus, 2(1), 266. https://doi.org/10.1186/

2193-1801-2-266

[36] Siju, H. L., & Patel, P. (2017). Survey of Models and Tools for Project Monitoring and

Control. International Journal of Science Technology & Engineering, (3), 10.

22 http://www.i-jet.org

https://doi.org/10.3991/ijet.v13i01.7461
https://doi.org/10.1109/te.2017.2742989
https://doi.org/10.1371/journal.pone.0208012
https://doi.org/10.5220/0006665600680077
https://doi.org/10.5220/0006665600680077
https://doi.org/10.1109/fie.2018.8659198
https://doi.org/10.1109/fie.2018.8659198
https://doi.org/10.1007/978-3-030-21151-6_16
https://doi.org/10.1007/978-3-030-21151-6_16
https://doi.org/10.1016/j.edurev.2013.01.002
https://doi.org/10.1016/j.edurev.2013.01.002
https://doi.org/10.1080/02602938.2015.1111294
https://doi.org/10.1007/978-3-319-39211-0_18
https://doi.org/10.1007/978-3-319-39211-0_18
https://doi.org/10.1016/j.stueduc.2017.03.003
https://doi.org/10.1016/j.stueduc.2017.03.003
https://doi.org/10.1186/2193-1801-2-266
https://doi.org/10.1186/2193-1801-2-266

Paper—Construction of a Software Development Model for Managing Final Year Projects in Information...

[37] Chari, K., & Agrawal, M. (2018). Impact of incorrect and new requirements on waterfall

software project outcomes. Empirical Software Engineering, 23(1), 165-185. https://doi.

org/10.1007/s10664-017-9506-4

[38] Cerdeiral, C. T., & Santos, G. (2019). Software project management in high maturity: A

systematic literature mapping. Journal of Systems and Software, 148, 56-87. https://doi.

org/10.1016/j.jss.2018.10.002

9 Authors

Abdelrahman Osman Elfaki is member of Information Technology Department,

Faculty of Computers and Information Technology at University of Tabuk.

Zaid Bassfar is associate professor at Information Technology Department, Facul-

ty of Computers and Information Technology at University of Tabuk. Currently, Dr.

Zaid is a dean of Deanship of Admission and Registration at University of Tabuk.

zbassfar@ut.edu.sa

Article submitted 2020-05-03. Resubmitted 2020-06-25. Final acceptance 2020-07-07. Final version
published as submitted by the authors

iJET ‒ Vol. 15, No. 21, 2020 23

https://doi.org/10.1007/s10664-017-9506-4
https://doi.org/10.1007/s10664-017-9506-4
https://doi.org/10.1016/j.jss.2018.10.002
https://doi.org/10.1016/j.jss.2018.10.002
https://www.ut.edu.sa/web/dar
file:///E:/IAOE%202020/iJET/iJET%2015%2021/zbassfar@ut.edu.sa

