
Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Adapt Learning Path by Recommending Problems to

Struggling Learners

https://doi.org/10.3991/ijet.v16i20.24283

Youssef Jdidou(), Souhaib Aammou, Mohamed Khaldi

Abdelmalek Essaâdi University, Tetuan, Morocco
youssef.jdidou@gmail.com

Abstract—The objective of this work is the creation of a resource recommen-

dation application in Python integrated into the code of the virtual edX platform,

which appears as an additional tab in each course. By selecting this tab, learners

will have access at any time to their recommended issues for this course, and so

they can adapt their learning path. In this article, we present a recommendation

algorithm that will be responsible for proposing these problems according to the

scores obtained in the problems already performed by the learner. By calculating

the similarity with the rest of the classmates, an estimate of the most practical

problems for the learner will be made. We also present the different functions

and parameters to implement it.

Keywords—recommender system, collaborative filter, learning path, Edx plat-

form

1 Introduction

The MOOCs (Massive Open Online Courses) has caused a great revolution in edu-

cation, a large number of universities and institutions want to offer their courses open

in a massive way. However, in MOOCs it is not possible for a teacher to provide per-

sonalized help and advice due to the high number of students. Thus, the need to create

automatic mechanisms such as recommenders to give this personalized help and advice

to learners is obvious [1].

Some important current MOOC platforms already include recommenders, for exam-

ple Coursera, however, we cannot know how it works as it is not an open source plat-

form. The edX platform does not currently have a recommendation system.

On the other hand, recommendation systems are more and more present in our daily

virtual life and, more precisely, recommendation systems applied to education are the

subject of numerous studies.

The edX platform is a constantly evolving platform thanks to its open source project

Open edX. Developers from all over the world are collaborating on this project, intro-

ducing new features to transform edX into a powerful and accessible platform. Being

able to improve this platform thanks to a recommender which facilitates learning is the

fundamental motivation of this project.

iJET ‒ Vol. 16, No. 20, 2021 163

https://doi.org/10.3991/ijet.v16i20.24283

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

These, are the factors that have favored and allowed the creation of a tool for the

platform, which is responsible for proposing the appropriate problems at the level of

each learner according to their evolution throughout the course. This provides a more

personalized education that adapts to different needs and provides the learner with a

quality educational experience.

2 Recommendation systems

2.1 Definition

Recommendation systems, platforms, or engines are a type of information filtering

systems that are responsible for predicting user preference for an item [2] or items that

might be better for it. One way to make the recommendation is to look at individuals

who have similar tastes as the user or at items with characteristics common to other

items the user has purchased, seen, or have shown interest in.

Broadly speaking, we can talk about three main types of recommendation systems:

collaborative recommendation systems, content-based recommendation systems and

hybrid recommendation systems [3]. We are interested in collaborative recommenda-

tion systems.

2.2 Collaborative recommendation systems (collaborative filtering)

The main idea of collaborative recommendation approaches is to harness infor-

mation about past behavior or opinions from an existing user community to predict

what things the current user of the system will most likely like or be interested in.

Pure collaborative approaches take a given user-item score matrix as the sole input

and typically produce the following types of output: (a) a (numerical) prediction of how

much the current user will like or dislike a certain item and (b) a list of n recommended

items. Such a Top N list should, of course, not contain items that the current user has

already purchased [4]. Two approaches are used in this method:

• Based on the user (user-based recommendation)

• Based on the item (item-based recommendation)

User-based closest neighbor recommendation

Presentation. The first approach we are discussing here is also one of the first meth-

ods, called User-based nearest neighbor recommendation. The main idea is simply this:

given a grade database and the current (active) user's ID as input, identify other users

(sometimes referred to as peer users or closest neighbors) who had similar preferences

to those of the formerly active user. Then, for each product p that the active user has

not yet seen, a prediction is calculated based on the p scores made by the peer users.

The underlying assumptions of these methods are that (a) if users had similar tastes in

the past, they will have similar tastes in the future, and (b) user preferences will remain

stable and consistent over time.

164 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Better similarity and weighting measures. The basic similarity measure also does

not take into account whether two users have co-assessed but only a few items (which

they can agree on by chance). In fact, predictions based on ratings of neighbors with

whom the active user has noted very little in common have been shown to be a poor

choice and lead to poor predictions [5]. Therefore, propose to use another weighting

factor, which they call significant weighting. Although the weighting scheme used in

their experiments, reported by Herlocker et al. [6], is rather simple, based on a linear

reduction in the similarity weight when there are less than fifty items co-evaluated, the

increases in the precision of the predictions are significant. The question remains open,

however, whether this weighting scheme and the heuristically determined thresholds

are also useful in real-world contexts, where the scoring database is smaller and we

cannot expect to find many users.

Neighborhood selection. For the calculation of the predictions, we only included

those that had a positive correlation with the active user (and, of course, had noted the

item for which we are looking for a prediction). If we included all users in the neigh-

borhood, it would not only have a negative influence on the performance against the

required compute time, but it would also have an effect on the accuracy of the recom-

mendation, because the ratings of other users who do not are not really comparable

would be taken into account.

Common techniques for reducing the size of the neighborhood are to define a spe-

cific minimum threshold of similarity of users or to limit the size to a fixed number and

take into account only the k nearest neighbors. The potential problems of either tech-

nique are discussed by [5, 7]: If the similarity threshold is too high, the neighbor size

will be very small for many users, which in turn means that for many items no predic-

tion can be made (reduced coverage). On the other hand, when the threshold is too low,

the size of the neighbors is not significantly reduced.

Nearest neighbor recommendation based on item. To find similar items, a simi-

larity measure must be defined. In item-based recommendation approaches, cosine sim-

ilarity is established as the standard metric, as it has been shown to produce the most

accurate results. The metric measures the similarity between two n-dimensional vectors

as a function of the angle between them. This metric is also commonly used in infor-

mation retrieval and text mining to compare two text documents, where the documents

are represented as vectors of terms.

The similarity between two items a and b - considered as the corresponding scoring

vectors a and b - is formally defined as follows:

 𝑠𝑖𝑚(𝑎,⃗⃗⃗ 𝑏⃗) =
𝑎⃗ .𝑏⃗

|𝑎⃗ |∗|𝑏⃗ |
 (1)

Possible similarity values range from 0 to 1, where values close to 1 indicate strong

similarity. The baseline cosine measurement does not take into account differences in

average user scoring behavior. This problem is solved by using the fitted cosine meas-

urement, which subtracts the user's average from the ratings. The values of the fitted

cosine measure vary accordingly from -1 to +1, as in the Pearson measure.

Let U be the set of users who have evaluated the two elements a and b. The adjusted

cosine measurement is then calculated as follows:

iJET ‒ Vol. 16, No. 20, 2021 165

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

 𝑠𝑖𝑚(𝑎, 𝑏) =
∑ (𝑟𝑢,𝑎−𝑟𝑢̅̅ ̅)(𝑟𝑢,𝑏−𝑟𝑢̅̅ ̅)𝑢∈𝑈

√∑ (𝑟𝑢,𝑎−𝑟𝑢̅̅ ̅)2𝑢∈𝑈 √∑ (𝑟𝑢,𝑏−𝑟𝑢̅̅ ̅)2𝑢∈𝑈

 (2)

Formally, we can predict the score of user 𝑢 for a product p as follows:

 𝑝𝑟𝑒𝑑(𝑢, 𝑝) =
∑ 𝑠𝑖𝑚(𝑖,𝑝)∗𝑟𝑢,𝑖𝑖∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠(𝑢)

∑ 𝑠𝑖𝑚(𝑖,𝑝)𝑖∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠(𝑎)
 (3)

As in the user-based approach, the size of the considered neighborhood is also lim-

ited to a specific size - i.e., not all neighbors are taken into account for the prediction.

3 edX platform architecture

In this section the architecture of the edX platform is fully explained, it will be de-

tailed in the following sections.

edX is made up of several components, as shown in figure 1. We know that one of

its main characteristics is that it must be scalable, so it is based on a service architecture,

a series of software bricks that can be run on separate machines and extended as needed.

Fig. 1. Architecture of the edX platform

In addition to the above components, edX uses two database management systems:

─ MongoDB: is a document-oriented NoSQL database system, developed according

to the open source concept. Instead of saving data in tables like it is done in relational

databases, MongoDB save data structures in standard JSON documents with dy-

namic schema, making it easier and faster to integrate data into some applications.

166 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

In edX, it stores the educational content, that is to say the content of courses and

debates or discussion forums.

─ SQLite / MySQL: in localdev environments, SQLite is used as a relational database

management system, it stores user registration data, course registration, progress,

status, etc. In production environments, MySQL is used.

Two other most important components of the platform are the CMS and the LMS,

two applications from Django that work in both production and development environ-

ments:

─ CMS: is the course management system (edX Studio). This is the part where teach-

ers create and edit lessons. Communicates with the LMS through the MongoDB da-

tabase.

─ LMS: is the learning management system. This is the part that the student manages

and where the content is shown (videos, problems, tutorials, etc.).

4 Recommendation process

4.1 Recommendation algorithm

Assumptions. The algorithm implemented in this project is based on collaborative

filtering systems, since it makes predictions about the most appropriate problems for a

learner at a certain point in the course based on the experience of similar performance

models [8].

Classmates are collaborators, however, instead of sharing the same assessment mod-

els with the user to whom the recommendation is to be made, in this case, the similarity

between the learner and his or her classmates is calculated by depending on the number

of successfully completed match problems. To explain the algorithm in detail, we start

from the following assumptions:

• We assume that we have 𝑚 + 1 learners enrolled in a course and 𝑛 problems in it,

{𝑝1, 𝑝2,…, 𝑝𝑛}.

• The learner l0 is the learner connected to the platform and requires a recommenda-

tion at some point in the course.

• The rest of the learners, {l1, l2,…, l𝑚}, are classmates of l0 who will play the role

of collaborators.

Algorithm mechanism. We will illustrate the mechanism of the algorithm by means

of an example. Table 1 shows the similarities and differences of Student 𝑎0 with his

classmates when he uses the recommender. In our example:

• 𝑚 = 15 -> the learner 𝑎0 to 15 classmates in the course.

• 𝑛 = 15 -> There are 15 problem type modules in the course.

iJET ‒ Vol. 16, No. 20, 2021 167

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Table 1. Coincident problems at this point in the course

 𝒂0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

𝑝10

𝑝11

𝑝12

𝑝13

𝑝14

𝑝15

Number of cor-

responding ap-
proved Prob-

lems

5 4 5 3 2 5 1 4 5 5 5 3 5 2 4

 Problem done and approved

 Problem resolved and suspended

 Problem unresolved

The problems posed by each classmate are compared to the problems posed by the

learner 𝑎0 and the number of approved problems in which they coincide is obtained. In

this case, we observe that the greatest number of coincident approved issues is 5 and

that there are 7 companions that coincide in 5 approved issues: {𝑎1, 𝑎3, 𝑎6, 𝑎9, 𝑎10,

𝑎11, 𝑎13}. From now on, we will call them “most similar companions”.

Table 2 shows the problems in which each of these classmates best corresponds to

the learner 𝑎0 differs. Only the problems which 𝑎0 did not realize are taken into ac-

count, those which were executed and suspended are not considered as different prob-

lems. Since the most coincident companion who had the most problems only reached

𝑝12, we will limit ourselves to representing this problem.

168 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Table 2. The most coincident and least different companions

 𝒂0 𝑎1 𝑎3 𝑎6 𝑎9 𝑎10 𝑎11 𝑎13

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

𝑝10

𝑝11

𝑝12

Number of different problems 2 0 0 4 2 2 2

 Problem done and approved

 Problem resolved and suspended

 Problem unresolved

 Problem which is not taken into account because 𝑎0 has already done it although suspended

At this point, we reject the most matching companions who do not differ in any issue

since what we are looking for are partners who have issues that can be recommended.

{𝑎3, 𝑎6} are excluded from the study because they differ by 0 problems and we will

continue with the most coincident partners which differ by the fewest problems, {𝑎1,

𝑎10, 𝑎11, 13}, from now on we will designate them as "the most coincident and least

different companions". Learner 𝑎9 is also excluded for now.

4.2 Recommendation algorithm

The key steps in performing our algorithm to display recommended issues are as

follows:

1. The MySQL database is accessible and from the 'courseware_studentmodule' table

the IDs of the issues that the logged in learner (user_id) in the course (course_id)

have resolved are obtained.

2. Once you have the learner issues in the course, it is calculated that they are applied

and have failed. For, the score obtained and the maximum possible score for each

problem are taken into account.

3. As the algorithm bases its recommendations on the similarities with the classmates,

it is necessary to obtain the user ID of each of them.

4. Once we have the IDs of the classmates, we need the IDs of the issues they approved

in order to calculate the similarity to the connected student.

iJET ‒ Vol. 16, No. 20, 2021 169

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

5. We calculate the similarity between the learner and each of their classmates and we

stick with the most similar classmates, that is, those who agree on the most approved

problems.

6. We already have the most assorted companions, now among these the least different

are in demand. The IDs of companions who additionally coincide with approved

issues with the learner and differ less are recorded. For example, a companion that

coincides with the learner in 4 approved problems and differs in 2 will have a greater

similarity than a companion that coincides in 4 and differs in 5.

7. Once we have the IDs of the most matching and least different companions, we get

the IDs of the issues in which they differ, which will be possible recommendations.

8. We are now looking for the different common issues that are most common among

companions, that is, those that were approved the most often by the most similar and

least different companions. We only consider approved issues as it makes no sense

to recommend issues that other similar peers have failed.

9. We can now make the recommendations. We should recommend as many problems

as the parameter indicates:

(a) We start by recommending that the learner repeat the problems they have failed

before continuing to move forward in the course.

(b) If the required number of recommendations has not been reached, the most re-

peated problems approved by the most similar and least different companions ob-

tained in point 8 are recommended.

(c) If we need more recommendations, we continue to recommend issues approved

by the most similar companions and a little more different than the least different. In

other words, if, for example, we were dealing with more similar partners who dif-

fered in an issue, we started recommending issues that differ by more than one.

(d) In case we have no more problems to recommend, a value of None will be as-

signed.

At this point, the information is returned and as many recommended issues as indi-

cated in the number parameter of the get_recommendations (user_id, course_id, num-

ber) function, called from the application's HTML file, are displayed in the tab.

5 Implementation of recommendation algorithm

5.1 Functions

Once we have identified the necessary fields in the databases and made the connec-

tions to retrieve them, we proceed to detail the recommendation algorithm implemented

for our application.

So, we define several functions to be developed with its input and output parameters

and a brief description of its functionality:

─ get_course_problems (course_id): Access the MongoDB database and retrieve all

the problems contained in the course. Output: List of problem type modules

170 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

─ get_course_problems_id (course_id): Form the identifiers of the problem type mod-

ules from its attributes. Output: List of modules module_ids

─ get_display_name (module_id): Access the MongoDB database and retrieve the

name of the problem whose identifier we passed as a parameter. Output: String

─ get_graded_problems (user_id, course_id): Gets the IDs of the problems the student

poses in the course from the MySQL courseware_studentmodule table. Output: List

of modules module_ids

─ get_ids (user_id, course_id): Gets the IDs of the learner's classmates. Output: List of

learners user_ids

─ get_passed_problems (user_id, course_id): Obtains the identifiers of the problems

approved by the learner in the course, calculating whether the score obtained is

greater than half of the possible score. Output: List of modules module_ids

─ get_failed_problems (user_id, course_id): Gets the identifiers of the learner's failed

problems according to those achieved and those approved. Output: List of modules

module_ids

─ get_classmates_passed_problems (user_id, course_id): Gets the problem IDs ap-

proved by each of the learner's classmates. Output: Dictionary consisting of {user_id

of companions and their list of approved issues}

─ get_number_of_passed_coincidences (user_id, course_id): Gets the number of ap-

proved issues in which each classmate matches the learner. Output: Dictionary con-

sisting of {companion user_id and number of corresponding approved issues}

─ get_passed_coincidences (user_id, course_id): Gets the ids of approved issues that

each classmate corresponds to the learner. Output: Dictionary consisting of {user_id

of companions and list of corresponding approved issues}

─ get_most_coincident (user_id, course_id): Gets the IDs of the classmates that corre-

spond to the most approved issues with the learner. Output: List of learners user_ids

─ get_number_of_differences (user_id, course_id): Gets the number of issues in which

the student differs from classmates with the highest number of matching approved

issues. Output: Dictionary made up of {most suitable companion user_id and num-

ber of issues in which they differ}

─ get_least_different (user_id, course_id): Gets the IDs of classmates with the highest

number of matching approved issues and the fewest different issues. Output: List of

learners user_ids

─ get_recommended_problems (user_id, course_id): Gets the IDs of the classmates

with the highest number of matching approved issues and the fewest approved issues

and the fewest different issues and the issues in which they differ. Output: Dictionary

composed of {most matching and least different companion user_id: problems

where it differs with the student}

─ extract_and_count (user_id, course_id): Count the number of classmates who ap-

proved each issue where they differ with the learner. Output: Dictionary composed

of {different problem identifier and number of companions who approved the prob-

lem}

─ get_best_recommendations (user_id, course_id d, number): Gets recommended

problems for the learner based on their failed problems, repeats of problems where

iJET ‒ Vol. 16, No. 20, 2021 171

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

they differ from their classmates, and other corresponding peer-approved problems.

Output: List of modules module_ids

─ set_recommendations (user_id, course_id, number): Stores in the recommender_stu-

dent table the number of recommendations required for the student in the course.

─ get_recommendations (user_id, course_id, number): Retrieves from the recom-

mender_studente table the number of recommendations indicated by the number pa-

rameter. Output: List of modules module_ids

5.2 Flow diagrams

In this section, some flow diagrams show the functions implemented in the applica-

tion and a brief explanation of each one.

Get_recommended_problems function. The get_recommended_problems (user

_id,course_id) function (see figure 2) is responsible for selecting the problems that can

be recommended to the learner with the user_id identifier, that is, the problems ap-

proved by their most popular classmates. similar and less different and which the

learner has not yet completed.

Set_recommendations function. The set_recommendations (user_id, course_id,

number) function (see figure 3) establishes a connection with the MySQL database and

stores in the 'recommender_student' table the recommendations for the learner with

user_id identifier in the course with Course_id identifier indicated by the parameter

number.

172 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Fig. 2. Flow diagrams of the get_recommended_problems (user_id, course_id) function

iJET ‒ Vol. 16, No. 20, 2021 173

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

Fig. 3. Flow diagrams of the get_best_recommendations (user_id, course_id, number) function

174 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

6 Results

6.1 Only one learner registered for the course (case 1)

In case of being the only learner registered in the course and still not having made a

problem, it is not possible to recommend problems to their classmates or problems that

they did and failed, therefore, the learner sees the message in figure 4 in the Recom-

mend Me tab!

Fig. 4. Warning message to the learner

In the console we get the information displayed in figure 5:

Fig. 5. Case 1 console messages

6.2 Several registered learners. Most advanced backlog

We choose another learner, who is later than the learner we are following so far, and

see which problems are recommended in Figure 6.

Fig. 6. Problems recommended to learner

iJET ‒ Vol. 16, No. 20, 2021 175

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

In the console we get the information displayed in figure 7:

Fig. 7. Case 2 console messages

We analyze the information obtained in the console:

─ In this case, we study the learner with user_id = 12 and we see that he has only

completed and approved one problem.

─ Problems in which it coincides (green) and in which it differs (red) with each class-

mate at this time are indicated.

─ In this case, everyone agrees on a problem (the only one they have done) but with

some it differs less than with others. The least different learners are chosen from

among the most coincident (4 and 13).

─ The times each possible recommendation is repeated (the most coincident and least

different problems in red) are counted and the most repeated are recommended.

176 http://www.i-jet.org

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

─ In this case, there are no suspended issues (which would be recommended first), then

only the issues are recommended by classmates. In this case there are only two issues

per repeat, so the rest of the issues will be taken from the issues approved by another

of the more similar companions (yellow).

7 Conclusions

In order to draw reliable conclusions, it is necessary to test the recommender with

real learners interacting in a course created with different resources.

The objective of this research, the development of a resource recommendation tool

for the edX platform, was achieved. For this, a recommendation algorithm was de-

signed from the scores obtained in the problems by the rest of the classmates. This

recommendation allows learners to know the problems to be solved.

Regarding the recommendation algorithm, we can say that it has a weakness since it

is based on the most common problems among the most similar learners, there might

be some problems that are never recommended. This can happen, for example, with

problems with a high level of difficulty, because in these cases the success rate is very

low, so their popularity index will be close to zero and they will not be offered.

8 References

[1] Jdidou Y. and Khaldi M. 2018. Using Recommendation Systems in MOOC: An Innovation

in Education That Increases the Profitability of Students. In Enhancing Knowledge Discov-

ery and Innovation in the Digital Era, 176-190. IGI Global. https://www.igi-global.com/

chapter/using-recommendation-systems-in-mooc/196511, https://doi.org/10.4018/978-1-52

25-4191-2.ch010

[2] Souabi, S., Retbi, A., Idrissi, M. K., & Bennani, S. (2021). Towards an Evolution of E-

Learning Recommendation Systems: From 2000 to Nowadays. International Journal of

Emerging Technologies in Learning, 16(6). https://doi.org/10.3991/ijet.v16i06.18159

[3] Chen, B., & Wu, J. (2019). Promotive Effect of Psychological Intervention on English Vo-

cabulary Teaching Based on Hybrid Collaborative Recommender Technology. International

Journal of Emerging Technologies in Learning, 14(15). https://doi.org/10.3991/ijet.

v14i15.11185

[4] Gao, X., Huang, W. X., Wang, N., Yang, Y. C., & Yan, Y. (2016). A top-N algorithm-based

personalized learning recommendation system for digital library. International Journal of

Emerging Technologies in Learning (iJET), 11(11), 55-59. https://doi.org/10.3991/ijet.

v11i11.6256

[5] Herlocker J. L., Konstan J. A., Borchers A. and Riedl J. 2017. An algorithmic framework

for performing collaborative filtering. In ACM SIGIR Forum (Vol. 51, No. 2, pp. 227-234).

New York, NY, USA: ACM. https://doi.org/10.1145/3130348.3130372

[6] Herlocker J., Konstan J. A. and Riedl, J. 2002). An empirical analysis of design choices in

neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4), 287-

310. https://doi.org/10.1023/a:1020443909834

[7] Mobasher, B. and Anand, S.S. eds., 2005. Intelligent Techniques for Web Personalization:

IJCAI 2003 Workshop, ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised Selected

Papers (Vol. 3169). Springer Science & Business Media.

iJET ‒ Vol. 16, No. 20, 2021 177

https://www.igi-global.com/chapter/using-recommendation-systems-in-mooc/196511
https://www.igi-global.com/chapter/using-recommendation-systems-in-mooc/196511
https://doi.org/10.4018/978-1-5225-4191-2.ch010
https://doi.org/10.4018/978-1-5225-4191-2.ch010
https://doi.org/10.3991/ijet.v16i06.18159
https://doi.org/10.3991/ijet.v14i15.11185
https://doi.org/10.3991/ijet.v14i15.11185
https://doi.org/10.3991/ijet.v11i11.6256
https://doi.org/10.3991/ijet.v11i11.6256
https://doi.org/10.1145/3130348.3130372
https://doi.org/10.1023/a:1020443909834

Paper—Adapt Learning Path by Recommending Problems to Struggling Learners

[8] Jdidou Y. and Khaldi M. 2016. Increasing the Profitability of Students in MOOCs using

Recommendation Systems. International Journal of Knowledge Society Research (IJKSR),

7 (4), 75-85. https://www.igi-global.com/article/increasing-the-profitability-of-students-in-

moocs-using-recommendation-systems/174402, https://doi.org/10.4018/ijksr.2016100107

9 Authors

Youssef Jdidou is currently the President of the Association of Scientific Research,

Innovation and Technology. Founder of Tetuan International Conference on Education

and Technology. He is a PhD candidate in Computer Science at Abdelmalek Essaâdi

University, Faculty of Science, LIROSA Laboratory. In research, his current interests

include E-learning, Adaptive Hypermedia Systems, MOOCs, and

RECOMMENDATION SYSTEMS. He has been involved in several projects like

MOOCMAROC, SMARTER® and Chess for everyone.

Souhaib Aammou is a Professor at Ecole Normale Supérieure, Abdelmalek Essaadi

University, Tetuan, Morocco; member of research group of Computer sciences and uni-

versity educational engineering. His research interests include Knowledge representa-

tion and reasoning, Semantic networks, Educational Recommendation Systems, Hu-

man computer interaction (HCI) theory and educational technologies for learning. Au-

thor and co-author of more than 20 publications in international peer-reviewed journals.

Reviewer in several refereed journals (IRRODL, iJIM …)

Mohamed Khaldi is a full Professor at Ecole Normale Supérieure, Abdelmalek Es-

saâdi University, Tetuan, Morocco. Member of research group of Computer sciences

and university educational engineering. His research interests include educational tech-

nologies for learning, MOOCs, Adaptive Hypermedia Systems. Author and co-author

of more than 50 publications in international peer-reviewed journals.

Article submitted 2021-05-26. Resubmitted 2021-06-28. Final acceptance 2021-07-07. Final version pub-
lished as submitted by the authors.

178 http://www.i-jet.org

https://www.igi-global.com/article/increasing-the-profitability-of-students-in-moocs-using-recommendation-systems/174402
https://www.igi-global.com/article/increasing-the-profitability-of-students-in-moocs-using-recommendation-systems/174402
https://doi.org/10.4018/ijksr.2016100107

