
AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

An Algorithmic Animation Platform for the Web
M. Esponda

University of Applied Sciences Gießen-Friedberg, Friedberg, Germany

Abstract—This paper describes a system for generating
animations of algorithms for use in the classroom. The
animations emulate the individual steps of an algorithm in
graphical form and can be posted to the Web. The system is
based in Flash. In order to generate an animation the code
of an algorithm is extended with annotations which generate
the script code. We call our scripting language
“Flashdance”.

Index Terms—Animation, Algorithms. Educational
Technology, Programming.

I. INTRODUCTION
This papers deals with techniques for the design and

production of appealing algorithmic animations and its use
in computer science education. A good visual animation is
both a technical artifact and a work of art which can
greatly enhance the understanding of an algorithm’s
workings. The paper shows how to generate animations
which represent data structures in a visually intuitive
manner. The animations described in this paper have been
implemented and used in the classroom for courses at the
university level.

During the founding years of computer science, the
development of visualization tools was guided by the
interests and possibilities of the academic community. In
the case of computer graphics, the driving force has
switched from the universities to companies such as Pixar
(general animation), Macromedia, or many of the
computer games foundries. Such companies set now de
facto standards which are very difficult to ignore [1].

If we look back and review the history of algorithmic
animation, it is striking to see that almost all systems built
in the 1980s and 1990s had to provide their own
animation engine. This was the case for the BALSA and
for the Tango family, as well as for most other systems.
When Java arrived, there was at least the possibility of
doing animation with a graphical standard engine. Java,
however, was not conceived for animation.

Macromedia, as a company, has much more freedom to
define and modify its Flash animation engine. Introduced
in 1995-96 (first with the name FutureSplash by a
company later bought by Macromedia), Flash has gone
through several generations and has transformed into a de
facto Internet standard. Today, high-quality animations for
the Web are most likely produced in Flash. Since the
player is free, the market penetration of Flash is well
above 90% for the previous versions of Flash and is
growing steadily for the latest version.

In this paper the emphasis is put on the production of
high-quality animations, which will be animated with
Flash. We want to export those animations to the Web.
The complete system is called Flashdance, in the tradition

of naming algorithmic animation systems by a kind of
dance. No other algorithmic animation system until now
has used a standard animation engine with the popularity
and user base of Flash. Attempts in this direction are
represented by those vintage animation systems based on
Hypercard which later disappeared from the scene [2,3]

II. FLASH ANIMATIONS - BASICS
We decided to adopt the Flash animation engine for the

production of high quality animations mainly because of
the following reasons:

- Flash is a de facto standard for the Internet
- Flash animations can be posted in Web pages
- Flash offers esthetically pleasing graphical objects
- Flash animations can be stored in small files
- Flash animations are streamed
- The playing format is in the public domain
- The Flash ActionScript language

Macromedia developed ActionScript, a scripting
language for Flash animations. ActionScript is a prototype
object-based language, with a very similar syntax to
JavaScript. Like many script languages, ActionScript is a
loosely typed language.

The actual authoring environment of Flash integrates
drawing, animation and programming tools in the same
work environment. The ActionScript code reacts to events
on the timeline. Algorithms must be modified to be able to
produce animations and make then fit the ActionScript
style.

As a result, learning the Flash authoring environment is
very time intensive. Only the drawing tools are easy to
learn. The ActionScript language can be very frustrating
for most programmers used to work with programming
environments for languages like Java or C++.
ActionScript is not a suitable language for algorithm
design or for beginner students of computer science.

Flash has two important advantages though: the
graphical quality of the animations and the ease with
which object libraries can be built. It is then possible to
use an intermediate language to create Flash animations,
which can be generated from any programming language.
Less effort is necessary and results are obtained faster.

Fig. 1 shows the general structure of a Flash animation.
A film consists of scenes, which are played one after the
other (unless control code and user interaction determine a
“non-linear” flow). Each scene consists of one or more
frames. A frame contains one or more layers. Layers are
placed one on top of each other. Layers are containers for
graphical objects, interaction objects, or animation
objects.

iJET ― Volume 3, Issue 4, December 2008 29

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

Figure 1. A Flash film may contain many scenes, and each scene may

have many frames.

Fig. 2 shows four layers on top of each other. The
background of layers can be transparent. Graphical objects
can also have some degree of transparency, so that other
objects in layers further down in hierarchy can also be
seen through them.

Figure 2. Scenes consist of layers, stacked on top of each other. Layers

contain drawings and other objects.

Flash animations are frame-based. When a user
develops an animation, she has to define all the frames
that will be played, for all the layers it contains. Complex
animations, with many frames, can be produced more
easily by defining “key” frames in the animation. Flash
can then interpolate additional frames between the key
frames, a process called “tweening”.

The sequence of frames in an animation defines the
“timeline”. The different layers share a timeline. Objects
in each overlay are in principle independent of the other
objects and can move or change aspect in any frame.
Tweened objects must be in their own layer. Objects in
different layers can also coordinate their movement of
change of appearance. Fig. 3 shows an example of a scene
with two layers. The upper layer contains a sphere; the
lower layer a shaded square. The scene consists of 19
frames, in which the sphere moves in front of the square
covering it partially.

Figure 3. The timeline with two layers.

The key frames in this animation are the first and the
last. Intermediate frames are generated by Flash, using the
“tweening” option (for in-betweening). It is also possible

to assign a curved trajectory to the sphere, from the first to
the last frame. In that case an additional layer is used to
define the path.

Tweening can also be used to interpolate frames when
the form or the color of an object is changed. In this way,
smooth transitions between transformations of an object
can be produced.

Therefore, creating a Flash animation by hand usually
involves the following steps:

− The film is first divided in scenes, and scenes in
overlays.

− At least one key frame for each scene is inserted.
− Graphical objects that will be reused are defined as

symbols and saved in the project library. Symbols
can be reused as “instances”. Parameters of symbol
instances (color, form, etc.,) can be changed.

− The objects are arranged in the key frames for each
overlay. This is similar to the way a slide
presentation is created using PowerPoint.

− Where tweening-frames are to be interpolated
between key frames the tweening-options must be
set.

Even a short Flash animation can involve many
overlays and many frames. The programmer can
determine the frame rate at which the film will be played.
A complete animation can then be exported as a SWF file,
and the Flash development environment is not needed to
view it. Any Flash player will do.

A handcrafted Flash animation is produced by drawing
and redrawing frames, and by interpolating between the
important frames. But there is one more powerful feature
of Flash that makes Flash animations so compelling.
Symbols in Flash can be themselves self-animated objects.
In this case, they are called movieclips. A movieclip
pasted on an overlay has it own timeline and plays its own
animation when it is used. The timelines of the main scene
and the timeline of the movieclip run at the same frame
rate. One could, for example, animate a person walking.
The eyes could be a movieclip. The movement of the eyes
could be defined inside the eyes movieclip. When the
person walks in the animation, the eyes will be moving. In
this way it is possible to create complex and powerful
hierarchical movieclips.

The full power of Flash animations is unleashed, when
ActionScript is used. ActionScript, the Flash scripting
language, gives the programmer full access to all these
features and more. An animation can then consist of a
single frame which contains the script code. When the
script code runs, it generates all frames of the film.
Objects used by ActionScript can contain ActionScript
code themselves, so that a Flash animation running is a
collection of objects executing their code concurrently.

With ActionScript it is possible to produce an
animation directly from an instrumented algorithm.
Flashdance, my own algorithmic animation language, is
converted into ActionScript by an interpreter, which then
takes advantage of the powerful Flash animation engine.

III. OVERVIEW OF THE FLASHDANCE-SYSTEM
Fig. 4 shows an overview of the architecture of the

Flashdance system. An algorithm provides events which

 …

 …

 …

Scene 1 Scene 2 Scene n

frames

layers

objects

30 http://www.i-jet.org

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

can activate instrumented classes, or it directly provides
the instructions which are accumulated in a script file
(“name.ans”). The Flashdance interpreter executes the
animation using the standard library of animation objects
as well as user defined libraries. The result is visible on
the screen. The user has some buttons to control the speed
and appearance of the animation, as well as its rendering
in overlays.

Figure 4. Architecture of the Flashdance system

A Flashdance animation is played on a single scene. We
can create the animation directly on the scene background
or we can have many views.

An important difference between Flashdance and other
algorithmic animation systems is that, in Flashdance a
single class of animation objects is used (called
AObjects). They provide a high abstraction level for the
programmer. All objects in an animation are instances of
the AObjects class. An AObject has properties such as x-
and y-coordinate, width, height, color, and also name, type
(the shape), types of possible highlighting, etc. An
AObject behaves like a software agent: it can change any
of its properties autonomously, including its form (shape
or type). An AObject can execute any instruction of the
Flashdance script language, with exception of the setTime
and setStop instructions, which control global temporal
properties of the animation.

A Flashdance animation consists of a sequence of
messages to AObjects, commanding them to change their
properties. A View is also an AObject with the special
property that it can contain other AObjects. If an AObject
of subtype “view” is modified, all those objects contained
in the view are modified. This opens the possibility of
implementing more sophisticated animations which can
zoom into the data structures in which relevant changes
are taking place. In our interpreter, AObjects are an
extension of Movieclips with the mentioned additional
properties such as name, label, type, etc., and also
additional highlighting methods.

AObjects are subdivided into two categories: those
which are built completely when they are needed and
those which are instances of predefined objects from the
library of the Flash animator. The following objects are
built completely during execution: Points, Lines,
Rectangles, Ovals, and Views. The following AObjects
are instances of objects in the library: Bubble, Ball,
Rabbit. The second category allows the user to define

many types of objects which can be used in animations.
This approach was followed in my implementation of
Flashdance and also in the Java classes which were
instrumented for animations.

An example is the following: An AArray is a class
capable of animating any relevant change in an array. All
the visible components of the AArray are AObjects. The
elements of the array, the boxes in the array, and the
indices used to point to operations in the array are
AObjects. The AArray provides all methods and
operations necessary for modifying the array, and also the
corresponding animated version. There are several
methods for AArray. Some of them animate state
transitions, others do not. For example “swap” is the
method to exchange two array elements without
animating, whereas “aSwap” swaps two elements and
produces the animation.

An AArray frees the user from the computational
details needed to animate an element of the array, when it
moves from one position to another, or when the indices
change. It substantially simplifies the programming of the
animations based on this kind of data structures. Other
instrumented classes, AQueue, AStack, AGraph, ATree,
were programmed in the same way.

Overlays can be defined by the programmer of the
algorithmic animation with the definition of different
Views. Views can be placed over each other and can have
a transparent background.

Flashdance has a pre-defined library of animation-
objects which can be very easily extended by the user (see
section 6.5).

IV. THE FLASHDANCE SCRIPT LANGUAGE
The Flashdance animation language was designed for
simplicity [4]. An animation should be easy to produce,
without having to master a very extensive set of
commands. The quality of the vector graphics should be
preserved. This is guaranteed by allowing the user to
select objects from a library of standard object types. The
user should be able to import or produce graphical
libraries in advance.

In what follows we give an overview of the instructions
in the Flashdance scripting language.

A. Instructions
The name of each command is given in bold face.

Mandatory parameters follow. Optional parameters are
enclosed in square brackets. Parameters are separated by
blank space. Commands are written in one line, here they
sometimes wrap around producing two lines of text.

new object-type object-name x y width height
[label] [colour]

Primitive object-types for animations are:

 View view-name x y width height [label]
[background-colour]
String object-name x y width height string-text
[colour] [style]
Line object-name x1 y1 x2 y2 [line-width]
[colour]

iJET ― Volume 3, Issue 4, December 2008 31

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

Rectangle object-name x y width height [line-
width] [colour]
Oval object-name x y width height [line-width]
[colour]

With the instruction new a new animation object from
the library is selected and an instance of it is inserted at
the position (x,y) of the current view. Object-type is the
name of the animation object (movieclip-symbol) in the
library. Object-name is the name of the new instance. All
objects in an animation must have different names. Only
objects in different views may have the same name. x and
y is the position on the view-window of the animation. If
no views were defined and set at the time the instruction
new is executed, the object will be positioned directly in
the background of the scene. The new instruction must
have at least the four arguments listed. If width or height
is not specified, the object is drawn with a standard size.

Most objects of the library have a label option which
can be written when the object is created.

An animation-object (movieclip) can be of type
“View”, that is, a window at a specific position on the
animation screen and of size width × height in pixels. The
background colour can be given as an option. The default
colour is transparent.

Views are Flash-movieclips and can be created one on
top of another. This is a very significant difference to
other algorithmic animation systems, which do not offer
the option of overlaying views.

A new object can be of type String, Line, Point,
Rectangle, or Oval. These simple standard animation
Objects do not really exist in the library. They are created
at run time for more flexibility and because of their
simplicity. For each one of these objects it is possible to
give some special options like colour, line-width, style
(for strings), etc.

remove object-name1 . . . object-namen

This instruction removes one or more animation objects
from the current view.

removeAll

This instruction removes all objects from the current
view.

change object-name property1 value1 property2
value2 . . . propertyn valuen

This command is used to change one or more properties
of an object to one or more values (for example colour,
width, height, etc.)

exchange object-name object-type [x y width height]
[label]

Redefines the object with the name object-name to have
the type object-type. The original object is removed and a
new animation-object is created with the same object-
name but the new object-type. The new type uses the
parameters of the old object, except if optional parameters
are explicitly given.

This instruction is very useful when properties like
color or shape of complicated objects have to be changed.

moveTo object-name1 x1 y1 . . . object-namen xn
yn

With this command an object, or several objects, are
beamed to a new position with coordinates (x,y).

animTo object-name1 x1 y1 . . . object-namen xn
yn [path]

animTo produces a smooth movement of an object from
its current to a new position. Several objects can be
animated simultaneously. A different path can be used as
an option. If no path is specified the movement is a
straight line.

highlight highlight-type object-name1 . . .
object-namen

A visual cue is produced to highlight one or more
objects simultaneously. Types of possible highlight are
blinking (twinkle) and a momentary change of size
(swelling).

swap object-name1 object-name2 [path]

This instruction is used to swap two objects with a
smooth movement. It is not necessary to pass the position
of the two objects as parameter. An optional path gives the
trajectory for the movement of both objects.

setView view-name

All instructions following a setView instruction refer to
view-name, until a new setView instruction is executed.

setTime duration

Set the execution time for each instruction following,
until a new setTime instruction is used.

stop [label]

Set a stop mark with an optional name label in the
animation script. The animation can be restarted pressing
the “run” button in the viewer.

B. The object library
One of the major advantages of adopting a standard

animation engine such as Flash for algorithmic animation
is that all the editing and animation tools developed by
Macromedia can be inherited for our task. There is no
need to generate bad looking objects from scratch, when
we can define a library of graphically appealing objects
using the tools of the system.

Flashdance animations use symbols stored as
movieclips in a library of objects. The new command
accesses these objects and makes them available for the
animation. For our first animations we defined a simple
library of objects using the Flash editing tools. Fig. 5
shows a selection of some of the animation objects. The
name of the object is shown above each one (in black).
There are several types of spheres, for example, with
names _B, _G, _R, Rb, etc. The library includes spheres,
discs, containers for arrays, bars, rulers to measure
objects, arrows, circles, rectangles, and even rabbits
(which can perform fully animated jumps).

32 http://www.i-jet.org

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

Figure 5. Library of some of the animation objects available in

Flashdance.

In Fig. 5 some of the objects have a dashed rectangle in
front of them. This rectangle can be used to write a label
for the animation. The spheres, for example, can be
labeled with the number they represent. Array locations
can be labeled with their index value, and so on.

The movieclips library is the heart of the pictorial
representation. It is very easy to draw good-looking
objects using the refined Flash editing and drawing tools.
A movieclip-symbol can be modified at any time, or can
be completely substituted by another representation.

Objects in the library can be animated objects
themselves. The spheres, for example, could have a
texture and could be rotating spheres during the animation
or could be growing during the animation. The algorithm
animator does not have to take care of such details. This is
done in advance by the person designing the object
library. This library is defined once and much design work
is saved by reusing symbols later.

C. Instrumenting a program
It is easy to instrument programs which produce the

animation script. Let us review a simple example: the
Quicksort algorithm, as it can be written and animated in
Python.

The main program for the animation consists of the
following few lines:

f = open('quicksort.ans','w')
f.write("&prog_text=\n")
S = [12,5,13,8,9,1,3,10,14,4,7,6,15,2,11]
for i in range(0,len(S),1):
 f.write("new Oval o%s %s 300 %s %s \n" %

 (S[i],20+i*30,15+S[i],15+S[i]*5))
qsort(S)
f.close()

In this program, a file “quicksort.ans” is opened as

writable file. The list to be sorted is S. The call to
Quicksort is “qsort(S)” and the animation script file is

closed. A circle is defined and painted in the animation
window using the “new Oval” command. Each circle is an
object, the object number is given by S[i]. The position of
the circles has been defined to be at row 300 on the
screen. The column position increases by 30 pixels each
time (with an offset 20). The height of the circles
(ellipses) is 15+S[i]*5, the width is 15+S[i].

The Quicksort algorithm is as in the first edition of [5].
Two indices are used. In the minimal version defined
below, the indices are not being shown on the screen, only
the movement of the array elements. All movement is
concentrated in the function “swap”. This interchanges
two elements in the array, and at the same time, writes the
script animation command in a file.

The script command is “swap ox oy”, where x and y are
the objects (numbers) being swapped. There is no need to
write their coordinates, they are implicit when we refer to
the objects by name. The trajectory followed during the
swap is a rectangle, that is, both objects move vertically
upwards, then horizontally to their new horizontal
coordinated, and then vertically downward to fill in-place.

The instrumented code of Quicksort is the following:

import random

def qsort(A):
 quicksort(A,0,len(A)-1)
def quicksort(A,low,high):
 if low < high:
 m = partition(A,low,high)
 quicksort(A,low,m-1)
 quicksort(A,m+1,high)
def partition(A,low,high):
 pivot = A[high]
 i = low-1
 for j in range(low,high):
 if A[j]<=pivot:
 i = i+1
 swap(A,i,j)
 swap(A,i+1,high)
 return i+1
def swap(A,i,j):
 temp = A[i]
 A[i] = A[j]
 A[j] = temp
 f.write("swap o%s o%s rect 0\n" % (A[i],A[j]))
def generate(A,low,high):
 i=low
 while i<high:
 A[i]=random.randrange(1,400)
 i=i+1

The instrumented code remains very readable, as can be
seen. To animate pointers, a “new” instruction has to be
defined for each pointer (to generate an arrow) and every
time a pointer is updated, the arrow has to move. This is
best done by defining an “update_pointer” function which
sets a pointer to its new value and writes the animation
command to a file. In this way the scripted program

iJET ― Volume 3, Issue 4, December 2008 33

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

remains short and readable. Since this example consists of
a single view and has no overlays, no view commands are
needed.

V. THE INTERPRETER
The general structure of the Flashdance interpreter is
shown in Fig. 6. The Flashdance script produced by a
program is parsed, in order to identify the individual
instructions. Each instruction is then given to the
instructions interpreter, which starts the ActionScript
sequence corresponding to the instruction found in the
Flashdance stream. The instructions interpreter accesses
the predefined object library in order to create the objects
for the animation.

Figure 6. Block diagram of the Flashdance interpreter.

The structure of the interpreter is simple, but powerful.
Drawing commands are almost not needed; the library of
objects contains already the most common graphical
primitives, which are then accessed by name.

When the Flashdance interpreter is run, a screen
appears with a drawing window for the views of the
algorithm and with some buttons to control the animation.

In this section, we will review some animations created
with Flashdance. The production time for most of them
was very low. Most of the effort went into defining the
object library, but this is a one-time effort whose result
can be reused many times.

A. The Game of Life
The Game of Life was invented by John Conway

around 1970 [6]. It is a kind of mathematical recreation,
which nevertheless has led to many implementations and
even serious research about the computational capabilities
of cellular automata. The Game of Life is universal, that
is, any computable function can be implemented with the
0-1 code and with the matrix used by the game.

Life is played on a matrix of cells. Each of them can be
dead (0) or alive (1). The game proceeds by generations.
Out of an initial state, cells can become alive or dead in
the next generation. A cell which is dead becomes alive in
the next generation if it has exactly three live neighbors in
the current generation. Each cell can have up to eight
possible neighbors in the 3 by 3 matrix with this cell at the
center. A cell which is alive stays alive in the next
generation only if it has two or three live neighbors. In all
other cases the cell dies.

 Fig. 7 shows the start of a game. The red cells have
been predefined as alive, the blue cells are dead. The
pattern in the middle is called a “glider” since it
reproduces after four generations, but displaced
diagonally. The pattern to the left is a stationary one,

which “twinkles”, that is, alternates between a vertical and
horizontal bar in each generation.

Fig. 8 shows two pictures of the evolution of the game
after several generations. The glider is going across the
matrix, whereas the stationary pattern keeps alternating
between its two states.

Figure 7. Initial configuration for a game of Life. Red cells are alive,

blue cells are dead.

The algorithm for the game was written in Python. The
Python program produced a script by writing to the script
file. For example, the matrix of cells is initialized with two
loops and the write command:

f.write("new Bb c%sc%s %s %s 0 0\n" %
(i,j,70+i*20,100+j*20))

This command tells Flashdance to define a new cell, a
blue small ball (Bb), with name “c<i>c<j>”, where <i>
and <j> are the numerical decimal values of the indices of
the entry (i,j) in the game matrix. Each cells is positioned
at the pixel coordinates (70+i*20,100+j*20).

When the simulation runs, only a “change” command is
needed, every time a cell changes state, to order a ball to
change its color from blue to red, or vice versa.

Figure 8. A glider moving to the right, a blinker blinking on place.

The complete animated Python code for the Game of
Life is just a few lines long.

B. Quicksort
A further improvement to this kind of animations is to

include the Java code of the algorithm in an additional
view, which is played alongside the algorithm. This has
been done with another version of the Quicksort
algorithm. The Java code is written in an auxiliary text
file, which is read by the interpreter. In the Java code,
where Quicksort is implemented, it is necessary to
produce an instruction for the Flashdance interpreter to let
it know which line of the code to highlight. This is the
“setCodeLine” command, followed by the line number.

A portion of the animation script, for example, is the
following:

Flashdance
script Parser

Instructions
interpreter

objects
library

34 http://www.i-jet.org

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

highlight swelling o7 o14 animTo i1 297 173
setCodeLine 13

This tells the animation engine to highlight objects o7
and o14 by swelling them. Then object i1 is smoothly
moved to its new position (297,173) and line 13 in the
Java code is highlighted. This gives the impression that
the algorithm is running concurrently with the data view.

Fig. 9 shows the start of the animation. The Java code
has been loaded and the array has been initialized, as well
as the pointers i and j.

Figure 9. Start of the Quicksort animation.

Figure 10. Exchange of two numbers at the index positions i and j.

In the next screenshot, Fig. 10, Quicksort is exchanging
two numbers (1 and 17), and the pseudocode is
highlighted at the “swap” operation.

In the next screenshot, Fig. 11, Quicksort has further
progressed. The first recursive evaluations have returned
and the numbers at the beginning of the array are sorted.
They are thus colored green.

The speed of the animation can be controlled by the
user or by the teacher explaining the algorithm to a class.
The animation can be exported to a Web site also.

Figure 11. Sorted subarrays are colored green.

C. Radix Sort
Radix sort is a sorting algorithm with linear complexity.

Fig. 12 shows the algorithm running, using a set of dates
as the numbers to be sorted. The first set of bars shows the
days, the second row the months, and the third row the
years. A date is composed on one bar in each row (one
day, one month, and one year). Radix sort starts sorting
first the days, as shown in Fig. 12, where the days (in
green) are being copied to a second array. After the dates
have been sorted according to the day, the next sorting
sweep sorts the months (Fig. 13, in blue). Now the dates
are copied from the lower part of the screen to the upper
part. Repeating this process for the years, the dates are
finally sorted. Each sort was implemented using the
counting sort algorithm.

Using dates to illustrate Radix sort makes the algorithm
easier to understand. It also becomes obvious that
different numerical bases can be intermixed, for different
portions of the input. The animation is reversible (see
Section 6.9) and the code is shown on the panel on the
right.

Figure 12. Radix sort running. Dates are being sorted. Days are
represented by green bars, months by blue bars, and years by red

bars. The dates on the upper portion of the window are being copied
to the lower portion, ordering by day.

Figure 13. In the next sort sweep the dates are ordered by month and are

copied from the lower to the upper portion of the window.

D. Depth First Search
The next example is an animation of an algorithm that

works on graphs. Starting from a given node, depth first
search looks for a way to access all nodes in a graph,

iJET ― Volume 3, Issue 4, December 2008 35

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

generating a spanning tree of all reachable nodes. The
algorithm preserves a set of nodes to be visited, and is
depth first, because explores as far as possible along each
branch before backtracking.

Figure 14. Depth First Search in a graph.

The screenshot in Fig. 14 shows the algorithm running.
The spanning tree being formed is colored red. Nodes,
whose children have been completely considered, are
colored grey. Nodes which have been discovered are
colored green.

The screenshot in Fig. 15 shows the final state of the
simulation: all nodes have been reached, the spanning tree
is complete, and there are no more nodes to continue
processing.

The last screenshot of the DFS Algorithm in Fig. 16
shows more information about the internal representation
of the graph. You can see the time stamps of the nodes
when they are discovered or finished and the adjacency
list of the node neighbors.

Figure 15. End of the DFS algorithm. The spanning tree is shown in

red.

Figure 16. DFS algorithm with a second view of the graph

representation.

E. The towers of Hanoi
The towers of Hanoi are one of the classical examples

used for explaining recursion and one favorite theme of
algorithmic animation systems. The screenshot in Fig. 17
shows a Flashdance animation of the Java code shown in
the right window. Instrumenting the animation was very
simple, scripting commands had to be included in just one
function call.

The animation shows the position of the plates during
an animation run. The plates are inserted into three poles.
Plate number 4 is moving from the central to the left pole.
The lines below the poles show the successive movement
of the plates: a red line represents a movement from the
right to the left, a blue line a movement of a plate from the
left to the right. The pseudocode is shown on the right,
highlighted at the current instruction.

Now that we have seen Flashdance being used in
several algorithmic animations, let us look at a few
important features in more detail.

Figure 17. The towers of Hanoi animation.

F. Reversibility and Overlays
Reversibility is an important feature for algorithmic

animations. This feature gives the viewer the possibility of
mentally “zooming” into an operation in order to examine
the conditions and context in which a data structure is
modified. Reversibility is difficult to implement in
systems which do their own rendering (for example Zeus)
because it is easier to draw an object on top of an existing
picture than it is to remove the object from the composite
image. If a single rendering layer is used, the set of pixels
covered by an object has to be determined and managed.
This imposes a high overhead on the simulation system.

The user can backtrack or go forward in an animation
by undoing or redoing a previous operation. This is the
approach we followed in Flashdance: when an animation
runs, it is made reversible by generating the inverse
instructions and saving them on a stack. The user can
press the forward button activating so the next operation
in the Flashdance code, or she can decide to go backwards
pressing the “step back” button which executes the next
operation from the undo stack. Reversibility is achieved
through the interplay of the programmed sequence of
commands and the undo stack. Reversibility is easier to
implement in Flash than in other systems, because Flash
animations are drawn in layers – the runtime system
maintains each layer and redraws it automatically,
respecting the object occlusion constraints.

Flashdance commands were defined from the beginning
with reversibility in mind: for every operation there is a

36 http://www.i-jet.org

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

corresponding inverse operation. The inverse operation is
generated at runtime; each inverse operation is pushed
into the undo stack before her corresponding Flashdance
instruction is executed.

The inverse operations, for the most important
instructions, are shown in Table 1. All inverse instructions
are generated when the program is executed.

TABLE I.

SOME FLASHDANCE COMMANDS AND INVERSE OPERATIONS

Command Inverse command Comments
remove name new type name x y width

height label color
The arguments type, name, x, y, width,
height, label and color must to be read

from object name before remove is
executed.

new type name x y width
height [label]

remove name Deletes object with ID name

change name property1 value1
[property2 value2]…

change name property1
valueo1 [property2

valueo2]…

The parameters valueo (old value) are
read from the object before they are

changed.
exchange name type [x y

width height label]
exchange name typeo xo yo
widtho heighto labelo coloro

The arguments typeo, name, xo, yo,
widtho, heighto, labelo and coloro must

be read from the object before, the
exchange is executed.

moveTo name1 x1 y1
 [name2 x2 y2]

 . . .

moveTo name1 xo1 yo1
 [name2 xo2 yo2]

 . . .

The old position of the objects must be
read to construct the reverse instruction

animTo name1 x1 y1
 [name2 x2 y2]

 . . .
 [path]

animTo name1 xo1 yo1
 [name2 xo2 yo2]

 . . .
 [path]

The position of the objects must be
read, before the instruction is

executed. The animation path is the
same.

Highlight type name1
 [name2] …

Highlight type name1
 [name2]…

Both instructions are equal

swap name1 name2 [path] swap name1 name2 [path] Both instructions are equal
setView view-name setView original-view The original view where the animation

was running, must be read before
changing it

removeAll list of new instructions A new instruction for each objects is
pushed into the stack

setCodeLine line setCodeLine lineo The original lineo for the program
pointer is used before updating the

pointer.
Some Flashdance commands and inverse operations. The first column lists the instructions with its parameters. The second column
provides the corresponding inverse instructions. The third column gives some information about the parameters used. The subindex “o”
(for original) refers to the object parameters before they are modified by a Flashdance instruction.

Fig. 18 shows the panel for controlling an animation.

The name of the Flashdance program is entered in the text
window. The button “load program” loads the code and
generates the reversible code (undo stack). Pressing “start”
lets the simulation run. The button changes its label to
“stop”; if pressed again this button stops the simulation. A
stopped simulation can be operated in single steps forward
or backward, using the buttons “next” and “prev”,
respectively. The color of the background can be changed
by selecting one of the colors on the left. The program
counter is shown under the label “pc”, and the time
interval for a single step under the label “tpi” (time per
instruction). This number can be changed, making the
animation run faster or more slowly.

A nice example of a reversible animation and its
usefulness is this implementation of Dehornoy’s algorithm
for bringing braids into a canonical form [7]. A braid is a
set of n lines starting from ordered positions 1 to n, which

overlap in the way shown in Fig. 19. A braid can be
simplified, in order to make it comparable to other braids.
Figure 19 shows the start of Dehornoy’s algorithm and the
construction of a braid from its description as a list of
positive and negative numbers, which represent crossings.
The screenshot on the right of Fig. 19 has been executed
reversibly and brings the construction process some steps
back.

Figure 18. Control panel for a Flashdance animation showing the button

for reversible execution.

iJET ― Volume 3, Issue 4, December 2008 37

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

Figure 19. Dehornoy’s algorithm running forward (left), and running

backwards (right).

Fig. 20 shows the final step of the braid simplification
process. As can be seen, only the crossings that remain in
the braid to the right are essential. Other crossings are not
essential and can be discarded.

Figure 20. Final simplification: the braid to the left is equivalent to the

braid to the right.

G. Overlays
The general idea of overlays is to generate an animation

using different superimposed views, which can be
switched on and off when the animation runs. This allows
the viewer to control the amount of informational detail
that she or he wants to receive. Overlays are another way
of focusing the attention on the important details of an
animation.

Flash animations are based on the concept of animation
layers. Layers are superimposed on each other and can be
switched off manually using the Flash user interface. In
Flashdance we make this functionality available in the
simulation window itself. For every view the interpreter
creates a button which can be toggled by the user, and
which switches on or off the display of an animation view.
The views are still present and are updated continuously,
but they are made visible or invisible according to the
corresponding overlay button setting.

An example for the use of overlays is the animation of
an algorithm for finding the convex hull of a set of points.
Fig. 21 shows the algorithm running in the Flashdance
environment. The points are visible to the left. The
algorithm code is on the right. When the algorithm runs,
the segments tested as possible components of the convex
hull are marked in black. The buttons below the blue
window, are the overlay buttons. There are four overlays
in this simulation: two for the left side of the convex hull,
and two for the right side. With one of the buttons for the

left side, the tested segments can be shown or not as black
segments. With the other button, it is possible to turn on or
off the left side of the convex hull.

Figure 21. The convex hull algorithm running.

Fig. 22 shows the five overlays of the algorithm
superimposed on each other (left side). The right side
shows two of the overlays switched off, namely those
containing the information about the segments which were
tested. The left side marks tested segments in black. For
the right side of the convex hull construction, the
segments were marked in red. As can be seen with this
experiment, the amount of information displayed by the
animation can be controlled directly by the user, while the
algorithm is running, providing a better way of spatially
zooming in and out of an algorithm. Temporal zooming is
available in Flashdance through the control of the
animation step. Overlays play the same role, from the
perspective of the objects shown by the animation.

The use of overlays could allow to produce automatic
animations. Using dataflow analysis, the data flow of a
program could be automatically distributed on several
layers. The user can then just switch off those layers
which are not relevant for the operations she wants to
focus on.

Figure 22. The convex hull algorithm running. On the left side we see

all overlays. On the right side, the tested segments overlays for the
laft and right convex hull have been switched off. This can be done

while the algorithm is running.

H. Instrumented Java classes
An alternative to the inclusion of inline code in an

algorithmic animation is to provide instrumented classes,
which supersede the standard array or linked data classes,
providing the same functionality plus an animation. This
approach has been used by authors of algorithmic
animation systems [8,9]. Instrumented classes have been

38 http://www.i-jet.org

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

used to visualize lists in Java [10]. A JVALL class
overloads the Java LinkedList class and the user can
switch between a linear or a circular visualization of a
linked list. The same technique has been used to animate
arrays in C++ [11].

Flashdance code can be produced by instrumented Java
or C++ classes and can be played with the Flashdance
interpreter. It would be easy to take a large library of
algorithms and data structures, such as LEDA, and add the
necessary code in order to have instrumented classes. This
work could be done by a group of students now that the
necessary infrastructure is in place.

As an illustration of how instrumented Java classes can
be used for animating algorithms, we instrumented a small
library of Java methods for handling trees. Fig. 23 shows a
screenshot of a tree being built by repetitively inserting
nodes into a tree (using the corresponding Java method).
When the Java program runs, it produces the Flashdance
commands which when played animate the sequential
construction of the tree.

Figure 23. Construction of a tree by an instrumented Java class.

In Fig. 24 we see how a node is being deleted by
another Java method. Pointers help to find the node,
which is then erased from the tree. The tree pointers are
updated as needed. The pointers are drawn on an overlay
which can be switched on or off.

This example suffices to show that all the machinery
needed to instrument classes in any programming
language (Java, C++, Python) is available in the
Flashdance system. Significant libraries of instrumented
classes in these languages can be created as part of
students projects.

Figure 24. Deleting a node from a tree by an instrumented Java class.

VI. SUMMARY AND DISCUSSION
In this paper, we have shown how to harness the Flash

engine for our own purposes, namely algorithmic
animation. Flash is a powerful animation system, which
has gained widespread acceptance in the Internet. We
have shown why: the vector oriented representation used
by Flash leads to compact yet good-looking animations,
which can be streamed. The difference to Java animations
is startling. Flash animations are much smaller, yet more
appealing.

This paper discussed ActionScript and the general
structure of Flash animations, but the user of Flashdance
does not have to be aware of these technicalities.
Flashdance is a scripting language which effectively
insulates the user from all Flash issues. ActionScript itself
is changing; it has evolved from year to year. It would be
annoying to have to modify the algorithms already
implemented, in case a new version of ActionScript is
released. This is not needed, since the Flashdance
interpreter takes care of providing the correct
interpretation of the scripted code.

The Flashdance script language has been designed with
simplicity in mind. It should be easy for students and
researchers to animate code in a few minutes. Flashdance
offers an option not present in other algorithmic animation
systems: overlays. Taking advantage of the fact that Flash
animations are organized in layers, we can also organize
algorithmic animations in different views. One view can
show the algorithm itself, another layer the number of
operations or data exchanges. Overlays can be switched
on and off by the viewer of the animation and provide a
way of transporting more information to the final viewer.

As shown in this paper, instrumenting a program to
produce an animation is very simple. It would be easy to
instrument classes in object oriented programming
languages to extend them with animation capabilities.

Many other algorithmic animation systems have gone
into oblivion because the implementation platform has
disappeared. Flashdance is a simple scripting language for
which players can be written fairly easily. We expect
Flash to be around for at least ten more years and
ActionScript animations to be upward compatible at least
for a decade. In ten more years, it could be that animation
features are already part of the operating system and then
other animation scripting languages could become more
popular.

The popularity of Flash animations is also transforming
the Linux world. Players for Linux are already available,
and also Web servers for Flash content. The intention of
Macromedia is to position Flash as the interface for Rich
Internet Applications, that is, applications delivered
through the Web, and compatibility across platforms
becomes important. Sun Microsystems, for example,
started delivering Flash as a component of its Java
Desktop in 2003 and the Flash player is an integral part of
the open source Mozilla browser. Therefore, using Flash
as the graphical front-end for my own system seems to be
a good bet for the future.

Flashdance is the first algorithmic animation system
which takes advantage of the inherent animation
capabilities of an animation engine for the Web. We
assume that other systems will emerge in the future and
will follow this lead. In this paper we have provided
examples of many algorithmic animations with high-

iJET ― Volume 3, Issue 4, December 2008 39

AN ALGORITHMIC ANIMATION PLATFORM FOR THE WEB

quality graphics, reversibility, overlays, and coupling
between a code and an animation window. The interested
user can follow an animation, stop it, and zoom on a step
by going forwards and backwards.

VII. FUTURE WORK
Right at the beginning of The Visual Display of

Quantitative Information Edward R. Tufte summarizes his
rules for graphical excellence. This paper is concerned
with graphical quality, but first and foremost, with
algorithmic animation excellence. The difference is
important: while Tufte only needs to consider rules for the
esthetic and efficient display of static data, we are
confronted with the more challenging problem of
representing movement, changes, and individual steps of
algorithms, that is, dynamics [12]. However, we can
paraphrase Tufte’s original rules, adapting them to the
problem of algorithmic animation [13]. What we obtain is
a useful set of heuristic rules which can applied to
algorithmic animation. Tufte’s modified rules (my
modifications are highlighted using italics) are now:

Excellence in algorithmic animation consists of
complex ideas communicated with clarity, precision, and
efficiency. Algorithmic animation should

− show the data transformations
− induce the viewer to think about the substance rather

than about methodology, graphic design, the
technology of rendering, or something else

− avoid distorting what the algorithm has to say
− present many steps in small space
− make large data sets coherent
− encourage the eye to compare different algorithm

steps
− reveal the algorithm at several levels of detail, from

a broad overview to the fine structure
− serve a reasonable clear purpose: description,

exploration, learning or decoration
− be closely integrated with the verbal descriptions of

the algorithm.

The animations discussed in this paper try to put the
spotlight on all data transformations, using explicit
movement of data objects or highlighting them. The idea
is always to convey the essence of an algorithm to the
viewer, making her or him concentrate in the most
important operations. The scripting language can deal
with small and with large data sets. Small data sets were
used extensively in the Flash animations. Large data sets
were handled as examples with E-Chalk Animator. The
animations try to guide the eye of the observer, connecting
a view of the pseudocode with views and overlays of the
data. Algorithm steps can be reviewed, either by rerunning
the algorithm or by letting it execute backwards. The
algorithmic animation tools described in this paper serve
the main purpose of teaching students about such
algorithms, and both E-Chalk Animator and Flashdance
can be enhanced with sound and verbal descriptions.

The scripting language is a general purpose animation
tool, and, of course, it can be misused. Bad animations can
still be produced with the best animation engine available,

in the same way that a blackboard can be used to give bad
or good lectures. The animation engine is a clean slate in
which the algorithm animator can imprint his or her
understanding of an algorithm. The best animations are
those in which the mental data structures proposed by the
algorithm correspond best to the algorithms data
structures. Or to put it in the words of Bertin: “The entire
problem is one of augmenting this natural intelligence (of
the user, ME) in the best possible way, of finding the
artificial memory that best supports our natural means of
perception” [14]. This is the intended evolution path for
further versions of Flashdance, originally described in
[15], and for which new versions are currently in
development.

REFERENCES
[1] Rhyne T-M., “Computer Games’ Influence on Scientific and

Information Visualization,” IEEE Computer, December 2000, pp.
154–156.

[2] Gloor P., "AACE Algorithm Animation for Computer Science
Education," Proceedings of the 1992 IEEE Workshop on Visual
Languages, Seattle, WA, September 1992, pp. 25–31.

[3] Gloor P., Dynes S. and Lee I., Animated Algorithms. MIT Press,
Cambridge, MA, 1993. (CD ROM)

[4] “Algorithmic Animation in Computer Science Education with the
Flashdance System”, 2. Workshop Grundlagen Multimedialen
Lehrens und Lernens, Berlin, March 15-18 2004.

[5] Cormen T., Leiserson C. and Rivest R., Introduction to
Algorithms, MIT Press, Cambridge MA, 1990.

[6] Gardner M., “The Fantastic Combinations of John Conway’s
Solitaire Game ‘Life’,” Scientific American, Vol. 223, No. 10,
1970, pp. 120–123.

[7] Dehornoy, P., “A fast method of comparing braids,” Advances in
Mathematics, Vol. 125, 1997, pp. 200–235.

[8] Hausner A., “Web Based Animation of Geometric Algorithms”,
unpublished PhD Thesis, Princeton University, November 2001.

[9] Ben-Ari M., Myller N., Sutinen E. and Tarhio J., “Perspectives on
program animation with Jeliot,” Software Visualization:
International Seminar. Dagstuhl Castle, Germany, Lecture Notes
in Computer Science Vol. 2269, 2002, pp. 31–45.

[10] Dershem H., McFall R. and Uti N., “Animation of Java Linked
Lists,” Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education, Cincinnati, KY, 2002, pp. 53–57.

[11] Rasala R., “Automatic Array Algorithm Animation in C++,”
Proceedings of the 30th SIGCSE Technical Symposium on
Computer Science Education, New Orleans, LO, 1999, pp. 257–
260.

[12] Foley J. and McMath C., „Dvnamic Process Visualization,“ IEEE
Computer Graphics and Applications, Vol. 6, No. 2, March 1986,
pp. 16–25.

[13] Tufte E., The Visual Display of Quantitative Infürmation,
Graphics Press, Cheshire, CT, 1983.

[14] Bertin J., Semiology of Graphics, University of Wisconsin Press,
Madison, WI, 1983.

[15] Esponda, M, „A New Algorithmic Animation Framework for the
Classroom and for the Internet”, PhD Thesis, Department of
Computer Science, Freie Universität Berlin, 2004.

AUTHOR
M. Esponda is with the University of Applied Sciences

Gießen-Friedberg, Friedberg, Hessen, Germany (e-mail:
margarita.esponda@mnd.fh-friedberg.de).

Manuscript received 12 January 2008. Published as submitted by the
author.

40 http://www.i-jet.org

